Valoracion de la funcion respiratoria

  • 7,090 views
Uploaded on

 

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
7,090
On Slideshare
0
From Embeds
0
Number of Embeds
6

Actions

Shares
Downloads
115
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide
  • Respiración : proceso global relacionado con la obtención por parte de las células, del oxigeno de la atmósfera y su combinación con sustratos con el regreso a la atmósfera del CO 2 resultante.
  • P roceso global relacionado con la obtención por parte de las células, del oxigeno de la atmósfera y su combinación con sustratos con el regreso a la atmósfera del CO 2 resultante. Respiración : como intercambio de gases en los pulmones, en los tejidos periféricos o a nivel mitocondrial o molecular
  • P roceso de conducción Del gas a los alvéolos y su extracción de éstos a través de las vías aéreas de conducción y es sinónimo de respiración 1.    
  • Ventilación : proceso de conducción del gas a los alvéolos y su extracción de éstos a través de las vías aéreas de conducción y es sinónimo de respiración. Esto da lugar a las fases de inspiración y expiración. Esto gracias a un juego de presiones: atmosférica, presión instiratoria (siempre positiva, en relación a la atmosférica). Estas interrelaciones entre presiones y volúmenes, se denominan “Mecanica Pulmonar”
  • PL= Presión transpulmonar = P.alveolar – P. Intrapleural PT= Presión transtoracica = P.Intrapleural – P.Atm PR= presión Respiratoria = P. Alveolar – P.Atm.
  • Volumen corriente (VC) Aire que se moviliza en cada respiración normal. VN: 400 a 500 ml y consta de 2 espacios: Espacio muerto (v D anat), constituido por el aire que ocupa la vía aérea y que no llega a los alvéolos pulmonares; por consiguiente, no participa en la difusión o intercambio de gases. Tiene en cambio la misión de mantener la temperatura, la humedad y la filtración del gas respirado. Representa aproximadamente 150 ml, o sea una tercera parte del volumen corriente. Espacio alveolar. Es el volumen de aire que ventila los alvéolos pulmonares y es el responsable de la difusión o intercambio de gases. Representa
  • INDICACIONES DE LA ESPIROMETRÍA a)      Diagnóstico: a.      Evaluar signos y síntomas                                                               i.      Síntomas: disnea, "pitos", ortopnea, tos, dolor torácico…                                                             ii.      Signos: disminución de ruidos respiratorios, hiperinsuflación, espiración prolongada, cianosis, deformidad torácica, crepitantes b.      Medir el impacto de la enfermedad en la función pulmonar c.       Cribado de pacientes con riesgo de padecer enfermedades respiratorias                                                               i.      Fumadores                                                             ii.      Exposición laboral a sustancias nocivas                                                           iii.      Algunos exámenes médicos de rutina d.      Valorar el riesgo preoperatorio e.      Valorar el pronóstico (trasplante pulmonar, etc.) f.        Valorar el estado de salud de las personas incluidas en programas de actividad física importante (deportistas, etc.)
  • a)      Para el seguimiento: a.      Valorar intervenciones terapéuticas:                                                               i.      Terapia broncodilatadora                                                             ii.      Tratamiento esteroideo en el asma, enfermedades intersticiales… b.      Describir el curso de enfermedades que afectan a la función pulmonar                                                               i.      enfermedades pulmonares obstructivas                                                             ii.      enfermedades pulmonares restrictivas                                                           iii.      fallo cardíaco congestivo                                                           iv.      síndrome de Guillain – Barré c.       Seguimiento de personas expuestas a sustancias nocivas d.      Seguimiento de reacciones adversas fármacos con toxicidad pulmonar conocida S
  • a)      Para la evaluación de discapacidades: a.      Programas de rehabilitación b.      Exámenes médicos para seguros c.       Valoraciones legales b)      Para estudios epidemiológicos: a.      Comparación del estado de salud de distintas poblaciones
  • AaPO2 = gradiente alveolo capilar de O2 Qs/Qt = porcentaje de mescla venosa (% de GC) VT = volumen corriente VE= ventilación minuto (L/min) Fr= frecuencia respiratoria VD = espacio muerto VD/VT: porcentaje de ventilacion de espacio muerto Qt= GC Pap: presion arterial pulmonar media PW =Presion capilar púlmonar  P= presion de perfusion pulmonar RVP= resistencia vascular pulmonar VO2: consumo de oxigeno VCO2=PRODUCCION DE CO2 R: cociente de intercambio respiratorio
  • Contrae en inspiración forzada,  10cm  vertical tórax, tambien eleva costillas y   transverso del tórax. Al levantar las costillas
  • Contracción moviliza 75% del aire inspirado y su paralisis bilateral compromete een forma importante la ventilacion del individuo. Paraliisi de un hemidiagragma disminuye 210 a 20% la ventilacion, se siente en personas con funcion a limite. Movimiento paradojico por alteraciones del nervio frenico, en inspiracion se desplaza hacia ARRIBA. El movimiento del difragma mueve vísceras, cuando hal dolor, cirugias, ascitis, etc. Disminuye la ventilacion.
  • .En pacientes críticos en ventilación mecánica se mide la compliance estática, usando un período de meseta o parada inspiratoria (plateau, inflation hold), ya sea automático o disparado con dispositivo o botón manual, variante del shutter del gabinete de fisiopatología. Este período de parada, debe durar al menos 0,5 seg, para conseguir el equilibrio entre las unidades alveolares de llenado lento y rápido. En equipos que no dispongan de mandos para realizar una parada o meseta inspiratoria (ventiladores de transporte y algunos antiguos), siempre se puede hacer esta meseta, impidiendo al final de la inspiración, la apertura de la válvula espiratoria (clampado de la línea que hincha las válvulas en seta, oclusión manual tras la válvula espiratoria), observando las presiones que marca el manómetro del ventilador.
  • Aumentada: con variaciones pequeñas de presion transpulmonar se produce un cambio grande de volumen pulmonar Disminuida: requiere grandes cambios de la presion transpulmonar para producir variaciones de volumenes
  • Surfactante producido por Neumocitos tipo II y disminuyen la tensión superficial a meddida que el área de los alveolos se reduce en la espiración, evitando el colapso y se produce un equilibrio entre alveolos de diferentes tamaños
  • Resistencia al flujo de aire Relación entre la diferencia o gradiente de presión que existe entre dos puntos de un conducto y el flujo de aire que se produce entre ellos, gracias a esa presión La  de presión entre la boca y los alvéolos: presión alveolar promedio, representa la contribucion de las vias aereas al cambio de presión total
  • Laminar: la presion necesaria esta en relacion a la longitud y al radio, a mayor longitud mayor presion pero en forma directa (2 longitud =2 presion), y en relacion al radio mucho mas (si radio disminuye a la mitad = presion aumenta en 16 veces)
  • Por:  Presión Intratorácica: Suma de presion de musculos espiratorios Retroceso elástico del tejido pulmonar distendido en la inspiración previa Vence la resistencia alveolar y se convierte en presion alveolar positiva PAl + se desgasta en vias ereas. Llega a igualar presiones externas y se da en los grandes bronquios Enfisema: disminuido la elastancia, punto de presiones iguales se situa en bronquios perifericos, con menos proteccion cartilaginosa, entonces suceptible al colapso. Por ello debe entrener en espiraciones lentas y prolongadas para evitar aumento de opresion intratoracica
  • RVA: RESISTENCIA DE VIA AEREA VP: volumen pulmonar PI: presion intratoracica negativa/positiva
  • Broncostriccion se produce por: inhalacion de humos, polvos inertes, irritantes quimicos,hipoxemia, hipercapnea Arterial, frio, embolos, histamina
  • Centro bulbar: hay celulas inspiratoria y espiratorias, que coordinan la ritmicidad de la respiracion al hacer conexión con las motoneuronasn que gobiernan los musculos inspiratorio y espiratorios. En protuberancia: el apneusico: prolonga la actividad inspiratoria del centro bulbar y neumotaxico: inhibe esta accion y actua directamente sobre la porcion espiratoria del centro bulbar. El factor mas importante en el control de la ventilacion, lo constituye la PaCO2, si por aumento de inhalacion de CO2, se incrementa la paCO2 en i mmHg manteniendo constante la Pa02, se aumentara la ventilacion en 2 a 3 litros por minuto. Esta accion del CO2 se ejerce a nivel de los quimiorreceptores los cuales son organos que responden a cambios en ls composición química de la sangre o de otro líquido que los rodee (LCR).Existen dos tipos de ellos, centrales y perifericos. Centrales: es permeable al CO2 , se difunde con suma rapidez, al aumentar pasa de los vasos al LCR liberando iones H+ y estimula al quimioreceptor, como el LCR no tiene amortiguadores que si hay en la sangre, y por ello el pH cambia con intensidad, pero si se prolonga, entoces el pH se recupera gracias al aumento de HCO3, que pasa por un mecanismo de transporte activo. Se altera por droigas, morfina, diazepan. Los perifericos carotideos y aorticos responden al aumento pCO2, aunque menos intensa que la central Hipoxemia: actua sobre perifericos. En EPOC, ph sanguineo y LCR Normal, estimulo es hipoxia
  • P roceso global relacionado con la obtención por parte de las células, del oxigeno de la atmósfera y su combinación con sustratos con el regreso a la atmósfera del CO 2 resultante. Respiración : como intercambio de gases en los pulmones, en los tejidos periféricos o a nivel mitocondrial o molecular
  • Luego de difusión y O2 incorporada a la Hb, el lecho capilar pulmonar debe llevarlo al VI y luego a los tejidos El Vol. Pulmonar de 5 puede pasar a 15l/min., también se debe a que las arterias escaso pared muscular Vasoconstricción ocasionada por la hipoxia, es independiente del SNC, sem activa con pAO2 < 60 mmHg. Esta desvía el flujo a zonas territorios mas ventilados, disminuyendo así las alteraciones del intercambio gaseoso. Se pierde en patologías como cirrosis hepática LA RELACIÓN VENTILACIÓN PERFUSIÓN El desequilibrio entre la relación entre ventilación / perfusión es la causa mas frecuente de hipoxemia. Es el aspecto más importante del intercambio gaseoso y puede ser causa de retención de CO 2 . En el pulmón normal la distribución tanto de la ventilación como la perfusión se realiza de forma desigual, las áreas básales se ventilan y perfunden mas que las apicales. Los índices extremos de ventilación y perfusión, se corresponden a la situaciones de Shunt y de espacio muerto. SHUNT: Se corresponderá con zonas no ventiladas pero perfundidas con un índice de ventilación / perfusión nulo. Es la causa mas importante de hipoxemia, atelectasia, edema pulmonar, etc. ESPACIO MUERTO: Corresponde a áreas pulmonares ventiladas pero no perfundidas o pobremente perfundidas, como puede ser la embolia pulmonar. Obstrucción de la luz bronquial, por moco, liquido, etc..
  • Vertical: FLUJO SANGUINEO AUMENTA DE VERTICES A BASES De cubito dorsal: de anterior a posterior Ejercicio el flujo aumenta en regiones superiores e inferiores, tornándose uniformes Esto por la diferencia de presión hidrostática y alveolar
  • La relación V/P es de crucial importancia determina la magnitud del intercambio gaseoso que se verifica a nivel de una zona del pulmón Situaciones: V disminuye gradualmente, flujo constante. PaO2 disminuye progresivamente alcanzando alcanzando un limite cuando la ventilación cese por completo, y PaO2 será igual a la de la sangre venosa mixta: se denomina cortocircuito o mezcla venosa 2. Si perfusion se reduce, pAO2 subirá progresivamente alcanzando su limite cuando la perfusion cese y entonces pAO2 será igual a la presion de oxigeno inspirado: se denomina espacio muerto
  • O2 es transportado a los tejidos en dos formas: 1, Solución física como O2 disuelto, cuando se mide la PaO2, o PaO2 es esta 2. Combinación química con una Hb como HbO2. 1 gr. de Hb se combina con 1.39 ml de O2( 1 litro de sangre lleva 150 gm de Hb y lleva 210 ml de O2. La cantidad de O2 asociado no esta relacionada linealmente con la presión parcial como el caso de O2 disuelto.
  • Grafico que relaciona el contenido de O2 (o % de saturación) con la presión, curva de disociación de la Hb, no es una línea recta, sino una curva que tiene una pendiente inicial pronunciada, ente 10 y 50 mmHg, y una parte plana por encima de 60 mmHg, esta morfología de la curva se debe a la constitución química de la Hb que tiene 2 cadenas alfa y beta, cada una unida a un grupo HEM, las dos ultimas con mas afinidad por el O2, lo que determina la forma de la curva. Esto da ventajas: Si la PO2 arterial desciende de 100 a 80 mmHg, la saturación de la Hb compensaria y no hay hipoxemia Cuando la sangre pasa por los capilares tisulares y expone a una tensión cercana a los 40 mmHg, la Hb suelta con gran cantidad de O2 para su utilización por los tejidos
  • P50, corresponde a la PaO2 en la cual la Hb esta saturada en un 50%. Normalmente a 37 G y pH 7.4 su valor es de 26 mmHg, su importancia radica en la posición de la curva, y por lo tanto la mayor o menor afinidad de la ph por el O2, y con ello la posibilidad de entregarlo a los tejidos, a mayor afinidad, menor entrega. - P50 > de 26, desviación a la derecha, y entonces una menor afinidad por O2. Disminución de ph, aumento de PaCO2, aumento de T, aumento de 2-3 difosfoglicerato P50 < 26 desviación a la izquierda y entonces una mayor afinidad
  • A) Circulación pulmonar. La circulación pulmonar tiene unas características especiales, que se adapta a las funciones de intercambio gaseoso que tiene encomendadas. Se puede resumir como un "Sistema de perfusión de baja presión". Ello conlleva una distribución irregular de la perfusión sanguínea a lo largo del pulmón, al ser influenciada su distribución por la fuerza de gravedad. No toda la sangre que perfunde al pulmón va a tener un intercambio alveolar. Hay un 10% de sangre que no realiza esta función; llegando al lado venoso sin haber sufrido cambios en su composición "Shunt Derecha-Izquierda"

Transcript

  • 1. VALORACION DE LA FUNCION RESPIRATORIA
  • 2. Fisiología Respiratoria Conceptos B. Rol de Sistema Respiratorio C. Respiración - Componentes1. Ventilación 1. Intercambio Gaseoso a. Conceptos – Difusión b. Mecánica Pulmonar – Perfusión i. Espirometría – Relación V/P ii. Músculos iii. Propiedades elásticas – Transporte de O2 de pulmones y tórax – Consumo de O2 c. Ventilación – control
  • 3. Respiración - ComponentesVentilación Intercambio gaseoso
  • 4. Fisiología Respiratoria Conceptos B. Rol de Sistema Respiratorio C. Respiración - Componentes1. Ventilación 1. Intercambio Gaseoso a. Conceptos – Difusión b. Mecánica Pulmonar – Perfusión i. Espirometría – Relación V/P ii. Músculos iii. Propiedades elásticas – Transporte de O2 de pulmones y tórax – Consumo de O2 c. Ventilación – control
  • 5. Ventilación GAS VIAS AEREAS ALVEOLOS
  • 6. Centros respiratorios (Formación reticular del bulbo y protuberancia) Pulmones Presión alveolar↓↓Volumencorriente Volumen alveolar
  • 7. • Esto gracias a un juego de presiones – Atmosférica (PAtm.) – Presión inspiratoria (Pinsp) siempre +, en relación a la atmosférica – Estas interrelaciones entre presiones y volúmenes, se denomina “Mecánica Pulmonar”
  • 8. Fisiología Respiratoria Conceptos B. Rol de Sistema Respiratorio C. Respiración - Componentes1. Ventilación 1. Intercambio Gaseoso – Conceptos – Difusión – Mecánica Pulmonar – Perfusión • Espirometría – Relación V/P • Músculos • Propiedades elásticas – Transporte de O2 de pulmones y tórax – Consumo de O2 c. Ventilación – control
  • 9. MecánicaPulmonar• Es la interrelación de los volúmenes y presiones de gases relacionados con la ventilación.
  • 10. Los volúmenes pulmonares sedeterminan mediante espirometría Espirómetro de pistónEspirómetro sellado en agua Espirómetro de fuelle.
  • 11. Espirometría• Volúmenes pulmonares• Capacidades Pulmonares• Patrones Espirometricos• Indicación Espirometría
  • 12. Volúmenes Pulmonares• Volumen corriente (VC) Aire que se moviliza en cada respiración normal.
  • 13. • VOLUMEN CORRIENTE (VC)• VC: 400 a 500 ml• Espacio muerto anatómico = Vol. = 150 ml.• Ventilación Alveolar = Vol. = 350ml.
  • 14. Ventilación - Volúmenes• Volumen de reserva espiratoria (VRE) – Cantidad total de aire que se puede expulsar partiendo de una espiración normal
  • 15. Ventilación - Volúmenes • Volumen de reserva inspiratoria (VRI) – Cantidad total de aire que se puede inhala partiendo de una inspiración normal • Volumen residual (VR) – Aire contenido en el pulmón después de una espiración máxima.
  • 16. Capacidades Pulmonares• Capacidad inspiratoria (CI) – Cantidad de aire que se inhala a partir De una espiración normal. VC + VRI •Capacidad Vital (CV) – Máxima cantidad de aire que se puede exhalar partiendo de una inspiración máxima. VC+ VRI + VRE.
  • 17. Capacidades Pulmonares• Capacidad funcional residual (CFR) – Cantidad de aire contenido en el pulmón al finalizar una espiración normal. VRE + VR •Capacidad Pulmonar Total (CPT) –Cantidad de aire que contienen los pulmones al final de una inspiración máxima. Suma de todos los volúmenes pulmonares.
  • 18. PatronesEspirométricos • Patrón Obstructivo – Indica una ↓ del flujo aéreo por: ∀ ↑ resistencia de las vías aéreas (asma,bronquitis) ∀ ↓ retracción elástica del parénquima (enfisema). – Características: • FVC normal • FEV1 disminuido • FEV1/FVC disminuido
  • 19. Patrones Espirométricos • PATRÓN RESTRICTIVO  ↓ CPT por alteraciones: • Parénquima: fibrosis, ocupación, amputación… • Tórax: rigidez, deformidad • Músculos respiratorios y/o de su inervación. – Características • FVC disminuida • FEV1 disminuido • FEV1/FVC normal
  • 20. Patrones Espirométricos• PATRÓN MIXTO OBSTRUCTIVO –  RESTRICTIVO – Características de los dos anteriores. • EPOC muy evolucionados, obstrucción  severa  atrapamiento aéreo. Que se  comporta como volumen residual, y ↓ FVC – Características • FVC disminuido • FEV1 disminuido • FEV1/FVC disminuido
  • 21. INDICACIONES DE LA ESPIROMETRÍA• Diagnostico – Evaluar signos y síntomas • Síntomas: disnea, sibilantes, ortopnea, tos, dolor torácico...etc. • Signos: ↓ruidos respiratorios, hiperinsuflación, espiración prolongada, cianosis, deformidad torácica, crepitantes – Medir el impacto de la enfermedad en la función pulmonar
  • 22. INDICACIONES DE LA ESPIROMETRÍA• Diagnostico – Evaluación de pacientes con riego de padecer enfermedades respiratorias: • Fumadores, exposición a sustancias nocivas. – Valorar el riesgo preoperatorio – Valorar el pronóstico • Transplante pulmonar, etc. – Valorar el estado de salud en programas de actividad física importante
  • 23. INDICACIONES DE LA ESPIROMETRÍA• Seguimiento – Valorar Intervenciones terapéuticas – Describir el curso de enfermedades que afectan a la función pulmonar • Enfermedades pulmonares restrictivas • ICC • S. Guillian Barré – A personas expuestas a sustancias nocivas – De reacciones adversas a fármacos con toxicidad pulmonar conocida
  • 24. INDICACIONES DE LA ESPIROMETRÍA• Para evaluación de discapacidades – Programas de rehabilitación – Examenes médicos para seguros – Valoraciones legales• Para estudios epidemiológicos – Comparación del estado de salud de distintas poblaciones
  • 25. Volumenes y capacidadespulmonares• Medida Volumen (mL) – VT 500 – VRI 3000 – VRE 1200 – VR 1300 – CI = VRI + VT+ VRE 3500 – CV = VRI + Vt + VRE 4700 – FRC = VRE + VR 2500 – CLT = FRC + CI 6000
  • 26. Fisiología Respiratoria Conceptos B. Rol de Sistema Respiratorio C. Respiración - Componentes1. Ventilación 1. Intercambio Gaseoso – Conceptos – Difusión – Mecánica Pulmonar – Perfusión • Espirometría – Relación V/P • Músculos • Propiedades elásticas – Transporte de O2 de pulmones y tórax – Consumo de O2 c. Ventilación – control
  • 27. Ventilación - Músculos• Músculos inspiratorios – Diafragma – Músculos intercostales externos – Músculos accesorios de la inspiración• Músculos espiratorios – Músculos de la pared abdominal – Músculos intercostales internos
  • 28. Diafragma• Músculo principal de la inspiración• Forma cúpula entre tórax y abdomen
  • 29. Diafragma∀ ↑ ↑ ∅ vertical (10 cm) y transverso del tórax• Enfisema: pierde forma, se aplana, tracciona costillas
  • 30. Músculos Intercostales Externos • Contracción eleva al extremo anterior de cada costilla y lo desplaza hacia fuera yIntercostale hacia adelante ↑ ∅s anteroposterior y lateralExternos del tórax • Evitan que los espacios intercostales se retraigan durante la inspiración
  • 31. ECM Accesorios de la Escalenos inspiración• ECM -Eleva esternón• Escalenos Eleva 2ras. Costillas• Volúmenes >s de 50l/min.• Extremo de espalda y cuello∀ ↓ presión intratorácica 60 a 100 mmHg por debajo de Patm.
  • 32. Músculos Espiratoriosde la paredabdominal • Contracción deprime las ultimas costillas, desplaza el diafragma hacia arriba • Se activa: Recto – Tos Anterior – Nivel alto ventilación Oblicuo – Obstrucción vías aéreas externo Oblicuo interno Transverso del abdomen
  • 33. TORAX ENESPIRACION
  • 34. Músculos Intercostales Internos• Contracción: – Costillas hacia abajo y adentro, fijando los espacios intercostales para evitar que protruyan durante la espiración Intercostales Internos• Esfuerzo tusivo intenso – Presiones intratorácicas de 120 mmHg con ↑ transitorio → 300 mmHg.
  • 35. Fisiología Respiratoria Conceptos B. Rol de Sistema Respiratorio C. Respiración - Componentes1. Ventilación 1. Intercambio Gaseoso – Conceptos – Difusión – Mecánica Pulmonar – Perfusión • Espirometría – Relación V/P • Músculos • Propiedades elásticas – Transporte de O2 de pulmones y tórax – Consumo de O2 c. Ventilación – control
  • 36. Propiedades elásticas depulmones y tórax• Compliance• Tensión superficial• Resistencia de las vías aéreas
  • 37. Propiedades elásticas de los pulmones y el tórax• Elasticidad – Propiedad de los cuerpos para volver a su forma inicial después de haber sido deformado por una fuerza externa
  • 38. Compliance• Variación de longitud o volumen que se produce por cada unidad de presión aplicada
  • 39. Compliance AumentadoVolumen Normal DisminuidoVR Presión ↑ Enfisema pulmonar ↓ SDRA, EPID. ↑ ± Normal
  • 40. Tensión Superficial Neumocistos tipo II Surfactante ↓↓Tensión superficial En los alvéolos
  • 41. Resistencia de las vías aéreas• P (boca – alveolos) Vel. flujo∀ ↑↑ Bronquitis crónica enfisema asma bronquial∀ ↓↓ Broncodilatadores
  • 42. Componentes dela resistenciapulmonar
  • 43. Determinantes de la Resistenciade las vías aéreas (RVA) 1. Tipos de flujo aéreo 2. Elastancia 3. Volumen pulmonar (VP) 4. Regulación fisiológica – Regulación nerviosa – Regulación química
  • 44. 1. Tipos de flujo• Laminar – En bronquios de calibre pequeño• Turbulento – Flujo en remolino, Bifurcaciones, grandes bronquios
  • 45. 1. ElastanciaEspiración Exterior Alvéolos PAl > PAt∀ ↑↑ PI : Suma de presiones de músculos espiratorios• Retroceso elástico del tejido pulmonar distendido en la inspiración previa• Punto de presiones iguales: grandes bronquios
  • 46. NormalElastancia Enfisema Pulmonar ↓ la elastancia
  • 47. Elastancia Punto de presiones iguales• Enfisema: – Punto de presiones Normal iguales: bronquios periféricos Enfisema P.Intratorácica – Debe: espiraciones lentas y prolongadas para evitar aumento de presión intratoracica P.Retroceso Elástico
  • 48. 1. Volumen ↓↓RVA pulmonar N ↑↑VP O I C N A O PI + R I I C PI - P A S R N I I P S ↓↓ VP E RVA
  • 49. 1. Regulación fisiológica Músculo liso bronquial• Regulación nerviosa • Parasimpáticos - broncoconstricción • Simpáticos - broncodilatación• Regulación química • Broncocontricción – Acetilcolina – Propranolol • Broncodilatación – Aminas simpaticomiméticas: adrenalina, norepinefrina.
  • 50. Ventilación control• Centros respiratorios – Bulbo y protuberancia• Conexiones nerviosas• Quimioreceptores centrales y periféricos• Efectos del pCO2, pO2 y pH ↑ pCO2 ↑ ventilación ↑ pCO2 y ↓ pO2 ↑ ↑ ↑ Ventilación
  • 51. Fisiología Respiratoria Conceptos B. Rol de Sistema Respiratorio C. Respiración - Componentes1. Ventilación 1. Intercambio Gaseoso a. Conceptos – Difusión b. Mecánica Pulmonar – Perfusión i. Espirometría – Relación V/P ii. Músculos iii. Propiedades elásticas – Transporte de O2 de pulmones y tórax – Consumo de O2 c. Ventilación – control
  • 52. Intercambio de gases • Ingreso de O2 y eliminación de CO2• Factores importantes: posición del paciente, equilibrio hídrico, la nutrición, nivel de Hb.
  • 53. Intercambio gaseoso• Difusión• Perfusión• Relación Ventilación-Perfusión• Consumo del O2 (V)
  • 54. Difusión• Proceso físico de moléculas de un gas que se mueve de O2 una parte de > CO2 O2 presión a < presión CO2 CO2 O2• CO2 CO2 O2 – Mas soluble que el CO2 O2 velocidad de difusión es 20 veces mayor
  • 55. Alvéolos1. Capilar Células del cuerpo Plasma sang. Glóbulo rojo RESPIRACIÓN RESPIRACIÓN EXTERNA INTERNA Difusión La difusión es un fenómeno físico, por el que una sustancia disuelta es capaz de atravesar una membrana que separa dos disoluciones. La difusión de las moléculas disueltas, en este caso el O2 o el CO2, se produce de la disolución que tenga mayor concentración (hipertónica) hacia la de menor (hipotónica) y cesa cuando se alcanza el equilibrio (isotónica).
  • 56. Difusión Factores de alteración∀ ↓ < 20% : hipoxemia• Distancia de difusión: EAP• Presión parcial de O2 : Altura• Disminución del área alveolar: Enfisema.• Componente sanguineo: Concentración de HB
  • 57. Difusión Factores de alteración•Alteración de la membrana alvéolo-capilar –Fibrosis intersticial, asbestosis, sarcoidosis
  • 58. Perfusión• Lecho capilar: • Vol. Sanguíneo = GC. 100-200m2 • Circulación pulmonar no• PAP < PA es homogénea – 10 vs 98mmhg
  • 59. Perfusión Decúbito dorsalmecanismos deregulación Vertical Decúbito lateral• Distribución en relación a • Puede triplicar gracias a: posición – Reclutamiento de• Vasoconstricción capilares – Hipoxia < 60 mmHg – Dilatación de capilares
  • 60. Relación Ventilación/Perfusión • Zona 1 - 2 – V/P Altas = 3.3 – PAO2= 132 – PACO2 = 28 • Zona 3 - 4 – V/P Bajas = 0-63 – PAO2 = 89 – PACO2= 42
  • 61. Perfusión• %Shunt CcO2 – CaO2 5% CcO2 – CvO2
  • 62. Perfusión• V/P Zona 3, permite adecuado intercambio gaseosos• Hipoventilación se origina shunt
  • 63. Perfusión• Zona 3• Perfusión alterada inadecuada difusión de O2: Shunt
  • 64. Perfusión:Equilibrio hídrico P.C-O PHt I n t e r s t i c i o
  • 65. Transporte de Oxígeno• Oxígeno • Entrega de O2 a los tejidos• Saturación • 2,3 difosfoglicerato• Contenido de O2 (2,3 DFG)• Distribución de GC
  • 66. Transporte de O2:Saturación – Contenido O2 O2 O2 O2 O2 O2 O2
  • 67. Transporte de Gases - Saturación O2 O2 O2 O2
  • 68. Transporte de Gases• P50 – Hb saturada 50% – PO2 =26 mmHg• Desviación derecha – PO2 > 26 mmHg – < afinidad por O2 ↓pH, ↑PaCO2, ↑T°• Desviación Izquierda – PO2 < 26 mmHg – > afinidad por O2 ↑ pH, ↓ PaCO2, ↓ T°
  • 69. Transporte deDistribución del GC O2 – Esta sujeta a la demanda tisular – Hipoxemia : vasodilatación : ↑ GC – Preserva Órganos Blanco
  • 70. Transporte 2 de O2 PO2 40 PO295 PO2 40 PCO2 46 PCO2 30 PCO2 46• Entrega de O2 a los tejidos
  • 71. Consumo de O2Respiración celular Es el catabolismo de las moléculas orgánicas. En el proceso aerobio se consume O2 y se liberan CO2 y energía, que se almacena en forma de ATP.
  • 72. Fisiología Respiratoria Conceptos B. Rol de Sistema Respiratorio C. Respiración - Componentes1. Ventilación 1. Intercambio Gaseoso a. Conceptos – Difusión b. Mecánica Pulmonar – Perfusión i. Espirometría – Relación V/P ii. Músculos – Transporte de O2 iii. Propiedades elásticas de pulmones y tórax – Consumo de O2 c. Ventilación – control
  • 73. • Recibe doble aporte sanguíneo – Circuito menor : arterias pulmonares (sangre venosa) – Circuito mayor : arterias bronquiales (sangre arterial) • Nacen de aorta torácica o intercostales superiores • Venas bronquiales: vena ácigos, venas pulmonares y AD• Sistema de baja perfusión Circulación pulmonar
  • 74. VALORACION DE LA FUNCION RESPIRATORIA