Download
Upcoming SlideShare
Loading in...5
×
 

Download

on

  • 3,124 views

 

Statistics

Views

Total Views
3,124
Views on SlideShare
3,124
Embed Views
0

Actions

Likes
1
Downloads
226
Comments
1

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
  • gooooooood
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Download Download Presentation Transcript

  • Prof.: Mahmoud F. Midan Prof. & Head Of Obstet.& Gynecology Department Al-Azhar University, Damietta, Egypt. Thyroid Disease in Pregnancy
    • The evaluation and treatment of pregnant women with thyroid disease parallels that of nonpregnant women and men, but presents some unique problems.
    INTRODUCTION
  • THYROID FUNCTION DURING NORMAL PREGNANCY  
    • The major changes in thyroid function during pregnancy are an increase in serum thyroxine-binding globulin (TBG) concentrations and stimulation of the thyrotropin (TSH) receptor by chorionic gonadotropin (hCG).
    Lee,et al. Free T4 immunoassays are flawed during pregnancy. Am J Obstet Gynecol 2009 ; 200:260.
    • Serum TBG concentrations rise almost twofold because estrogen increases TBG production and TBG sialylation, which results in decreased clearance of TBG. TBG excess leads to an increase in both serum total thyroxine (T4) and triiodothyronine (T3) concentrations, but not serum free T4 and T3 concentrations.
    • The optimal iodine   intake for pregnant women is uncertain. Markedly excessive iodine intake can lead to fetal hypothyroidism and goiter, while maternal iodine deficiency during pregnancy can result in cretinism and mental retardation. Commonly used iodine supplements can have divergent effects on maternal and fetal thyroid function, and are more pronounced in areas of deficient iodine intake
    N ø hr, SB, Laurberg, P. Opposite variations in maternal and neonatal thyroid function induced by iodine supplementation during pregnancy. J Clin Endocrinol Metab 2000 ; 85:623
  • hCG-MEDIATED HYPERTHYROIDISM  
    • hCG is a weak thyroid stimulator that may cause hyperthyroidism during pregnancy. Three syndromes have been described:
    • Transient subclinical hyperthyroidism occurs in 10 to 20 percent of normal pregnant women during the period of highest serum hCG concentrations; these women do not require treatment
    • Hyperemesis gravidarum is a syndrome defined as nausea and vomiting associated with weight loss of more than five percent during early pregnancy. It may be caused by high serum hCG and estradiol   concentrations or secretion of hCG with increased biological activity. Many of these women have either subclinical or mild overt hyperthyroidism, which resolves with the hyperemesis and rarely requires antithyroid treatment
    • Trophoblastic hyperthyroidism occurs in about 60 percent of women with a hydatidiform mole or choriocarcinoma. The hyperthyroidism may be severe, and is primarily treated by evacuation of the mole or therapy directed against the choriocarcinoma.
    • Recurrent gestational hyperthyroidism has been described in one family due to a mutant thyrotropin receptor that is hypersensitive to physiologic concentrations of hCG.
  • HYPERTHYROIDISM COMPLICATING PREGNANCY
    • hyperthyroidism is associated with increased rates of the following:
    • Spontaneous abortion
    • Premature labor
    • Low birth weight
    • Stillbirth
    • Preeclampsia
    • Heart failure
    • Very rare cases of thyroid storm precipitated by labor, infection, preeclampsia, or cesarean section have been reported.
    Davis,et al. Thyrotoxicosis complicating pregnancy. Am J Obstet Gynecol 1988 ; 160:63.
    • Although hyperthyroidism from any cause can complicate pregnancy, Graves' hyperthyroidism is the most common cause. It usually becomes less severe during the later stages of pregnancy, perhaps mediated by a change in the activity of TSH receptor antibodies from stimulatory to blocking.
    • In one report of 433 women with subclinical hyperthyroidism, there was no evidence of adverse pregnancy outcomes.
    Casey,et al. Subclinical hyperthyroidism and pregnancy outcomes. Obstet Gynecol 2006 ; 107:337.
  • Diagnosis
    • The diagnosis of hyperthyroidism during pregnancy may be difficult because of the changes associated with normal pregnancy.
    • TBG excess results in high serum total T4 concentrations, but not high serum free T4 concentrations
    • High serum hCG concentrations during early pregnancy, as are found in women with hyperemesis gravidarum or multiple pregnancies, may result in transient subclinical or rarely overt hyperthyroidism
  • Diagnosis
    • The diagnosis of hyperthyroidism in pregnant women should be based primarily on a serum TSH value <0.01 mU/L and also a high serum free T4 value.
    • Free T3 measurements may be useful in women with suppressed serum TSH concentrations and normal or minimally elevated free T4 values. Because radioiodine administration is contraindicated, it may not be possible to ascertain the cause of the hyperthyroidism during pregnancy.
    ACOG Practice Bulletin. Clinical management guidelines for obstetrician-gynecologists. Number 37, August 2002. Obstet Gynecol 2002 ; 100:387.
  • Treatment
    • Treatment options for pregnant women with hyperthyroidism are limited because therapy may be harmful to the fetus. However, a good fetal and maternal outcome depends upon controlling the mother's hyperthyroidism. The goal of treatment is to maintain the mother's serum free T4 concentration in the high normal range using the lowest drug dose.
    • This requires assessment of free T4 frequently (ie, at four week intervals) with appropriate adjustment of medication.
    ACOG Practice Bulletin. Clinical management guidelines for obstetrician-gynecologists. Number 37, August 2002. (Replaces Practice Bulletin Number 32, November 2001). Thyroid disease in pregnancy. Obstet Gynecol 2002 ; 100:387.
  • Treatment
    • Radioiodine is absolutely contraindicated. Fetal thyroid tissue is present by 10 to 12 weeks and therefore can be ablated by radioiodine. Many experienced clinicians, however, have encountered one or two women inadvertently treated with radioiodine during early pregnancy; the anecdotal impression is that radioiodine given before about 8 to 10 weeks of pregnancy does not cause fetal hypothyroidism or birth defects.
    • If treatment is given inadvertently then or later, there needs to be full disclosure. Depending on the couple's wishes, termination of pregnancy might be considered.
    Stoffer, SS, Hamburger, JI. Inadvertent 131 therapy for hyperthyroidism in the first trimester of pregnancy. J Nucl Med 1976 ; 17:146.
    • Beta blockers  —  Beta blockers may be given to ameliorate the symptoms of moderate to severe hyperthyroidism in pregnant women. However, if possible, they should be weaned as soon as the hyperthyroidism is controlled by thionamides and/or toward the end of pregnancy because occasional cases of neonatal growth restriction, hypoglycemia, respiratory depression, and bradycardia have been reported after maternal administration.
    • There also has been one report suggesting a higher rate of spontaneous abortion for hyperthyroid women treated with both a thionamide and propranolol   compared with a thionamide alone.
    Sherif,et al. Treatment of hyperthyroidism in pregnancy. Acta Obstet Gynecol Scand 1991 ; 70:461.
    • Thionamides  —  Thionamides are recommended for treatment of moderate to severe hyperthyroidism complicating pregnancy. Available thionamides include propylthiouracil   (PTU), methimazole   (MMI), and carbimazole (CBZ), which is completely metabolized to MMI.
    • Both methimazole   (MMI) and propylthiouracil   (PTU) cross the placenta with equal transfer kinetics , and have similar effects on the fetus. In one report of 77 newborns of euthyroid mothers treated with PTU or MMI, there were no significant differences in TSH concentrations measured in cord blood at birth .
    Momotani, et al. Effects of propylthiouracil and methimazole on fetal thyroid status in mothers with Graves' hyperthyroidism. J Clin Endocrinol Metab 1997 ; 82:3633.
    • Low thyroid function at birth is found in approximately one-half of neonates whose mothers received PTU or MMI during pregnancy and who had serum T4 concentrations within the normal (non-pregnant) range.
    • In spite of these observations, two studies reported that the IQ scores of children who were exposed to thionamides in utero (but were euthyroid at birth) were normal.
    Eisenstein,et al. Intellectual capacity of subjects exposed to methimazole or propylthiouracil in utero. Eur J Pediatr 1992 ; 151:558.
    • Possible teratogenicity  —  Methimazole   has been associated with possible teratogenic effects including:
    • Case reports of aplasia cutis,
    • a scalp defect, in newborns of mothers treated with (or exposed to) MMI.
    • More serious congenital malformations such as:
      • tracheoesophageal fistulas and
      • choanal atresia have been observed with maternal MMI and carbimazole, but not PTU use.
    Foulds, et al. Carbimazole embryopathy: an emerging phenotype. Am J Med Genet A 2005 ; 132:130.
    • Choice of drug  —  In the past, PTU was considered the drug of choice throughout pregnancy for women with hyperthyroidism, because of concerns about the possible teratogenic effects of MMI.
    • However, reports of severe PTU-related liver failure have now raised concern about the routine use of PTU, including the use of PTU in pregnancy.
    Abalovich, et al. Management of Thyroid Dysfunction during Pregnancy and Postpartum. J Clin Endocrinol Metab 2007 ; 92:s1.
    • Although MMI has been associated with liver disease, it is typically due to cholestatic dysfunction, not hepatocellular inflammation.
    • We agree with the change in recommendations for antithyroid drugs as outlined by the American Thyroid Association, and the US Food and Drug Administration.
    • We recommend that PTU not be used as a first-line drug in children or adults.
    Bahn, et al. The Role of Propylthiouracil in the Management of Graves' Disease in Adults: Thyroid 2009 ; 19:673. Cooper, DS, Rivkees, SA. Putting propylthiouracil in perspective. J Clin Endocrinol Metab 2009 ; 94:1881.
    • For pregnant women with hyperthyroidism, we suggest that PTU use be limited to the first trimester only.
    • Although the teratogenic effects of MMI are not well proven, they are potentially serious, and are likely confined to the first trimester during organogenesis.
    • After the first trimester, the potential risk of PTU-associated hepatotoxicity, although extremely rare, is thought to outweigh any potential risks of MMI.
    • Women who are taking MMI and learn they are pregnant should be switched to PTU at the time of the positive pregnancy test.
    • In the second trimester, we suggest switching from PTU to an equivalent dose of MMI.
    • Although the ratio of potencies of PTU and MMI is uncertain, clinical experience suggests that methimazole is 20 to 30 times as potent on a milligram to milligram basis.
    • Therefore, 300 mg of PTU would be roughly equivalent to 10 or 15 mg of MMI.
    • Thyroid function testing should be performed within a few weeks of the switching to methimazole to be sure that a euthyroid state has been maintained.
    • Subsequent monitoring of thyroid function should be performed every four weeks.
    • Extra caution is necessary after switching from PTU to MMI to avoid maternal overtreatment and fetal hypothyroidism.
    • PTU-associated liver failure, which can occur at any time during the course of treatment, has a sudden onset and a rapidly progressive course.
    • Therefore, routine monitoring of liver function is not currently suggested by the ATA and FDA. Patients should be advised to stop their medication and contact their physician if they develop:
      • weakness,
      • malaise,
      • nausea and vomiting,
      • jaundice,
      • dark urine or light-colored stools.
    • Some clinicians and their patients prefer to monitor liver function every four weeks when blood is being drawn to assess thyroid function.
    • If this approach is chosen, PTU should be discontinued if serum transaminases are >3 times the upper limit of normal.
    • This approach has not been shown to reduce the risk of PTU-associated liver failure.
    • If the patient develops a rash when switched to MMI, the drug should be stopped and PTU resumed.
    • Whenever possible, thionamides should be tapered and discontinued during the third trimester.
    • Dose and monitoring  —  To minimize the risk of hypothyroidism in the fetus, we give the lowest dose of thionamide necessary to control thyroid function.
    • In patients with severe hyperthyroidism, full initial doses may be required (PTU 100 mg three times per day) or MMI (10 to -30 mg daily) in order to normalize thyroid function.
    • Our goal is to maintain persistent but minimal mild hyperthyroidism in the mother in an attempt to prevent fetal hypothyroidism.
    • Pregnant women with mild hyperthyroidism may be followed with no treatment.
    Momotani,et al. Antithyroid drug therapy for Graves' disease during pregnancy. Optimal regimen for fetal thyroid status. N Engl J Med 1986 ; 315:24.
    • Transient central hypothyroidism may be seen in infants whose mothers had poorly controlled hyperthyroidism during pregnancy, presumably due to suppression of the fetal pituitary-thyroid axis. Assessment of neonatal thyroid function should therefore include both serum free T4 and TSH levels.
    • The thionamide dose should be adjusted monthly to maintain serum free T4 concentrations in the high-normal range for nonpregnant women or total T4 up to 18 mcg/dL (50 percent above the upper limit of normal for nonpregnant women), and serum TSH concentrations in the low-normal or suppressed range.
    Sheffield, JS, Cunningham, FG. Thyrotoxicosis and heart failure that complicate pregnancy. Am J Obstet Gynecol 2004 ; 190:211.
    • Ultimately, low doses of PTU or MMI (eg, 50 mg twice daily or less for PTU; 2.5-5 mg a day for MMI)   may be all that is required.
    • It is possible to discontinue the thionamide during the third trimester in one-third of women; the amelioration of hyperthyroidism as pregnancy progresses is due to a fall in serum TSH receptor-stimulating antibody concentrations, or rarely, a rise in TSH receptor-blocking antibodies. However, Graves' hyperthyroidism can worsen postpartum.
    Hamburger, JI. Diagnosis and management of Graves' disease in pregnancy. Thyroid 1992 ; 2:219.
    • Monitoring throughout pregnancy is important, because maternal hyperthyroidism in the third trimester may increase the risk of low birth weight (independent of the risk of neonatal Graves' disease).
    • As an example, in a study of 181 women with a current or past history of hyperthyroidism, the risk of low birth weight was increased fourfold in the 35 women who had clinical and biochemical evidence of hyperthyroidism in the third trimester.
    Phoojaroenchanachai,et al. Effect of maternal hyperthyroidism during late pregnancy on the risk of neonatal low birth weight. Clin Endocrinol (Oxf) 2001 ; 54:365.
  • Nursing  
    • Both methimazole   and PTU have been rated as safe for nursing mothers by the American Academy of Pediatrics.
    • However, given the concerns about potential PTU-associated hepatotoxicity, we suggest methimazole rather than PTU for nursing mothers.
    Transfer of drugs and other chemicals into human milk. Pediatrics 2001 ; 108:776.
  • T4 administration
    • The use of T4 with thionamide therapy during pregnancy is not recommended.
    • Little T4 crosses the placenta, making it more difficult to determine the minimal dose of thionamide needed to control hyperthyroidism in the mother.
  • Surgery  
    •   Thyroidectomy during pregnancy may be necessary in women who cannot tolerate thionamides because of allergy or agranulocytosis. The indications for surgery are similar to those in non-pregnant women and men. Surgery during pregnancy, however, is associated with an increased risk of spontaneous abortion or premature delivery. These risks are minimized by operating during the second trimester.
    Roti, et al. Controversies in the treatment of thyrotoxicosis. Adv Endocrinol Metab 1994 ; 5:429.
  • Iodine
    • One study of 35 women with mild to moderate Graves' hyperthyroidism suggested that low doses of iodine are safe during pregnancy. Prolonged high-dose iodine therapy, however, can cause fetal goiter.
    • We do not generally recommend the use of pharmacologic doses of iodine in pregnant women, but its use could be considered in selected cases when thionamides are contraindicated.
    Momotani, et al. Effects of iodine on thyroid status of fetus versus mother in treatment of Graves' disease complicated by pregnancy. J Clin Endocrinol Metab 1992 ; 75:738.
  • Fetal and neonatal Graves' disease  
    • One to 5 percent of neonates born to women with Graves' disease have hyperthyroidism due to transplacental transfer of TSH receptor-stimulating antibodies. The incidence is unrelated to maternal thyroid function.
    • High fetal heart rate (>160 beats/min), fetal goiter, advanced bone age, poor growth, and craniosynostosis are manifestations of fetal hyperthyroidism. Cardiac failure and hydrops may occur with severe disease. All fetuses of women with Graves' disease should be monitored for signs of fetal thyrotoxicosis by determination of fetal heart rate and assessment of fetal growth.
    ACOG Practice Bulletin. Clinical management guidelines for obstetrician-gynecologists. Number 37, August 2002. Obstet Gynecol 2002 ; 100:387.
  • HYPOTHYROIDISM DURING PREGNANCY
    • General issues  
    • Overt hypothyroidism complicating pregnancy is unusual.
    • Two factors contribute to this finding:
    • some hypothyroid women are anovulatory;
    • and hypothyroidism (new or inadequately treated) complicating pregnancy is associated with a high rate of first trimester spontaneous abortion.
    • Increased rates of fetal loss have also been reported in euthyroid women with high serum anti-thyroid peroxidase antibody concentrations.
    Hallengren,et al. Pregnant women on thyroxine substitution are often dysregulated in early pregnancy. Thyroid 2009 ; 19:391.
  • In continuing pregnancies, hypothyroidism has been associated with an increased risk of several complications, including:
    • Preeclampsia and gestational hypertension
    • Placental abruption
    • Nonreassuring fetal heart rate tracing
    • Preterm delivery, including very preterm delivery (before 32 weeks)
    • Low birth weight (which was likely due to preterm delivery for preeclampsia in one study, but not in a second study where the rate of preeclampsia was negligible.
    • Increased rate of caesarean section
    • Perinatal morbidity and mortality
    • Neuropsychological and cognitive impairment
    • Postpartum hemorrhage
    • The risk of these complications is greater in women with overt, rather than subclinical, hypothyroidism.
    Idris,et al. Maternal hypothyroidism in early and late gestation: effects on neonatal and obstetric outcome. Clin Endocrinol (Oxf) 2005 ; 63:560.
  • Subclinical hypothyroidism  
    • Neuropsychological impairment has also been observed in offspring of women with subclinical hypothyroidism, as illustrated by the following:
    • It has been suggested that the upper limit of normal for TSH should be 2.5 mU/L instead of the 4.5 to 5.0 mU/L used by most laboratories. Limited data suggest that pregnancy outcome for women undergoing in vitro fertilization may be worse among those with pre-conception TSH levels higher than 2.5 mU/L.
    • As an example, in one study of delivery outcomes after in vitro fertilization, gestational age and birth weight were higher for 150 deliveries where pre-conception TSH was <2.5 mU/L compared to 45 deliveries where TSH was >2.5 mU/L.
    Baker,et al. Correlation of thyroid stimulating hormone (TSH) level with pregnancy outcome in women undergoing in vitro fertilization. Am J Obstet Gynecol 2006 ; 194:1668.
    • In contrast, the FASTER Trial did not find a consistent pattern of adverse outcome with subclinical hypothyroidism. This prospective multicenter investigation evaluated Down syndrome risk in an unselected obstetric population carrying singleton pregnancies. A subset of subjects without fetal aneuploidy had first- and second-trimester serum samples assayed for TSH, freeT4, and antithyroglobulin and antithyroid peroxidase antibodies.
    • Subclinical hypothyroidism (normal free T4 and TSH > 97.5 percentile of 4.3 and 3.9 mU/L in the first and second trimester, respectively) was diagnosed in 2.2 percent of these women and was not associated with an increased risk of adverse outcome.
    Cleary-Goldman, et al. Maternal thyroid hypofunction and pregnancy outcome. Obstet Gynecol 2008 ; 112:85.
    • In areas of borderline iodine   deficiency, maternal thyroid status is affected negatively in the presence of concomitant iron deficiency. In a study of pregnant Swiss women, those who were iron deficient had higher serum TSH values and/or low serum T4 concentrations when compared to women with normal iron stores.
    Zimmermann,et al. Iron deficiency predicts poor maternal thyroid status during pregnancy. J Clin Endocrinol Metab 2007 ; 92:3436.
  • Low maternal free T4  
    • The effect of low maternal serum free T4 concentrations (but normal TSH) on neonatal outcome is unclear.
    • In a study of 10-month-old infants, those whose mothers had serum free T4 concentrations below the tenth percentile at 12 weeks gestation had impaired psychomotor function.
    • In another study of three week old infants, those whose mothers had serum free T4 below the tenth percentile at 12 weeks gestation had impaired Neonatal Behavioral Assessment Scales.
    Kooistra,et al. Neonatal effects of maternal hypothyroxinemia during early pregnancy. Pediatrics 2006 ; 117:161.
    • In a third study, maternal serum free T4 concentrations below the 2.5 percentile (with normal TSH) were not associated with adverse pregnancy outcomes, but neonatal psychomotor function was not studied.
    Casey,et al. Perinatal significance of isolated maternal hypothyroxinemia identified in the first half of pregnancy. Obstet Gynecol 2007 ; 109:1129.
  • Screening
    • A clinical consensus group concluded that there is insufficient evidence to recommend for or against screening in pregnant women or those hoping to become pregnant.
    ACOG Committee Opinion No. 381: Subclinical hypothyroidism in pregnancy. Obstet Gynecol 2007 ; 110:959.
    • The American College of Obstetricians and Gynecologists recommends testing only in symptomatic pregnant women or those with a family history of thyroid disease.
    • The Endocrine Society clinical practice guidelines also recommend targeted case finding rather than universal screening.
    Vaidya, et al. Detection of thyroid dysfunction in early pregnancy: Universal screening or targeted high-risk case finding?. J Clin Endocrinol Metab 2007 ; 92:203.
    • However, subsequent to these publications, a study of 1560 consecutive pregnancies demonstrated that targeted screening (women with a personal or family history of thyroid disease or another autoimmune disorder) found only two-thirds of the women with TSH >4.2 mU/I;
    • an accompanying editorial suggests that case finding is no longer an acceptable approach, and advocates universal screening.
    Brent, GA. Diagnosing thyroid dysfunction in pregnant women: Is case finding enough?. J Clin Endocrinol Metab 2007 ; 92:39.
    • In summary , professional societies recommend testing pregnant women for thyroid dysfunction only if they are symptomatic or have a family history of thyroid disease.
    • However, more recent data suggest that this approach may miss up to one-third of women with hypothyroidism, and preliminary data suggest that universal screening is cost-effective.
    • Therefore, we suggest universal screening for thyroid dysfunction in pregnant women or those hoping to become pregnant.
  • T4 therapy during pregnancy
    • Women need more thyroid hormone during pregnancy and, unlike normal women, those with hypothyroidism are unable to increase thyroidal T4 and T3 secretion. The goal of therapy is to normalize the mother's serum TSH concentration. Approximately 75 to 85 percent of women with preexisting hypothyroidism need more T4 during pregnancy.
    Alexander, et al. Timing and magnitude of increases in levothyroxine requirements during pregnancy in women with hypothyroidism. N Engl J Med 2004 ; 351:241.
    • This is especially true for women with thyroid cancer who have received radioiodine therapy, or patients with post-ablative or surgical hypothyroidism for Graves' disease or goiter.
    Loh,et al. The magnitude of increased levothyroxine requirements in hypothyroid pregnant women depends upon the etiology of the hypothyroidism. Thyroid 2009 ; 19:269.
    • Several factors are responsible for the increased T4 requirement during pregnancy. They include weight gain and increased T4 pool size, high serum TBG concentrations, placental deiodinase activity, transfer of T4 to the fetus, and reduced gastrointestinal absorption due to iron in prenatal vitamins.
    • Levothyroxine dose requirements may increase by as much as 50 percent during pregnancy, and the increase occurs as early as the fifth week of gestation.
  • Recommendations
    • Given the importance of maternal euthyroidism for normal fetal cognitive development, serum TSH should be measured four to six weeks after conception, four to six weeks after any change in the dose of T4, and at least once each trimester.
    • The T4 dose can be reduced to prepregnancy levels after delivery, but serum TSH should be measured four to six weeks later to confirm that the reduction was appropriate.
  • Congenital hypothyroidism  
    • Most cases of congenital hypothyroidism are due to agenesis or dysgenesis of the fetal thyroid, congenital dyshormonogenesis, or iodine   deficiency in endemic areas.
  • THYROID PEROXIDASE ANTIBODIES  
    • An increased rate of fetal loss has been reported in euthyroid women with high serum antithyroid peroxidase antibody (TPO antibodies) concentrations.
    Prummel, MF, Wiersinga, WM. Thyroid autoimmunity and miscarriage. Eur J Endocrinol 2004 ; 150:751.
    • In a prospective study of 115 TPO antibody positive patients, half were given T4, and half were not treated, and comparison was made with 869 TPO antibody negative patients.
    • Miscarriage rates were 3.5 percent in TPO antibody positive treated patients, 2.4 percent in the TPO antibody negative patients, and 13.8 percent in TPO antibody positive untreated patients.
    • Premature delivery rates were 7 percent, 8.2 percent, and 22.4 percent, respectively .
    Negro, R, Formoso, G, Mangueri, T, et al. Levothyroxine treatment in euthyroid pregnant women with autoimmune thyroid disease: Effects on obstetrical complications. J Clin Endocrinol Metab 2006; 91:2587.
    • In the same study, some euthyroid women with TPO antibodies developed subclinical hypothyroidism.
    • In early pregnancy the TPO positive women had significantly higher serum TSH levels than TPO negative women, although the level was in the normal range.
    • Approximately 20 percent of TPO positive women subsequently developed subclinical hypothyroidism by term if left untreated.
    • In a second report of TPO antibody positive women undergoing assisted reproductive technologies (ART), thyroid hormone therapy did not lower the risk of early pregnancy loss.
    • However, these results are confounded by the presence of additional infertility factors in women undergoing ART.
    Negro, et al. Thyroxine therapy does not improve the outcome of assisted reproduction in women with chronic autoimmune thyroiditis. Hum Reprod 2005 ; 20:1529.
    • Most pregnant women are unlikely to know their antithyroid antibody status because universal screening is not routinely done
    • However, since carefully monitored thyroid hormone treatment is safe, we suggest levothyroxine   treatment of TPO antibody positive pregnant patients until additional data becomes available.
    • Levothyroxine   also appears to reduce anti-TPO antibody titers in non-pregnant patients. In a study of 38 patients, titers were reduced by 45 percent after one year and 70 percent after five years.
    Schmidt,et al. Long-term follow-up of antithyroid peroxidase antibodies in patients with chronic autoimmune thyroiditis (Hashimoto's thyroiditis) treated with levothyroxine. Thyroid 2008 ; 18:755.
    • Increased urinary iodine   excretion during pregnancy may deplete thyroidal iodine stores by as much as 40 percent.
    • Plasma iodide concentrations may decrease during pregnancy due to increased maternal renal clearance and fetal uptake of iodide.
    • Goiter during pregnancy is common in regions where iodine intake is low, occurring in 16 to 70 percent of women in iodine-deficient regions of Western Europe. In areas of moderate iodine deficiency, thyroid volume in women correlates with the number of previous pregnancies.
    • Goiter during pregnancy is rare in the United States. However, studies from Europe show that iodine   depletion relative to the nonpregnant states leads to mild thyroid enlargement detectable sonographically (mean increase in volume:18 percent), a change that is clinically detectable in some women.
    • Significant thyroid growth during pregnancy should be considered abnormal, requiring further investigation.
    • A pregnant woman found to have a thyroid nodule should be evaluated in the same way as if she were not pregnant. Thyroid radionuclide scanning is contraindicated.
    • Therefore, fine-needle-aspiration biopsy of the nodule should be done (as it would be for most nonpregnant patients).
    • Women with benign nodules are followed. Those whose nodules enlarge should have another biopsy, but surgery, when indicated, is usually deferred until after delivery.
  • THYROID CANCER  
    • Women with differentiated thyroid cancer require surgery.
    • The safest time for any type of surgery during pregnancy is the second trimester.
    • However, whenever possible, surgical procedures are postponed until after delivery to minimize maternal and fetal complications.
    • Gvien the typically indolent nature of thyroid cancer, thyroidectomy is usually delayed until the postpartum period.
    • A California cancer registry that identified 129 antepartum and 466 postpartum thyroid cancers found no difference in overall prognosis compared to women with thyroid cancer not associated with pregnancy.
    Yasmeen, et al. Thyroid cancer in pregnancy. Int J Gynaecol Obstet 2005 ; 91:15.
  • POSTPARTUM THYROID DYSFUNCTION
    • Postpartum thyroiditis  
    • Postpartum thyroiditis occurs in 5 to 10 percent of women in the United States , and in up to 25 percent of women with type 1 diabetes.
    • It may occur after delivery or pregnancy loss (miscarriage, abortion, ectopic pregnancy) as well as after normal delivery.
    • In addition to the usual clinical consequences of thyroid dysfunction, postpartum hypothyroidism may decrease milk volume.
    • Two patterns of postpartum dysfunction can be defined:
    • postpartum thyroiditis; and
    • a postpartum exacerbation of chronic lymphocytic (Hashimoto's) thyroiditis.
    • Postpartum thyroiditis is characterized by transient hyperthyroidism, or transient hyperthyroidism followed by transient or rarely permanent hypothyroidism.
    • Postpartum exacerbation of Hashimoto's thyroiditis may cause transient or permanent hypothyroidism, and may be associated with transient or permanent increase in goiter.
    • Women with postpartum thyroiditis are likely to have recurrent thyroiditis after subsequent pregnancies.
    • Postpartum thyroid dysfunction can also occur in women already taking thyroid hormone replacement for hypothyroidism antedating pregnancy (eg, goitrous autoimmune thyroiditis) if the gland was not destroyed.
    • Selenium   supplementation may decrease inflammatory activity in patients with autoimmune thyroiditis, and may reduce the risk of postpartum thyroiditis in women who are positive for thyroid peroxidase (TPO) antibodies.
  • Graves' disease  
    • Women may develop Graves' disease postpartum or experience an exacerbation. In addition, women in remission after antithyroid drug therapy have a higher incidence of relapse during the postpartum period than at times unrelated to pregnancy.
  • SUMMARY AND RECOMMENDATIONS  
    • Several professional societies recommend testing pregnant women for thyroid dysfunction only if they are symptomatic or have a family history of thyroid disease. However, more recent data suggest that this approach may miss up to one-third of women with hypothyroidism. Therefore, we suggest universal screening for thyroid dysfunction in pregnant women or those hoping to become pregnant ( Grade 2C ).
    • Since carefully monitored thyroid hormone treatment is safe, we suggest levothyroxine   treatment of TPO antibody positive pregnant patients until additional data becomes available ( Grade 2C ).
    • A pregnant woman found to have a thyroid nodule should be evaluated in the same way as if she were not pregnant, except that thyroid radionuclide scanning is contraindicated.
    • Postpartum thyroiditis occurs in 5 to 10 percent of women in the United States. It may occur after delivery or pregnancy loss (miscarriage, abortion, ectopic pregnancy) as well as after normal delivery.
  • Thank You