Upcoming SlideShare
×

Like this presentation? Why not share!

# Myp10 system of linear equations with solution

## on Oct 01, 2013

• 220 views

solve system of linear equations by graphing, elimination and substitution (review)

solve system of linear equations by graphing, elimination and substitution (review)

### Views

Total Views
220
Views on SlideShare
216
Embed Views
4

Likes
0
21
0

### 1 Embed4

 http://www.ck12.org 4

### Report content

• Comment goes here.
Are you sure you want to

## Myp10 system of linear equations with solutionPresentation Transcript

• System of Linear Equations MYP 10 ­ CIC
• What is a system of equation? A system of equations just means ­ more than 1 equation more than 1 variable (x & y) more than 1 line
• What is the solution of a system of linear equations? The solution is where the equations meet       or intersect.
• How many solutions can a system of linear equations have? Case 1:  1 solution
• How many solutions can a system of linear equations have? Case 2:  no solution
• How many solutions can a system of linear equations have? Case 3:  infinite solutions
• How can we find solutions to the system of equations? 1) Solve by graphing 2) Solve by elimination 3) Solve by substitution
• Elimination Method 2x – y = 1 3x + y = 9 We have the same number of  y’s in each If we ADD the equations, the y’s disappear+ 5x = 10 Divide both sides by 5 x = 2 A B Substitute x = 2 in equation A 2 x 2 – y = 1 4 – y = 1 y = 3 Answer x = 2, y = 3
• Substitution Method 2x – y = 1 3x + y = 9 A B y = −3x + 9 2x −(−3x + 9) =1substitute 2x +3x − 9 =1 5x − 9 =1 5x =10 x = 2 3(2)+ y = 9 6+ y = 9 y = 9 − 6 y = 3
• Graphing Method 2x – y = 1 3x + y = 9 A B 2x – 1 = y y = -3x + 9 (2, 3)
• Solve 3x - 2y = 7 5x + 3y = 37 + 19x = 95 In B A B 5 x 5 + 3y = 37 3y = 12 y = 4 Answer x = 5, y = 4 Multiply A by 3 & B by 2, we get +6y & -6y 9x – 6y = 21 10x + 6y = 74B A x = 5 Could multiply A by 5 & B by 3 to get 15x in each
• Solve
• Solution: a)(2, 5) b)(3, 1) c)(2, 4/3) d)(2, -2) e)(-3, 4) f)(2, -3) g)Infinite solutions h)No solutions