Controlled Natural Language rendering of Copyright Ontology licenses


Published on

The Copyright Ontology makes licenses based on it more usable by allowing rendering them as controlled natural language.

Published in: Technology, Education
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide
  • A Work is a distinct intellectual or artistic creation. It is the original idea behind many possible expressions based on it. For instance, some pedagogical ideas and methodologies for a concrete subject that are realised into physical things that might be perceived. One kind of physical realisation of a Work is a Manifestation, its materialisation in a concrete medium, a tangible or digital object. For instance, a learning object. There might be many copies called Instances. On the other hand, there are Performances, the expression in time of a Work. For instance, a teacher ’s dissertation in a classroom. The Performance might be recorded into a Fixation, which then can be copied and distributed (e.g. a CD copy of a learning object) or communicated, the process when the public is not present at the place and or time where the communication originates. Examples of Communication are a broadcast of the teaching session or a Web streaming.
  • Controlled Natural Language rendering of Copyright Ontology licenses

    1. 1. Controlled Natural Language rendering of Copyright Ontology licenses Roberto García, Rosa Gil HCI & Data Integration Research Group Universitat de Lleida, Spain
    2. 2. Table of Contents <ul><li>Introduction </li></ul><ul><li>Motivation </li></ul><ul><li>Proposal </li></ul><ul><li>Copyright Model </li></ul><ul><li>License Modelling </li></ul><ul><li>License Rendering </li></ul><ul><li>Conclusions </li></ul><ul><li>Future Work </li></ul>
    3. 3. Introduction <ul><li>In general, RELS seek more expressivity … but trade-off : </li></ul><ul><ul><li>Formality : </li></ul></ul><ul><ul><ul><li>more sophisticated computerised processing </li></ul></ul></ul><ul><ul><li>Usability : </li></ul></ul><ul><ul><ul><li>more easily understandable by end-users </li></ul></ul></ul>– + – +
    4. 4. Introduction <ul><li>Creative Commons : </li></ul><ul><ul><li>very usable but very limited expressiveness </li></ul></ul><ul><ul><li>CC+ : informal extensions </li></ul></ul><ul><li>Logic-based RELs: </li></ul><ul><ul><li>very expressive (formal languages) but difficult for end-users </li></ul></ul><ul><li>… XML-based RELs: </li></ul><ul><ul><li>tradeoff… as long as XML-aware users </li></ul></ul>
    5. 5. Motivation <ul><li>Is it possible a formal REL that renders nice to end-users? </li></ul><ul><ul><li>Formal semantics (ontology) </li></ul></ul><ul><ul><li>Automated reasoning </li></ul></ul><ul><ul><li>Natural language rendering </li></ul></ul><ul><ul><li>… </li></ul></ul><ul><li>Our attempt: </li></ul><ul><ul><li>the Copyright Ontology </li></ul></ul>
    6. 6. Proposal <ul><li>Copyright Ontology [1] features: </li></ul><ul><ul><li>More expressive than XML approaches </li></ul></ul><ul><ul><li>Facilitates interoperability , works at the semantic level </li></ul></ul><ul><ul><li>Based on a copyright law model , WIPO worldwide recommendations [2] </li></ul></ul><ul><ul><li>Also based on Semantic Web technologies </li></ul></ul><ul><li>Copyright Ontology: provides the building blocks to flexibly model licenses …and reason about them </li></ul>[1] Copyright Ontology, [2] World Intellectual Property Organisation,
    7. 7. Copyright Model Rights Model
    8. 8. Copyright Model Creation Model Victor Hugo ’ s Les Misérables
    9. 9. Copyright Model Action Model
    10. 10. Copyright Model <ul><li>Actions governed by economic rights : </li></ul>Action Model <ul><ul><li>Right </li></ul></ul>Action <ul><ul><li>Reproduction </li></ul></ul>Copy <ul><ul><li>Distribution </li></ul></ul>Distribute (Sell, Rent, Lend) <ul><ul><li>Public Performance </li></ul></ul>Perform Fixation Record Communication Broadcast, Make Available Transformation Derive (Adapt, Translate)
    11. 11. License Modelling <ul><li>Actions – case roles  Action Participants </li></ul>initiator resource goal essence Action agent, effector instrument result, recipient patient, theme Process agent, origin matter result, recipient patient, theme Transfer agent, origin instrument, medium experiencer, recipient theme Spatial origin path destination location Temporal start duration completion pointInTime Ambient reason manner aim, consequence condition
    12. 12. License Modelling <ul><li>Combine these building blocks to model licenses </li></ul><ul><li>Main component: class Action Pattern </li></ul><ul><ul><li>Defined combining restrictions on case roles using logical operators </li></ul></ul>Pattern ≡ Copy ⊓ ∃ pointInTime. ≥ 2008-01-01, ≤ 2008-06-30 ⊓ ∃ agent.Subscribers ⊓ ∃ theme.{learningObject}
    13. 13. License Modelling <ul><li>Additional actions and case roles: </li></ul><ul><ul><li>Agree (Disagree): state what is permitted (prohibited) </li></ul></ul><ul><ul><li>condition : links to another pattern that must satisfied </li></ul></ul><ul><ul><li>aim : links condition pattern to conditioned one </li></ul></ul><ul><ul><li>consequence : links pattern to an obliged one </li></ul></ul>:agreement a co:Agree; co:agent :owner; co:theme :Pattern. Condition ≡ Transfer ⊓ ∃ recipient.{owner} ⊓ ∃ theme.{3EurosAmount} ∃agent.Subscribers ⊓ ∃ aim.Pattern :Pattern co:condition :Condition.
    14. 14. License Modelling <ul><li>Description Logic reasoners implement classification: </li></ul><ul><ul><li>check instance action classified in class for pattern </li></ul></ul><ul><li>Semantic queries check action in agreed pattern and condition fulfilment: </li></ul>ASK { ?agreement rdf:type co:Agree; co:theme ?pattern. :copy rdf:type ?pattern; co:agent ?consumer; co:condition ?conditionPattern. ?condition rdf:type ?conditionPattern; co:agent ?consumer; co:aim :copy.}
    15. 15. License Rendering RDF/XML serialisation
    16. 16. License Rendering RDF/N3 serialisation
    17. 17. License Rendering RDF to HTML+RDFa ( )
    18. 18. License Rendering Controlled Natural Language
    19. 19. License Rendering <ul><li>[a co:Agree; </li></ul><ul><li> co:agent :John; co:pointInTime “2007-11-20”; </li></ul><ul><li> co:theme [a co:Copy; </li></ul><ul><li>co:agent :Arthur; </li></ul><ul><li>co:theme :The Song; </li></ul><ul><li>co:origin :peerA; </li></ul><ul><li>co:destination:peerB,:peerC; </li></ul><ul><li>co:start “ 2010-01-01 ” ; co:completion “ 2010-12-31 ” ; </li></ul><ul><li>co:condition [a co:Transfer; </li></ul><ul><li>co:agent :Peter; </li></ul><ul><li>co:recipient :John; </li></ul><ul><li>co:theme :Amount3Euros ]]]. </li></ul><ul><li>“ John agree s </li></ul><ul><li>at 2007-11-20 </li></ul><ul><li>that Arthur cop ies The Song </li></ul><ul><li>from peerA to peerB or peerC </li></ul><ul><li>from 2010-01-01 until 2010-12-31 </li></ul><ul><li>with condition Peter transfer s amount 3 Euro </li></ul><ul><li>to John”. </li></ul>Controlled Natural Language
    20. 20. License Rendering Deployment in OMediaDis project
    21. 21. Conclusions <ul><li>CNL + NL-oriented ontology engineering </li></ul><ul><ul><li>Very expressive REL (ontology)… </li></ul></ul><ul><ul><li>while quite usable end-user rendering </li></ul></ul><ul><li>Preliminary user test </li></ul><ul><ul><li>Users explicitly show they preference for CNL rendering by clicking the “Read” service link </li></ul></ul>
    22. 22. Future Work <ul><li>Fine tune the case roles to CNL conversion table </li></ul><ul><li>Deal with plurals and verbs (3 rd person singular) </li></ul><ul><li>Perform more detailed user tests </li></ul>
    23. 23. Thank you for your attention [email_address] HCI & Data Integration Research Group Universitat de Lleida