Your SlideShare is downloading. ×
0
Writing Linear Equations   Using Slope Intercept Form
Slope-Intercept Form <ul><li>y  =  mx  +  b (c)   [or  f ( x ) =  mx  +  b ] </li></ul><ul><li>m  is the slope/gradient </...
Find the Equation of the Line   <ul><li>What is the  </li></ul><ul><li>y -intercept? </li></ul><ul><li>b  = -2 </li></ul><...
Find the Equation of the Line <ul><li>b  = ? </li></ul><ul><li>b  = 1 </li></ul><ul><li>m  = ? </li></ul><ul><li>m  =  - <...
Find the Equation of the Line <ul><li>b  = ? </li></ul><ul><li>b  = 4 </li></ul><ul><li>m  = ? </li></ul><ul><li>m  = 0  <...
Find the Slope and y-intercept of each Equation: <ul><li>1)  y  = -4 x  + 3 </li></ul><ul><li>m  = -4 </li></ul><ul><li>b ...
Find the Equation Given the Slope and  y -intercept <ul><li>1)  m  = -3,  b  = 1 </li></ul><ul><li>y  = -3 x  + 1 </li></u...
Find the Equation Given the Slope and a Point <ul><li>Given  m  = -1, (2, 1) </li></ul><ul><li>First, calculate  b  by sub...
Write the equation. <ul><li>gradient = 2, passes through (-4, 6) </li></ul><ul><li>slope = -3/2,  passes through (5, 3) </...
Find the Equation Given Two Points <ul><li>Given (-1, 3) and (2, 1) </li></ul><ul><li>First, calculate the slope:  </li></...
Write the equation <ul><li>passes through (6, 1) and (8, -4) </li></ul><ul><li>Passes through (-3, 5) and (2, 2) </li></ul>
Upcoming SlideShare
Loading in...5
×

Gr10 writing linear equations

296

Published on

Published in: Education, Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
296
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
8
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "Gr10 writing linear equations"

  1. 1. Writing Linear Equations Using Slope Intercept Form
  2. 2. Slope-Intercept Form <ul><li>y = mx + b (c) [or f ( x ) = mx + b ] </li></ul><ul><li>m is the slope/gradient </li></ul><ul><li>b/c is the y -intercept </li></ul>
  3. 3. Find the Equation of the Line <ul><li>What is the </li></ul><ul><li>y -intercept? </li></ul><ul><li>b = -2 </li></ul><ul><li>What is m ? </li></ul><ul><li>m = </li></ul><ul><li>y = x -2 </li></ul>x y
  4. 4. Find the Equation of the Line <ul><li>b = ? </li></ul><ul><li>b = 1 </li></ul><ul><li>m = ? </li></ul><ul><li>m = - </li></ul><ul><li>y = - x + 1 </li></ul>x y
  5. 5. Find the Equation of the Line <ul><li>b = ? </li></ul><ul><li>b = 4 </li></ul><ul><li>m = ? </li></ul><ul><li>m = 0 </li></ul><ul><li>y = 0 x + 4 </li></ul><ul><li>y =4 </li></ul>x y
  6. 6. Find the Slope and y-intercept of each Equation: <ul><li>1) y = -4 x + 3 </li></ul><ul><li>m = -4 </li></ul><ul><li>b = 3 </li></ul><ul><li>2) y = 5 - x </li></ul><ul><li>m = - </li></ul><ul><li>b = 5 </li></ul><ul><li>3) 8 x + y = </li></ul><ul><li>m = -8 </li></ul><ul><li>b = </li></ul><ul><li>4) 4 x - 2 y = 10 </li></ul><ul><li>m = 2 </li></ul><ul><li>b = -5 </li></ul>
  7. 7. Find the Equation Given the Slope and y -intercept <ul><li>1) m = -3, b = 1 </li></ul><ul><li>y = -3 x + 1 </li></ul><ul><li>2) m = - , b = -4 </li></ul><ul><li>y = - x - 4 </li></ul>
  8. 8. Find the Equation Given the Slope and a Point <ul><li>Given m = -1, (2, 1) </li></ul><ul><li>First, calculate b by substituting the slope and the coordinates into y = mx + b. </li></ul><ul><li>y = -1 x + b </li></ul><ul><li>1 = -1(2) + b </li></ul><ul><li>1 = -2 + b </li></ul><ul><li>3 = b </li></ul><ul><li>y = -1 x + 3 </li></ul>
  9. 9. Write the equation. <ul><li>gradient = 2, passes through (-4, 6) </li></ul><ul><li>slope = -3/2, passes through (5, 3) </li></ul>
  10. 10. Find the Equation Given Two Points <ul><li>Given (-1, 3) and (2, 1) </li></ul><ul><li>First, calculate the slope: </li></ul><ul><li> Second, find b . Use either point... </li></ul><ul><li>m = , (2, 1) </li></ul><ul><li>1 = (2) + b </li></ul><ul><li>1 = + b </li></ul><ul><li> </li></ul><ul><li> = b </li></ul>
  11. 11. Write the equation <ul><li>passes through (6, 1) and (8, -4) </li></ul><ul><li>Passes through (-3, 5) and (2, 2) </li></ul>
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×