ingkaran adalah Kumpulan titik-titik yang mempunyai jarak yang sama dengan suatu
titik tertentu. Titik tertentu tersebut d...
Rumus Luas Lingkaran
Contoh.
1. Tentukan luas lingkaran dengan diameter 20 cm . jika π = 3, 14.
Jawab.
Diketahui d = 20 cm...
Latihan Soal
1. Tentukan luas lingkaran dengan jari-jari 15 cm , jika nilai π = 3,14
2. Tentukan luas lingkaran dengan dia...
A. Menghitung Panjang Busur, Luas Juring, dan Luas Tembereng
Dari hasil pemutaran tersebut, kita peroleh hubungan
besar AO...
Contoh Soal
1.
Pilihlah satu jawaban yang paling tepat
1. Sebuah lingkaran mempunyai jari-jari 13 cm, jika panjang sebuah ...
B. Sudut Pusat dan Sudut Keliling Lingkaran
1. Hubungan antara sudut pusat dan sudut keliling lingkaran yang menghadap bus...
3. Sifat-sifat segi empat tali busur
C. Sudut antara Dua Tali Busur
Menentukan sudut antara dua tali busur:
a. Sudut antar...
b. Sudut antara dua tali busur yang titik potongnya di luar lingkaran.
Besar sudut antara dua tali busur yang berpotongan ...
b. Perhatikan segitiga siku-siku PBO!
2 2 2
2 2
PB OP OB
13 5
169 25
144
PB 144
12
= −
= −
= −
=
=
=
Jadi, panjang garis s...
Kedua lingkaran tidak memiliki garis singgung
persekutuan
Kedua lingkaran memiliki satu garis singgung
persekutuan
Kedua l...
Misalkan:
- jari-jari lingkaran yang berpusat di titik L = r1
- jari-jari lingkaran yang berpusat di titik M = r2
- jarak ...
Untuk menghitung panjang PR dan SQ, ikutilah cara berikut!
Buatlah garis dari M sejajar PR dan tegak lurus pada perpanjang...
umlah rusuk kubus ada 12 buah yang sama panjang dan 6 buah bidang sisi yang luasnya juga
sama.J
Ini adalah contoh sebuah k...
VOLUME KUBUS
olume atau isi dinyatakan dalam satuan cm3
atau liter ( 1 l = 1 dm3
). Rumus untuk
mengitung volume kubus ada...
Luas Permukaan Balok dan Volume Balok
Contoh Soal
1. Tentukan panjang kawat yang dibutuhkan untuk membuat sebuah kerangka ...
= 35600 cm2
3. p = 1,8 m = 180 cm l = 1,2 m = 120 cm t = 15 cm
Vair = V1/2 balok = ½ ( p x l x t)
= ½ ( 180 x 120 x 15 )
=...
permukaan keramik itu dalam satuan cm2
Terampil dan Cerdas Matematika 2 ©Rosid Tamami 17
risma adalah bangun ruang yang mempunyai dua sisi yang konruen dan sejajar sebagai sisi
alas dan sisi tutup (alas dan tutu...
Luas Permukaan Prisma
Luas permukaan sebuah prisma mengikuti konsep luas bangun datar, yaitu menghitung
semua luas bidang ...
Volume Prisma
Rumus Volume Prisma adalah
V = LUAS ALAS X TINGGI
Contoh.
1. Tentukan Volume Prisma yang luas alasnya 30 cm2...
imas adalah bangun datar yang dibatasi oleh sebuah bidang alas dan beberapa bidang
segitiga sebagai selimut / selubung yan...
Lpermukaan = a ( a + 2 c )
Volume Limas
Volume limas dirumuskan sebagai berikut
Contoh Soal
1. Hitunglah luas permukaan li...
Uji Kompetensi
I.Pilihlah jawaban yang paling tepat
1. Alas sebuah prisma berbentuk belah ketupat dengan keliling 60 cm da...
II. Kerjakan dengan singkat dan tepat
1. Volume suatu prisma segi empat adalah 100 dm3
dan tingginya 4 dm. Hitunglah luas
...
Upcoming SlideShare
Loading in...5
×

Matematika 2(8)

7,668

Published on

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
7,668
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
138
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Matematika 2(8)

  1. 1. ingkaran adalah Kumpulan titik-titik yang mempunyai jarak yang sama dengan suatu titik tertentu. Titik tertentu tersebut dinamakan titik pusat sedang jarak yang sama dari titik pusat tersebut dinamakan jari-jari.L Bagian-bagian Lingkaran • Juring / sector, daerah yang tampak dalam gambar 2 adalah contoh sebuah juring lingkaran, yaitu daerah yang dibatasi oleh dua buah jari-jari dan sebuah busur. • Busur lingkaran, daerah yang tampak dalam gambar 3 adalah contoh sebuah busur yaitu lengkungan dari sebuah lingkaran. • Tali busur adalah garis yang menghubungkan dua ujung busur. • Tembereng adalah daerah yang dibatasi oleh sebuah busur dan tali busur. Terampil dan Cerdas Matematika 2 ©Rosid Tamami 1 ● O = titik pusat lingkaran OC = jari-jari lingkaran, disimbolkan dengan huruf (r ) BD = Diameter lingkaran disimbolkan dengan huruf ( d ) dimana ukuran r = ½ d Gambar. 1 Gambar. 2 Gambar. 3 DEFINISIDEFINISI
  2. 2. Rumus Luas Lingkaran Contoh. 1. Tentukan luas lingkaran dengan diameter 20 cm . jika π = 3, 14. Jawab. Diketahui d = 20 cm dan π = 3,14 atau r = 10 cm Maka Luas = π r2 atau Luas = ¼ π d2 = 3,14 x 102 = ¼ x 3,14 x 202 = 3,14 x 100 = ¼ x 3,14 x 400100 = 314 cm2 = 314 cm2 Rumus Keliling Lingkaran Contoh. 1. Tentukan keliling lingkaran yang berjari-jari 14 cm, jika nilai π = 22/7 Jawab. Diketahui r = 14 cm π = 22/7 Maka Keliling = 2 π r = 2 x 22/7 1 x 142 = 2 x 22 x 2 = 88 cm Terampil dan Cerdas Matematika 2 ©Rosid Tamami 2 2 4 1 dL rL π π = = Dimana : r = jari-jari lingkaran dan d= diameter lingkaran nilai 7 22 14,3 = = π π atau K = π d K = 2 π r LUAS DAN KELILING LINGKARAN LUAS DAN KELILING LINGKARAN 2
  3. 3. Latihan Soal 1. Tentukan luas lingkaran dengan jari-jari 15 cm , jika nilai π = 3,14 2. Tentukan luas lingkaran dengan diameter 28 cm , jika nilai π = 22/7 3. 4. 5. Tentukan keliling sebuah lingkaran dengan jari-jari 210 cm ( 6 22 =π ) 6. Adi mengukur keliling kolam ikan yang berbentuk lingkaran dengan tali, setelah diukur ternyata panjang tali sama dengan 15, 4 m , berapakah jari-jari kolam ikan tersebut ? 7. Tentukan jari-jari lingkaran sebuah lingkaran jika diketahui kelilingnya 5,5 m 8. Sebuah gerobak mempunyai diameter roda 1,4 m , berjalan sehingga rodanya berputar sebanyak 100 kali . Tentukan panjang lintasan roda gerobak ? ( 6 22 =π ) 9. Diperkirakan lintasan bumi mengelilingi matahari berbentuk lingkaran dengan ukuran jari-jari lintasan 1,50 x 108 km. Hitunglah panjang lintasan bumi mengelilingi matahari 10. Terampil dan Cerdas Matematika 2 ©Rosid Tamami Tentukan luas lingkaran disamping jika Nilai 7 22 =π Tentukan luas daerah yang diarsir dari lingkaran disamping, jika nilai π = 3,14 A DC B Tentukan luas daerah yang diarsir, ABCD persegi panjang dengan ukuran AC = 20 cm, AB = 30 cm . ( pi = 3,14 ) 3
  4. 4. A. Menghitung Panjang Busur, Luas Juring, dan Luas Tembereng Dari hasil pemutaran tersebut, kita peroleh hubungan besar AOB panjang busurAB luas juring OAB 1 besar AOC panjang busurAC luas juring OAC 2 ∠ = = = ∠ Contoh: Jika pada gambar di samping, panjang busur AD = 6 cm dan luas juring ODC = 9 cm2 , tentukan! a. panjang busur CD b. luas juring OAD Jawab: a. panjang busur DC besar DOC panjang busur AD besar AOD ∠ = ∠ 0 0 besar AOD panjang busur DC panjang busur AD besar DOC 30 6 3 cm 60 ∠ = × ∠ = × = b. luas juring OAD besar AOD luas juring ODC besar DOC ∠ = ∠ 0 2 0 besar AOD luas juring OAD luas juringODC besar DOC 60 9 18 cm 30 ∠ = × ∠ = × = Karena satu putaran penuh 3600 , keliling satu putaran 2 rπ= , dan luas lingkaran penuh 2 2 rπ= , untuk suatu lingkaran berjari-jari r dengan busur, juring, dan tembereng seperti pada gambar, berlaku sebagai berikut Terampil dan Cerdas Matematika 2 ©Rosid Tamami Luas Juring OAB 7 22 14,3 , 360 360 . 2 == −== = ππ π atau jarijarirrxx a lingkaranLuasx a jL Luas tembereng AB = Luas juring – luas ∆AOB 7 22 14,3 ,2 360 . 360 : 0 0 == −== = ππ π atau jarijarirrx a LingkaranKx a AB dirumuskanABBusurPanjang MENENTUKAN LUAS JURING DAN PANJANG BUSUR JIKA DIKETAHUI JARI-JARI DAN SUDUT PUSATMENENTUKAN LUAS JURING DAN PANJANG BUSUR JIKA DIKETAHUI JARI-JARI DAN SUDUT PUSAT Setelah kita amati, ternyata: a. Besar ∠AOB = besar ∠BOC; b. Panjang busur AB = panjang busur BC; c. Luas juring AOB = luas juring OBC 4
  5. 5. Contoh Soal 1. Pilihlah satu jawaban yang paling tepat 1. Sebuah lingkaran mempunyai jari-jari 13 cm, jika panjang sebuah tali busur yang terdapat pada lingkaran adalah 10 cm , maka panjang apotema tali busur tersebut adalah …. cm a. 12 b. 18 c. 24 d. 30 2. 3. Sebuah lingkaran mempunyai jari-jari 14 cm, maka pernyaaan yang benar adalah ……… a. diameter 28 cm b. keliling 88 cm c. luas 154 cm2 d. a dan b benar 4. Panjang busur lingkaran dihadapan sudut pusat lingkaran 600 , dengan jari-jari lingkaran 21 cm adalah ……. cm a. 3 b. 6 c. 11 d. 22 5. Sebuah lingkaran luasnya 706,50 cm2 , untuk π = 3,14, maka diameternya adalah ……cm a. 15 b. 20 c. 25 d. 30 Terampil dan Cerdas Matematika 2 ©Rosid Tamami A BO 450 Perhatikan gambar disamping , hitunglah panjang busur AB Jawab : 7 cm B O A 7 cm 300 Perhatikan gambar disamping, luas juring OAB adalah ….. cm2 a. 13 b. 6 5 12 c. 7 3 12 d. 7 4 12 Uji Kompetensi I Uji Kompetensi I 5
  6. 6. B. Sudut Pusat dan Sudut Keliling Lingkaran 1. Hubungan antara sudut pusat dan sudut keliling lingkaran yang menghadap busur yang sama Sudut pusat lingkaran adalah sudut yang titik sudutnya terletak pada pusat lingkaran. Sudut keliling lingkaran adalah sudut yang titik sudutnya terletak peda keliling lingkaran. Perhatikan gambar berikut! ∠POR dan ∠PQR masing-masing adalah sudut pusat dan sudut keliling yang menghadap busur yang sama, yaitu busur PR. Jika sudut pusat dan sudut keliling menghadap busur yang sama, berlaku sebagai berikut: a. Sudut pusat 2 sudut keliling= × b. Sudut keliling = 1 sudut pusat 2 × Contoh: Perhatikan gambar di samping, ∠ABC dan ∠AOB masing-masing adalah sudut keliling dan sudut pusat yang menghadap busur kecil AB. Sementara itu, ∠ADB adalah sudut keliling yang menghadap busur besar AB. Jika ∠ACB = 450 , tentukan a. Besar ∠AOB b. Besar ∠ADB Jawab: a. AOB 2 ACB∠ = ×∠ 0 0 2 45 90 = × = b. ∠AOB yang besar = 3600 - 900 = 2700 0 0 1 ADB AOB yang besar 2 1 270 2 135 ∠ = ×∠ = × = 2. Sifat-sifat sudut pusat dan sudut keliling lingkaran a. Sudut sudut keliling yang menghadap diameter lingkaran Perhatikan gambar! ∠ACB adalah sudut keliling yang menghadap busur AB, dengan AB adalah diameter lingkaran yan gberpusat di titik O. dari uraian diatas dapat disimpulkan sebagai berikut: Setiap sudut yang menghadap diameter lingkaran besarnya 900 . (sudut siku-siku) b. Sudut-sudut keliling yang menghadap busur yang sama Perhatikan gambar! ∠DAC dan ∠DBC masing-masing adalah sudut keliling yang menghadap busur DC. Setiap sudut keliling yang menghadap busur yang sama adalah sama besar. Contoh: 1. Perhatikan gambar di samping! Tentukan a. besar ∠BAD b. besar ∠BDC Jawab: a. Karena sudut ∠ABD menghadap diameter AD, ∠ABD = 900 sehingga diperoleh ∠BAD = 1800 – (∠ABD + ∠ADB) =1800 – (900 + 200 ) =700 b. ∠BAC = ∠BAD – ∠CAD =700 – 400 =300 Karena sudut ∠BDC dan ∠BAC masing-masing adalah sudut keliling yang menghadap busur BC, ∠BDC = ∠BAC = 300 Terampil dan Cerdas Matematika 2 ©Rosid Tamami 6
  7. 7. 3. Sifat-sifat segi empat tali busur C. Sudut antara Dua Tali Busur Menentukan sudut antara dua tali busur: a. Sudut antara dua tali busur jika titik potongnya di dalam lingkaran Besar sudut antara dua tali busur yang berpotongan di dalam lingkaran sama dengan setengah jumlah sudut-sudut pusat yang menghadap busur yang diapit oleh kaki-kaki sudut itu. Contoh: 1.Pada gambar di samping besar sudut QOR = 600 dan besar sudut POS = 700 . Tentukan besar sudut PTS! Jawab: Ukuran besar busur sama dengan sudut pusat yang menghadap busur tersebut 0 0 0 0 1 PTS ( POS QOR) 2 1 1 (70 60 ) 130 65 2 2 ∠ = × ∠ + ∠ = × + = × = Terampil dan Cerdas Matematika 2 ©Rosid Tamami Ruas garis AB, BC, CD, dan DA adalah tali-tali busur lingkaran. Tali- tali itu membentuk segi empat ABCD disebut segiempat tali busur. Jumlah sudut yang berhadapan pada segi empat tali busur adalah 1800 Segiempat tali busur yang salah satu diagonalnya merupakan diameter lingkaran disebut segi empat tali busur siku-siku. Segi empat tali busur yang kedua diagonalnya merupakan diameter lingkaran akan membentuk bangun persegi panjang. Segi empat tali busur yang kedua diagonalnya merupakan diameter lingkaran yang saling berpotongan tegak lurus akan membentuk bangun persegi. 7
  8. 8. b. Sudut antara dua tali busur yang titik potongnya di luar lingkaran. Besar sudut antara dua tali busur yang berpotongan di luar lingkaran sama dengan setengah dari selisih sudut-sudut pusat yang menghadap busur yang diapit oleh kaki-kaki sudut itu. Dalam hal ini, pengurangnya adalah sudut pusat yang lebih kecil. Contoh: Perhatikan gambar! Jika ∠AED=200 dan besar sudut AOD=600 , tentukan besar sudut BOC! Jawab: 0 0 0 0 0 0 0 1 AED ( AOD BOC) 2 1 20 (60 BOC) 2 40 60 BOC BOC 60 40 20 ∠ = × ∠ − ∠ = × − ∠ = − ∠ ∠ = − = GARIS SINGGUNG LINGKARAN A. Sifat-sifat garis singgung lingkaran a. Garis singgung adalah suatu garis yang memotong lingkaran hanya pada satu titik. b. Garis singgung lingkaran tegak lurus dengan jari-jari lingkaran yang melalui titik singgungnya. B. Menghitung panjang garis singgung yang ditarik dari titik di luar lingkaran. Contoh: Pada gambar di samping PA dan PB adalah garis singgung lingkaran yang ditarik dari titik luar lingkaran, yaitu titik P. Jika panjang jari- jari OA=OB=5 cm dan panjang OP=13 cm, tentukan: a. Panjang garis singgung PA b. Panjang garis singgung PB Jawab: a. Perhatikan segitiga siku-siku PAO! 22 2 2 2 PA OP OA 13 5 169 25 PA 144 12 = − = − = − = = jadi, panjang garis singgung PA = 12 cm Terampil dan Cerdas Matematika 2 ©Rosid Tamami 8
  9. 9. b. Perhatikan segitiga siku-siku PBO! 2 2 2 2 2 PB OP OB 13 5 169 25 144 PB 144 12 = − = − = − = = = Jadi, panjang garis singgung PB adalah 12 cm. Dua garis singgung lingkaran yang ditarik dari titik luar lingkaran adalah sama panjang. Segiempat ORPQ adalah layang-layang. - Dua garis singgung lingkaran yang melalui titik sama di luar lingkaran dan dua jari-jari yang melalui titik singgung dari kedua garis singgung tersebut membentuk bangun layang-layang. - Layang-layang yang terbentuk dari dua garis singgung lingkaran dan dua jari-jari yang melalui titik singgung dari kedua garis singgung itu disebut layang-layang garis singgung. Contoh: Perhatikan gambar disamping! Diketahui luas layang-layang OAPB = 120 cm2 dan jari-jari OA = OB = 8 cm. Hitunglah panjang diagonal AB! Jawab: 1 Luas OAP luas OAPB 2 1 1 OA PA 120 2 2 ∆ = × × × = × OA PB 120 8 PA 120 PA 15 cm ⇔ × = ⇔ × = ⇔ = Karena ∆OAP siku-siku di A maka 2 2 2 2 2 OP OA PA 8 15 289 = + = + = Jadi, OP 289 17 cm= = Luas layang-layang OAPB = 1 AB OP 2 × × 1 120 AB 17 2 AB 14,1 ⇔ = × × ⇔ = Jadi, panjang AB = 14,1 cm C. Kedudukan Dua Lingkaran Kedudukan dua lingkaran dapat berpotongan, bersinggungan, atau tidak berpotongan sama sekali. Untuk memahami hal itu, perhatikan gambar berikut! Terampil dan Cerdas Matematika 2 ©Rosid Tamami 9
  10. 10. Kedua lingkaran tidak memiliki garis singgung persekutuan Kedua lingkaran memiliki satu garis singgung persekutuan Kedua lingkaran memiliki dua buah garis singgung persekutuan Kedua lingkaran memiliki tiga buah garis singgung persekutuan Kedua lingkaran memiliki empat buah garis singgung persekutuan D. Garis Singgung Persekutuan Dua Lingkaran 1. Memahami garis singgung persekutuan luar dan garis singgung persekutuan dalam dari dua lingkaran a. Garis singgung persekutuan luar Perhatikan gambar! Lingkaran yang berpusat di titik L dan lingkaran yang berpusat di titik M saling lepas. Titik P, Q, R, dan S adalah titik singgung. Sementara itu, PQ dan RS adalah garis singgung persekutuan luar b. Garis singgung persekutuan dalam Perhatikan gambar! Lingkaran yang berpusat di titik L dan lingkaran yang berpusat di titik M saling lepas. Titik P, Q, R, dan S adalah titik singgung. Sementara itu, PR dan SQ adalah garis singgung persekutuan dalam. 2. Menghitung panjang garis singgung persekutuan dua lingkaran Panjang garis singgung persekutuan luar Terampil dan Cerdas Matematika 2 ©Rosid Tamami 10
  11. 11. Misalkan: - jari-jari lingkaran yang berpusat di titik L = r1 - jari-jari lingkaran yang berpusat di titik M = r2 - jarak antara kedua pusat lingkaran, yaitu LM = s Untuk menghitung panjang PQ dan RS, ikutilah cara berikut ini! Buatlah garis dari M sejajar PQ sehingga memotong LP secara tegak lurus di titik K dan buatlah garis dari M sejajar RS sehingga memotong LR secara tegak lurus di titik N! Bangun PQMK dan bangun RSMN adalah persegi panjang dengan PQ = KM dan RS = NM. Perhatikan bahwa ∆KML dan ∆NML adalah segitiga siku-siku sehingga kita peroleh: 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 2 1 2 2 2 1 2 KM ML KL s (r r ) KM s (r r ) NM ML NL s (r r ) NM s (r r ) = − = − − = − − = − = − − = − − Jadi, KM=NM Karena PQ=KM dan RS=NM, diperoleh rumus sebagai berikut: 2 2 1 2PQ RS s (r r )= = − − Contoh: Perhatikan gambar berikut! Pada gambar disamping, lingkaran yang berpusat di titik L dan lingkaran yang berpusat di titik M masing- masing berjari-jari 10 cm dan 2 cm. Jika jarak antara kedua pusat lingkaran tersebut 17 cm. Hitunglah panjang garis singgung persekutuan luarnya! Jawab: 1 2 2 2 1 2 2 2 LK r 10 cm NM r 2 cm LM s 17 cm KN s (r r ) 17 (10 2) 225 15 = = = = = = = − − = − − = = Panjang garis singgung persekutuan dalam Misalkan: - jari-jari lingkaran yang berpusat di titik L = r1 - jari-jari lingkaran yang berpusat di titik M = r2 - jarak antara kedua pusat lingkaran, yaitu LM = s Terampil dan Cerdas Matematika 2 ©Rosid Tamami 11
  12. 12. Untuk menghitung panjang PR dan SQ, ikutilah cara berikut! Buatlah garis dari M sejajar PR dan tegak lurus pada perpanjangan LP di K, dan buatlah garis dari M sejajar PR dan tegak lurus pada perpanjangan LS di N. Bangun PRMK dan bangun SQMN adalah persegi panjang dengan PR=KM dan SQ=NM Perhatikan bahwa ∆KLM dan ∆NLM adalah segitiga siku-siku sehingga kita peroleh 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 2 1 2 2 2 1 2 KM LM LK s (r r ) KM s (r r ) NM ML NL s (r r ) NM s (r r ) = − = − + = − + = − = − + = − + Jadi, KM=NM Karena PR=KM dan SQ=NM, PR=SQ= 2 2 1 2s (r r )− + Contoh: Pada gambar disamping, lingkaran yang berpusat di titik L dan lingkaran yang berpusat di titik M masing- masing berjari-jari 4 cm dan 3 cm. Jika jarak kedua pusat lingkaran tersebut 25 cm, hitunglah panjang garis singgung persekutuan dalamnya. Jawab: 1 2 1 2 LP r 4 cm QM r 3 cm r r 4 cm 3 cm 7 cm = = = = + = + = 2 2 1 2 2 2 LM s 25 cm PR QS s (r r ) 25 7 629 49 576 24 cm = = = = − + = − = − = = Terampil dan Cerdas Matematika 2 ©Rosid Tamami 12
  13. 13. umlah rusuk kubus ada 12 buah yang sama panjang dan 6 buah bidang sisi yang luasnya juga sama.J Ini adalah contoh sebuah kubus dan jaring-jaring atau pembentuk sebuah kubus dengan B dijadikan sebagai alas. Luas Permukaan Kubus Contoh soal : 1. Tentukan panjang kawat yang dibutuhkan untuk membuat sebuah kerangka kubus dengan ukuran rusuk 10 cm 2. Hitunglah luas permukaan kubus dengan ukuran rusuk 15 cm Jawab 1. jumlah rusuk kubus 12 buah sehingga panjang seluruh rusuk adalah 12 x 10 cm = 120 cm 2. r = 15 cm → L = 6 x r 2 → L = 6 x 152 → L = 6 x 225 → L = 1350 cm 2 Terampil dan Cerdas Matematika 2 ©Rosid Tamami A F DCB E A B G D F C H E Garis EB adalah diagonal bidang, jumlah seluruh diagonal bidang pada kubus adalah 12 buah. G D F C H E BA Garis HB adalah diagonal ruang, jumlah seluruh diagonal ruang pada kubus adalah 4 buah. L = 6 x r2 , r adalah panjang rusuk kubus KubusKubus 13
  14. 14. VOLUME KUBUS olume atau isi dinyatakan dalam satuan cm3 atau liter ( 1 l = 1 dm3 ). Rumus untuk mengitung volume kubus adalah sebagai berikut :V Contoh Soal 1. Tentukan volume kubus dengan ukuran rusuk 20 cm tentukan volumenya dalam satuan liter 2. Sebuah bak mandi berbentuk kubus dengan ukuran 1,2 m diisi air setengahnya saja, tentukan volume air dalam bak mandi tersebut. Penyelesaian 1. ukuran rusuk = 20 cm. → V = r x r x r → V = 20 x 20 x 20 → V = 8000 cm3 = 8 liter 2. diket r = 1,2 m = 120 cm Vair = ½ ( r x r x r) = ½ (120 x 120 x 120 ) = ½ ( 1728000 ) = 864000 cm3 = 864 liter Latihan Soal 1. 2.Jika sebuah kubus memilki panjang rusuk 5 cm, maka jumlah panjang rusuk seluruhnya …..cm a. 50 b. 60 c. 75 d. 125 3. Diketahui volume suatu kubus 729 cm3 . Luas permukaan kubus tanpa tutup adalah …… cm2 a. 404 b. 405 c. 406 d. 407 4. Jumlah panjang rusuk suatu kubus adalah 90 cm . Volume kubus tersebut adalah ……. cm3 a. 407, 575 b. 421, 875 c. 442, 675 d. 450, 355 5. Sebuah kawat panjangnya 2,5 m akan dibut menjadi kerangka sebuah kubus dengan ukuran rusuk 20 cm, tentukan panjang kawat yang tersisa a. 10 cm b 15 cm c. 15, 5 cm d. 20 cm Terampil dan Cerdas Matematika 2 ©Rosid Tamami V = rx r x r, dimana r adalah panjang rusuk V = rx r x r, dimana r adalah panjang rusuk I II III IV V Gambar disamping adalah jaring-jaring kubus, jika daerah yang diarsir merupakan merupakan tutup kubus, maka sebagai alasnya adalah…. a. II b. III c. IV d.V 14
  15. 15. Luas Permukaan Balok dan Volume Balok Contoh Soal 1. Tentukan panjang kawat yang dibutuhkan untuk membuat sebuah kerangka balok dengan ukuran 25 cm x 15 cm x 4 cm 2. Hitunglah luas permukaan sebuah balok kayu dengan ukuran panjang 5 m lebar 20 cm dan tinggi 15 cm 3. Sebuah bak mandi berukuran panjang 1,8 m lebar 1,2 m dan tinggi 80 cm , diisi air setengahnya tentukan volume air dalam liter. Pembahasan 1. Panjang Rusuk = 4 ( p + l + t ) = 4 ( 25 + 15 + 4) = 4 ( 44 ) = 176 cm2 2. p = 5 m = 500 cm, l = 20 cm t = 15 cm ( setiap menghitung satuan harus sama) Lpermukaan = 2 (pl + pt +lt) = 2 ( 500 x 20 + 500 x 15 + 20 x 15) = 2 ( 10000 + 7500 + 300 ) = 2 (17800) Terampil dan Cerdas Matematika 2 ©Rosid Tamami Balok mempunyai 12 rusuk yang terdiri dari 4 buah rusuk panjang, 4 buah rusuk lebar dan 4 buah rusuk tingi. Sehingga panjang seluruh rusuknya dirumuskan : Prusuk = 4 ( p + l + t) Mempunyai 12 diagonal bidang dan 4 buah diagonal ruang. EB adalah contoh diagonal bidang HB dan AG adalah contoh diagonal ruang. Balok mempunyai 12 rusuk yang terdiri dari 4 buah rusuk panjang, 4 buah rusuk lebar dan 4 buah rusuk tingi. Sehingga panjang seluruh rusuknya dirumuskan : Prusuk = 4 ( p + l + t) Mempunyai 12 diagonal bidang dan 4 buah diagonal ruang. EB adalah contoh diagonal bidang HB dan AG adalah contoh diagonal ruang. A B L = 2 (pl + pt + lt) V = p x l x t A C D FE GH BALOKBALOK 15
  16. 16. = 35600 cm2 3. p = 1,8 m = 180 cm l = 1,2 m = 120 cm t = 15 cm Vair = V1/2 balok = ½ ( p x l x t) = ½ ( 180 x 120 x 15 ) = ½ ( 324000 ) = 162000 cm3 = 162 liter Latihan Soal I. Pilihlah Jawaban yang paling tepat 1. Disediakan kawat sepanjang 2,5 m. Jika akan dibuat kerangka balok dengan ukuran ( 30 x 15 x 10) cm maka sisa pembuatan kawat tersebut adalah ……. a. 12 % b. 14 % c. 15 % d. 16 % 2. Sebuah peti berukuran 2 m x 1,5 m x 1 m , akan dicat dengan biaya Rp. 2.500/ m2 . Biaya pengecatan seluruh permukaan peti adalah …….. a. Rp. 32.500 b. Rp. 33.500 c. Rp. 34.750 d. Rp. 36.250 3. Banyaknya titik sudut pada sebuah kubus adalah ………. a. 4 b. 6 c. 8 d. 12 4. Diketahui luas permukaan balok 426 cm2 . Jika panjang dan lebarnya 12 cm dan 9 cm maka tinggi balok itu adalah ……. a. 4 cm b. 5 cm c. 6 cm d. 7 cm 5. Sebuah bak mandi berukuran 100 cm x 60 cm x 50 cm, diisi dengan air hingga penuh. Ternyata bak itu bocor sehingga tinggi air tinggal 35 cm, Volume air yang hilang adalah ………………… cm3 a. 9.000 b. 21.000 c. 90.000 d. 210.000 6. Jumlah panjang rusuk kubus yang luas permukaannya 96 cm2 adalah ………….. cm a. 24 b. 36 c. 40 d. 48 7. Volume sebuah kubus yang mempunyai luas permukaan 384 cm2 adalah ……… a. 216 cm3 b. 256 cm3 c. 484 cm3 d. 512 cm3 II. Kerjakan Soal Berikut dengan singkat dan tepat 1. Hitunglah luas permukaan kubus, jika panjang rusuknya sebagai berikut. a. 2 cm b. 9,5 cm c. 10 dm d. 10,5 m 2. Hitunglah luas permukaan balok pada masing-masing keterangan berikut ini. No Panjang Lebar Tinggi 1 2 3 6 cm 8 cm 4 cm 4 cm 25 mm 20 cm 2,5 cm 10 mm 15 cm 3. Sebuah lantai keramik persegi berukuran sisi 15 cm dan ketebalan 5 mm. Hitunglah luas Terampil dan Cerdas Matematika 2 ©Rosid Tamami 16
  17. 17. permukaan keramik itu dalam satuan cm2 Terampil dan Cerdas Matematika 2 ©Rosid Tamami 17
  18. 18. risma adalah bangun ruang yang mempunyai dua sisi yang konruen dan sejajar sebagai sisi alas dan sisi tutup (alas dan tutup letaknya tidak harus dibawah dan diatas bisa juga disamping ). Prisma mempunyai rusuk-rusuk tegak yang saling sejajar, prisma diberi nama sesuai dengan alas pembentuknya. Contoh-contoh prisma seperti dalam bangun-bangun dibawah ini . P Alas prisma tidak selalu berada dibawah, bisa juga disamping, bentuk prisma yang alasnya dibawah dinamakan prisma tegak, sedangkan prisma yang alasnya disamping disebut prisma datar, seperti contoh berikut Terampil dan Cerdas Matematika 2 ©Rosid Tamami Ini adalah contoh prisma segitiga tegak, sisi alasnya berada dibawah. Ini adalah contoh prisma segitiga tegak, sisi alasnya berada dibawah. Itu adalah contoh prisma segitiga datar, alasnya disamping Itu adalah contoh prisma segitiga datar, alasnya disamping Balok dan Kubus juga sebuah PRISMA….. Balok dan Kubus juga sebuah PRISMA….. PRISMA PRISMA 18
  19. 19. Luas Permukaan Prisma Luas permukaan sebuah prisma mengikuti konsep luas bangun datar, yaitu menghitung semua luas bidang sisi pembentuknya . Luas permukaan prisma dirumuskan sebagai berikut : Contoh : 1. 2. Latihan Soal 1. 2. Tentukan luas permukaan prisma segitiga, apabila luas alasnya 14 m2 , jumlah luas bidang tegaknya 20 m2 dan luas tutupnya 14 m2 . 3. Apabila panjang rusuk bidang alas suatu prisma tegak segitiga adalah 10 cm, 24 cm dan 26 cm, serta panjang rusuk tegaknya 11 cm, hitunglah luas permukaan prisma tersebut. Terampil dan Cerdas Matematika 2 ©Rosid Tamami Luas Permukaan Prisma = 2 x Luas alas + ( keliling alas x tinggi) Luas Permukaan Prisma = 2 x Luas alas + ( keliling alas x tinggi) Alas sebuah prisma berbentuk segitiga siku-siku seperti terlihat pada gambar disamping. Hitunglah luas permukaan prisma tersebut . Jawab L. permukaan prisma = 2 x L. alas + ( keliling alas x tinggi ) = 2 ( ½ . 3 . 4 ) + (( 3 + 4 + 5) x 6 ) = 12 + 72 = 84 cm2 A D B C F E 3 cm 4 cm 5 cm 6 cm Gambar disamping adalah sebuah prisma . Tentukan luas permukaan prisma tersebut : Jawab. Prisma tersebut adalah prisma datar trapesium L.Permukaan = 2 x Lalas + ( Kalas x tinggi ) = 2 ( ½(4 + 9) x 12 ) + ( ( 9 + 12 + 4 + 13 ) x10 ) = 156 + 380 = 536 cm A C B9 cm 13 cm 12 cm D E H G F 4 cm 10 cm A C B10 cm 14,4 cm 12 cm D E H G F 2 cm 15 cm Hitunglah luas permukaan prisma pada gambar disamping.. 19
  20. 20. Volume Prisma Rumus Volume Prisma adalah V = LUAS ALAS X TINGGI Contoh. 1. Tentukan Volume Prisma yang luas alasnya 30 cm2 dan tingginya 2 cm Jawab V = Lalas x tinggi = 30 x 2 = 60 cm2 Latihan Soal I.Pilihlah jawaban yang paling tepat 1. Jika luas alas suatu prisma tegak a cm2 dan tingginya 2b cm2 , maka volume prisma tersebut adalah …….. cm3 a. 2ab b. ab c. ½ ab d. ¼ ab 2. Sebuah prisma alasnya berbentuk persegi panjang dengan ukuran 12 cm x 7 cm dan tinggi 9 cm. Volume prisma tersebut sama dengan …………. Cm3 a. 567 b. 657 c. 756 d. 765 3. Jika volume suatu prisma 720 cm3 dan tingginya 12 cm, maka luas alas prisma tersebut adalah …….. a. 60 cm2 b. 50 cm2 c. 45 cm2 d. 40 cm2 4. Sebuah prisma segilima beraturan, luas alasnya 72 cm2 dengan volume 1.080 cm3 , tinggi prisma tersebut adalah …… cm a. 25 b. 15 c. 10 d. 5 5. Prisma segitiga siku-siku dengan panjang sisi siku-siku masing-masing 15 cm dan 12 cm. Apabila tinggi prisma 18 cm, maka volume prisma adalah ……. a. 1.260 cm3 b. 1.602 cm3 c. 1.620 cm3 d. 6.120 cm3 II. Selesaikan soal berikut dengan singkat dan tepat 1. 2. Tentuka nilai yang belum ada dari table data beberapa prisma berikut ini No Volume Prisma Luas Alas Tinggi 1 2. 3 4 … … 24 m3 60 11 cm3 54 cm2 ……. …… 20 cm 12 cm 0,5 mm 2 cm Terampil dan Cerdas Matematika 2 ©Rosid Tamami 7,6 cm 6,3 cm 5 cm 6,3 cm 8 cm Hitunglah volume prisma pada gambar disamping dalam satuan cm3 LIMASLIMAS 20
  21. 21. imas adalah bangun datar yang dibatasi oleh sebuah bidang alas dan beberapa bidang segitiga sebagai selimut / selubung yang bertemu pada satu titik sebagai titik puncak. Limas diberi nama sesuai jumlah bidang sisi alasnya.LBeberapa jenis limas seperti gambar dibawah ini . Jaring-jaring Limas Membongkar sebuah limas menjadi, alas dan selimut pembentuknya seperti berikut ini Untuk limas persegi maka rumus untuk mencari luas permukaan sebagai berikut : Lpermukaan = Lalas + Lselimut = Lpersegi + 4 x Lsegitiga = (S x S) + 4       × 2 ta = a2 + 2 4       / × 2 ca = a2 + 2 a c Terampil dan Cerdas Matematika 2 ©Rosid Tamami A B CD E F A B C D F E D C A B G H Limas segi empat Limas segi tiga Limas segi enam Apakah itu juga sebuah Limas…? Ya, itu juga sebuah limas khusus, alasnya lingkaran, disebut Kerucut Dari jaring-jaring limas tersebut dapat kita rumuskan untuk menghitung luas permukaan limas sebagai berikut a cm a cm Luaspermukaan = Luasalas + Luasselimut c cm 21
  22. 22. Lpermukaan = a ( a + 2 c ) Volume Limas Volume limas dirumuskan sebagai berikut Contoh Soal 1. Hitunglah luas permukaan limas persegi yang panjang sisi alasnya 10 cm dan tingginya 12 cm, seperti gambar disamping ini. 2. Hitunglah volume limas persegi panjang dengan ukuran panjang 8 cm , lebar 6 cm dan tinggi limas 9 cm. Penyelesaian 1. a = 10 cm, t = 12 cm , nilai c harus dicari dulu menggunakan konsep phytagoras sebagai berikut 1316925144512 22 =⇒+⇒+=c Luaspermukaan = a ( a + 2 c ) = 10 ( 10 + 2 x 13 ) = 10 ( 10 + 26 ) = 10 x 36 = 360 cm2 2. ( ) 3 lim lim 144lim 144 3 968 3 cmasVolume TinggiLuas Volume asalas as ∴ = ×× = × = Latihan Soal 1. Alas sebuah limas berbentuk persegi dengan panjang sisi 12 cm, jika tinggi limas 8 cm, tentukan luas limas tersebut ...... 2. 3. Terampil dan Cerdas Matematika 2 ©Rosid Tamami 3 lim asalas TinggiLuas × A B CD E F 10 cm 12 cm 10 cm Perhatikan gambar disamping ! alas sebuah limas beraturan berbentuk segitiga sama sisi dengan panjang sisi 12 cm. Jika rusuk-rusuk tegaknya 10 cm, hitunglah luas limas tersebut… A BC T 6 6 6 6 10 C Alas sebuah limas berbentuk segitiga siku-siku seperti gambar disamping, dengan panjang sisi 20 cm, 16 cm dan 12 cm. Jika volume limas 480 cm3 , tentukan tinggi limas itu A BC T 12 16 20 22
  23. 23. Uji Kompetensi I.Pilihlah jawaban yang paling tepat 1. Alas sebuah prisma berbentuk belah ketupat dengan keliling 60 cm dan panjang salah satu diagonalnya 24 cm. Jika tinggi prisma 14 cm, maka volume prisma adalah .... cm3 a. 972 b. 1.458 c. 3.024 d. 6.048 2. Alas sebuah prisma berbentuk persegi panjang dengan panjang 14 cm dan lebar 9 cm. Jika tinggi prisma 15 cm, maka luas permukaan prisma adalah ... cm2 a. 471 b. 816 c. 942 d. 1.890 3. Perhatikan gambar dibawah ini ! 4.Sebuah limas alasnya berbentuk persegi dengan panjang sisinya 10 cm, Jika tinggi limas 12 cm, jumlah luas sisi tegak limas adalah ... cm2 a. 520 b. 390 c. 260 d. 130 5. Alas sebuah limas berbentuk persegi dengan panjang sisi 16 cm dan tinggi limas 15 cm. Luas permukaan limas adalah ..... a. 736 cm2 b. 800 cm2 c. 1.216 cm2 d. 1.344 cm2 6. Alas sebuah limas berbentuk belah ketupat dengan panjang diagonal 12 cm dan 16 cm. Jika tinggi limas 18 cm, maka volume limas tersebut adalah .... cm3 a. 576 b. 1.152 c. 1.728 d. 3. 456 7. Perhatikan pernyataan dibawah ini ! 1) Bentuk semua sisi tegaknya persegi panjang. 2) Panjang semua rusuk tegaknya sama 3) Bidang alas dan bidang atas kongruen 4) Bentuk bidang diagonalnya adalah persegi panjang Pernyataan yang merupakan sifat-sifat prisma tegak adalah ...... a. 1 dan 2 b. 1 dan 3 c. 2 dan 4 d. 1, 2, 3 dan 4 8. Banyaknya rusuk pada prisma segi-8 adalah ... buah a. 24 b. 18 c. 15 d. 12 9. Banyaknya diagonal bidang pada prisma segi – 5 adalah .... buah a. 20 b. 18 c. 15 d. 10 10. Volume sebuah limas yang alasnya berbentuk persegi adalah 180 cm3 . Bila tinggi limas 15 cm, panjang rusuk alas limas adalah ... a. 3,2 cm b. 5 cm c. 6 cm d. 18 cm Terampil dan Cerdas Matematika 2 ©Rosid Tamami A D C B 5 cm E F 12 cm 12 cm Alas sebuah prisma berbentuk segitiga siku-siku, luas permukaan prisma tersebut adalah …. cm2 60 300 360 420 23
  24. 24. II. Kerjakan dengan singkat dan tepat 1. Volume suatu prisma segi empat adalah 100 dm3 dan tingginya 4 dm. Hitunglah luas permukaannya ... 2. Suatu kolam renang ukuran panjang 25 m, lebar 6 m. Kedalaman air pada ujung dangkal 1,2 m dan terus melandai sampai 2,8 m pada ujung yang dalam. Berapa literkah volume air dalam kolam itu ? 3. Alas limas berbentuk segitiga siku-siku dengan panjang sisi 12 cm, 16 cm, 20 cm. Jika tinggi limas 21 cm, berapakah volume limas tersebut ! 4. Alas sebuah limas berbentuk peregi dengan panjang sisi 10 cm. Jika volume limas tersebut 400 cm3 . Hitunglah luas permukaan limas ! 5. Sebuah prisma dengan alas belah ketupat berukuran sisi 15 cm dan salah satu diagonalnya 18 cm. Jika panjang rusuk tegaknya 20 cm. Berapa volume prisma itu ? Terampil dan Cerdas Matematika 2 ©Rosid Tamami 24

×