• Like
Tabla 1 derivadas
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

Tabla 1 derivadas

  • 6,524 views
Published

Tablas sobre derivadas que incluye la regla de la cadena, del Texto Granville.

Tablas sobre derivadas que incluye la regla de la cadena, del Texto Granville.

Published in Education
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
  • haber... necesito saber como resolverlo, como utilizo estas formulas
    Are you sure you want to
    Your message goes here
    Be the first to like this
No Downloads

Views

Total Views
6,524
On SlideShare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
100
Comments
1
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. TABLA DE DERIVADAS (Granville. Smith. Longley) dc d v du dv d1. 0 17. (u )  vu v 1  (ln u )u v 33. ctghv   csc h 2 v dv dx dx dx dx dx dx dx d2. 1 18. senv  cos v dv 34. d sec hv   (sec hv)tghv dv dx dx dx dx dx d3. u  v  w du  dv  dw 19. d cos v  senv dv 35. d csc hv  (csc hv)ctghv dv dx dx dx dx dx dx dx dx d dv4. cv  c dv 20. d tgv  sec 2 v dv d dx dx dx dx 36. ( senh 1v )  dx dx v2 1 d dv5. uv  u dv  v du 21. d ctgv    csc 2 v dv d dx dx dx dx dx 37. (cosh 1 v)  dx v  1 dx  v 2 1 d n dv d dv6. (v )  nv n1 22. sec v  (sec v)tgv dv d dx dx dx dx 38. dx 1 v  (tgh 1v)  dx 2 v 2  1  d n d dv7. ( x )  nx n1 23. csc v   (csc v)ctgv dv d dx dx dx 39. dx (ctgh 1v)   2 v 1  dx v 2  1  du dv dv dv vu  d u d d8.    dx 2 dx 24. ( sen 1v )  dx 40. (sec h 1v)  dx 0  v  1 dx  v  v dx 1 v2 dx  v 1  v2 du dv dv  d  u  dx d d 9.   dx  c  c 25. dx (cos 1 v )   dx 41. dx (csc h 1v )  dx v2  0  1 v2 1 v2 1 2 v dy  dy  dv  dv10.     d dx  dv  dx  26. (tg 1v)  dx 2 dx 1 v dy 1 dv11.  dx dx d 27. (ctg 1v )   dx 2 dy dx 1 v d dv12. ln v   1  dv   d dx  v  dx 28. (sec 1 v )  dx dx v v 2 1 d dv13. log v   log e  dv   d dx  v  dx 29. (csc 1 v )   dx dx v v2 1 d14. d log a v    1  dv   30. senhv  cosh v dv dx  v ln a  dx dx dx d v dv d15. (a )  a v ln a 31. cosh v  senhv dv dx dx dx dx d v dv d16. (e )  e v 32. tghv   sec h 2 v dv dx dx dx dx