Your SlideShare is downloading. ×
Introduction to App Engine Development
Upcoming SlideShare
Loading in...5

Thanks for flagging this SlideShare!

Oops! An error has occurred.


Introducing the official SlideShare app

Stunning, full-screen experience for iPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Introduction to App Engine Development


Published on

Published in: Technology

  • Be the first to comment

No Downloads
Total Views
On Slideshare
From Embeds
Number of Embeds
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

No notes for slide


  • 1. App EngineDevelopmentRon Reiter, 2012
  • 2. Agenda● What is Google App Engine● Advantages● Disadvantages● Creating your first webapp● Deployment● Features● Reducing Cost
  • 3. What is GAE● Google App Engine is a Platform-as-a- service server for web applications● Similar to Heroku, but writing atop it requires using specific Google APIs● Supports Python, Java and Go
  • 4. Advantages● Scales automatically● Bills by services used● Easy to deploy● Extremely high uptime of all services (web server, database, cronjobs, mail delivery, etc)● Free development tier
  • 5. Disadvantages● Cannot use native libraries with Python● Cannot use different runtime environments, such as PyPy (yet).● Constrained to Google because code is Google specific● 30 second limit per request● No websockets for now● High price because of PaaS
  • 6. Your first Web Application● Download the Google App Engine Python SDK● Add a new application● Click "Run"● Go to http://localhost:8080● And youre done!
  • 7. Your first Web Application● The code example contains two important files: ○ - the web server code example ○ app.yaml - the web application configuration● It also contains a favicon example and a file called index.yaml, which you dont need to touch right now.
  • 8. app.yaml● The default app.yaml configuration is to forward all requests to● We will need to add a static files path, if we want App Engine to serve some static files.- url: /static static_dir: static
  • 9. Deployment● Go to● If you havent yet verified your account using your mobile phone, please do so● Add a new application and find an available identifier for it● Once youve created it, change your app. yaml file to use the same identifier● Using your Google credentials, Use the App Engine launcher to deploy
  • 10. Deployment (cont.)● After deploying, use the GAE dashboard for datastore access, logs, quota details, load, and more.
  • 11. main.pyimport webapp2class MainHandler(webapp2.RequestHandler): def get(self): self.response.write("Hello world!")app = webapp2.WSGIApplication([ (/, MainHandler)], debug=True)
  • 12. Templatesfrom google.appengine.ext.webapp import templateimport webapp2class MainHandler(webapp2.RequestHandler): def get(self): self.response.write(template.render("index.html", { "message" : "Hello, World!" })app = webapp2.WSGIApplication([ (/, MainHandler)], debug=True)
  • 13. GET/POST Parametersfrom google.appengine.ext.webapp import templateimport webapp2class MainHandler(webapp2.RequestHandler): def get(self): self.response.write(template.render("index.html", { "message" : self.request.get("message") })app = webapp2.WSGIApplication([ (/, MainHandler)], debug=True)
  • 14. URL Parametersfrom google.appengine.ext.webapp import templateimport webapp2class MainHandler(webapp2.RequestHandler): def get(self, message): self.response.write(template.render("index.html", { "message" : message })app = webapp2.WSGIApplication([ (/(w+), MainHandler)], debug=True)
  • 15. Datastore API● NoSQL Database (BigTable)● Supports an SQL-like syntax called GQL ○ GqlQuery("SELECT * FROM Song WHERE composer = : composer", composer="Lennon, John")● Scales Automatically● Django-like ORM (db.Model)● Map Reduce API● Expando - schema-less objects
  • 16. The Model Classfrom google.appengine.ext import dbclass Post(db.Model): name = db.StringProperty() body = db.TextProperty() created = db.DateTimeProperty(auto_now_add=True)# create a new entrypost = Post( name = "Ron Reiter", body = "This is a guestbook entry!")# save it to the databasepost.put()
  • 17. The Model Class (cont.)# get the post keypost_id = post.key().id()# using the class method to fetch the object using the IDpost = Post.get_by_id(post_id)# update the entrypost.body = "This is the updated body"post.put()
  • 18. NDB API● An alternative to the Datastore API● Document oriented instead of column oriented● Schema-less● Can run map reduce queries on structured properties, like MongoDB
  • 19. NDB API (cont.)class Address(ndb.Model): type = ndb.StringProperty() # E.g., home, work street = ndb.StringProperty() city = ndb.StringProperty()class Contact(ndb.Model): name = ndb.StringProperty() addresses = ndb.StructuredProperty(Address, repeated=True)guido = Contact(name=Guido, addresses=[Address(type=home, city=Amsterdam), Address(type=work, street=Spear St, city=SF)])guido.put()
  • 20. Cloud Storage API● Cloud Storage is similar to Amazon S3● Integrates very well with App Enginewith, r) as f: data = while data != "": print data data = print Done reading file!
  • 21. Python Service APIs● BlobStore API - Allows saving and retrieving binary data from the datastore● Channel API - Gives server push capabilities using long polling● Memcache API - fast key/value store● LogService API - Convenient logging● Mail API - Simple email delivery● Inbound mail handler - Use request handlers to handle emails sent to the app
  • 22. Python Service APIs● Search API - Powerful datastore search● Task Queues API - Allows queueing request handlers to process data in the background● Cron jobs - Allows scheduling request handlers to be executed● Image API - Simple image processing module, based on PIL
  • 23. Python Service APIs● URLFetch API - Alternative to urllib, use it instead, also with asynchronous bindings● Users API - Easy integration for user authentication using Google accounts● And more...
  • 24. Reducing Cost of GAE App● Use Go (compiled) instead of Python for CPU intensive applications● Use Asynchronous APIs to prevent spawning new handlers for no reason● Use memcache whenever possible● Reduce DataStore calls● Use cache headers
  • 25. Questions?Thank You!