Your SlideShare is downloading. ×
0
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Introduction to Vortex86EX Motion Control Modules
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Introduction to Vortex86EX Motion Control Modules

1,895

Published on

Published in: Technology, Business
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,895
On Slideshare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
44
Comments
0
Likes
2
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. DM&P Vortex86EX in Motion Control DMP Electronics Inc.
  • 2. The Vortex86 SoC Family I/O I/O 2 North Bridge K/B South Bridge size cost CP U Shrinking the entire motherboard into a tiny chip x86 isn’t just a PC x86 as a MCU, x86 as a DSP, …
  • 3. The Vortex86 SoC Family • Jul. 1998 • 40MHz • 0.50 um • Feb. 2007 • 300MHz • 0.13 um • Aug. 2008 • 800MHz • 90 nm (2007 EOL) • Jun. 2009 • 1GHz • 90nm • GPU • Jun. 2010 • 1GHz • 90nm • GPU DMP Design x86 SoC since 1995 • Q1 2012 • 1GHz • 90nm • GPU • Motor/Motion Ctrl. • 2013 • 300~500MHz • 90nm • MCU • Motor/Motion Ctrl. Guaranteed 10 Years Long Term Supply
  • 4. Vortex86 SoC Roadmap Target Applications HMI / Motion Control DX3 DX2 Embedded / Thin Client / HMI MX/MX+ Embedded Controller DX SX Microprocessor (uP) CPU Clock Speed EX 300MHz 500MHz 800MHz 1GHz 1.5GHz 40nm
  • 5. Key Benefits of Vortex86 SoC  x86 Instruction Set Compatible  Highly Integrated  Simplified system design  Low system BOM cost  Low Power Consumption  Fan-less design  Long Term Supply
  • 6. The Vortex86EX SoC The 1st MCU-like x86 SoC !!! LAN RS232/RS48 5 USB Vortex86EX DRAM (DDR III) CPU NB SB FPU Motion/Motor Control CAN Servo Encoder Audio SATA PCI-E/ISA
  • 7. Key Specifications of Vortex86EX CPU 300MHz / 400 MHz / 500 MHz x86 Compatible, Support FPU DRAM 300MHz DDR3 DRAM (up to 2GB) Cache - L1: 16K I-Cache, 16K D-Cache - L2: 4-way 128KB L2 Cache Bus - PCI-E (×1) Master/Target Slot - 16-bit X-ISA (8.3MHz / 16.6MHz / 33MHz)
  • 8. Key Specifications of Vortex86EX Mass Storage - SD Card - SATA-I Audio High Definition Audio LAN Ethernet 10/100Mbps USB USB Host 2.0 × 2 Ports USB Device 1.1 × 1 Port
  • 9. Key Specifications of Vortex86EX I/O Interface - UART x 10 Ports - SPI × 1 Port - I2C × 1 Port - CAN Bus × 1 Port - GPIO × 80 Pins - Parallel Port (SPP/EPP/ECP) × 1 - PS2 Keyboard/Mouse Motion/MotorControl Interface 4 Motion-Control Modules, to support - Pulse/DIR, CW/CCW, Pulse A/B output - Edge-/Center-aligned PWM output - Quadrature Encoder Interface - SSI Absolute Encoder Interface - Hall Sensor Interface
  • 10. Supported Operating Systems
  • 11. Design Goals of Vortex86EX  Low Power Consumption  Low Cost  Higher Integration  CPU + FPU + NB + SB + I/O in a single chip  Richer I/O  10 UART ports, Motion/Motor-control interface, …  Cross bar for arbitrary I/O routing
  • 12. Flexible I/O Cross Bar
  • 13. Motion-Control Modules of Vortex86EX
  • 14. Motion-Control Modules (MCMs) Integrate a total of 4 motion-control modules (MCMs) in South Bridge to support at max. 24 pins for motion/motor control Motion-Control Module 0 x86 core PCI servo Motion-Control Module 1 motor Motion-Control Module 3 South Bridge Vortex86EX encoder
  • 15. Motion-Control Modules (MCMs) Make Fully PC-Based Platform Possible PC-Based Servo Driver Machine, AC Motor PC-Based PC-Based HMI/Host Controller Motion-Control Card Encoder, Home/Limit Switch
  • 16. Vortex86EX as an Open Motion-Control Platform  Reduce System Cost  x86 core & motion-control interface in a single chip  Easy to Support Mainstream Field-Bus  EtherCAT, MECHATROLINK, CANopen, …  Open PC-Based Architecture  Wide range of development resources  Ease of migration, integration, and maintenance
  • 17. Intended Applications 2 Motor Controller Motion Controller Robot PAC/PLC AOI Machine CNC Machine Rubber Machine
  • 18. Feature Overview of MCMs  4 Modes for Motion Control Mode Application Servo mode Stepping motors, AC servo drivers Encoder mode Incremental encoders SSI mode SSI absolute encoders Capture mode Tachometers, Home/limit switches
  • 19. Feature Overview of MCMs  2 Modes for Motor Control Mode Application PWM mode DC motors, Brushless DC (BLDC) motors, PMSM motors, AC Induction motors Hall sensor mode Hall sensors in BLDC
  • 20. Feature Overview of MCMs  Max. 25MHz, 12-axis Pulse Output  Support Pulse/DIR, CW/CCW, Pulse A/B output  Max. 25MHz, 8-axis 32-bit Encoder Input  Support Pulse/DIR, CW/CCW, Pulse A/B input  Max. 4-axis 3-phase PWM output  Support edge-aligned & center-aligned PWM for realizing SPWM & SVPWM
  • 21. Key Specification of Motion-Control Modules
  • 22. Servo Mode of MCM Pulse Servo A DIR CW Servo B CCW Pulse A Servo C Pulse B MCM in Servo Mode P-command servo driver stepping motor
  • 23. Supported Pulse Waveforms  Pulse/DIR  CW/CCW  Pulse A/B Motor Motor
  • 24. Main Features of Servo Mode  Configurable Pulse Clock  Arbitrary rational clock between 10Hz ~ 25MHz  Configurable Interpolation Cycle  20 nanosecond ~ 100 second  Channel Synchronization  Allow to begin and stop 32-axis pulse output simultaneously
  • 25. Main Features of Servo Mode  Output Masking  Allow to mask pulse output anytime by external I/O pins  Implement emergency stop without software effort  Sufficient Interrupt Sources  Interpolation cycle interrupt  Pulse cycle interrupt  User-defined interrupt event …
  • 26. Encoder Mode of MCM Encoder Interface A Encoder Interface B MCM in Encoder Mode A B Z (index) A B Z (index) rotary encoder linear encoder
  • 27. Main Features of Encoder Mode  Support Pulse/DIR, CW/CCW, Pulse A/B Input  32-bit position counter, max. 25MHz input  Configurable Digital Noise Filters  16-bit noise filter to remove 10ns (min.) ~ 655us (max.) glitches on every input pin  Allow synchronous & asynchronous filtering of different pins
  • 28. Main Features of Encoder Mode  Position Compare Function  Z Index & External Trigger Latch  Automatic Input Speed Computation  10ns timer resolution  Sufficient Interrupt Sources  Direction-changing interrupt  Z-index interrupt …
  • 29. SSI Mode of MCM SSI Interface A SSI CLK SSI DATA × SSI Interface B SSI CLK SSI DATA × MCM in SSI Mode SSI absolute encoder
  • 30. Main Features of SSI Mode  Configurable SSI Clock  Arbitrary clock between 10Hz ~ 25MHz  Configurable Input Resolution  Support max. 32-bit SSI encoder  Gray-to-Binary Conversion  Data-Format Error Checking
  • 31. Capture Mode of MCM Digital IN 1 Digital IN 2 Digital IN 3 HOME/LIMIT switch Capture Interface Digital IN 4 Digital IN 5 Digital IN 6 Tachometer MCM in Capture Mode
  • 32. Main Features of Capture Mode  Pulse Width Measure  28-bit timer in 10ns resolution  Programmable Input Trigger  Level trigger  Edge trigger by raising edge, falling edge, or both  One-shot trigger mode & continuous trigger mode  User-defined trigger events
  • 33. Main Features of Capture Mode  Configurable Digital Noise Filters  16-bit noise filter on every input pin  Synchronous & asynchronous filtering of different pins  Sufficient Interrupt Sources  Capture event interrupt  Trigger interrupt …
  • 34. PWM Mode of MCM PWM U+ PWM U− 3-Phase Complementary PWM Interface PWM V+ PWM V− PWM W+ PWM W− MCM in PWM Mode
  • 35. Supported PWM Waveforms  Edge-Aligned PWM PWM U+ PWM V+ PWM W+  Center-Aligned PWM PWM U+ PWM V+ PWM W+
  • 36. Main Features of PWM Mode  High-Resolution PWM  32-bit PWM duty & period in 10ns resolution  Configurable Sampling Cycle  1 PWM period ~ 229 PWM periods  Deadband Insertion  Allow to insert 10ns (min.) ~ 160ms (max.) deadband PWM+ PWM− deadband deadband
  • 37. Main Features of PWM Mode  Programmable Fault Output Mask  Mask PWM output in real-time by external fault signals  Allow different fault output for different fault signals Original Center-Aligned PWM output Fault Signal Masked PWM output fault output
  • 38. Main Features of PWM Mode  Sufficient Interrupt Sources  PWM interrupt  Sampling cycle interrupt  User-defined interrupt event …
  • 39. Hall Sensor Mode of MCM Hall Interface A Hall A Hall B Hall C N Hall B Hall B S Hall C Hall A Hall Interface B Hall A Hall B Hall C Hall C N Hall B Hall C Hall A Hall B S Hall A MCM in Hall Sensor Mode Hall A Hall C
  • 40. Main Features of Hall Sensor Mode  Dedicated to BLDC Motor Control  Programmable Commutation Pattern  Commutation Error Checking  Sufficient Interrupt Sources  Commutation interrupt  Input error interrupt …
  • 41. Software Support Planning
  • 42. Software Stack User Application HMI, Motion/Motor Controllers, Open-Source Toolkit & Reference Designs Algorithm Library DMP Motion/Motor-Control Library OS Driver MCM HAL Hardware (DOS, WinXP, WinCE, Linux) Vortex86EX Motion-Control Modules
  • 43. MCM H/W Abstraction Layer (HAL)  Provide a Unified Interface to Access MCMs  MCM mode management  Interrupt management  Low-level register access  Multitasking synchronization  Manipulate MCMs of Different Modes with a Modular Approach
  • 44. MCM H/W Abstraction Layer (HAL)  DOS Support  Real mode: Turbo C/C++, Borland C/C++  Protected mode: DJGPP, WATCOM C/C++  Windows Support (Work in Progress)  WinXP & WinCE WDM drivers  Real-time driver for RTX  Linux Support (Work in Progress)  Linux 2.6 kernel driver  Real-time driver for RTAI
  • 45. DMP Motion/Motor-Control Library  High-Level Motion Control Functions  Point-to-point motion  Multi-axis linear/circular interpolation  T-/S-curve acceleration/deceleration  PVT trajectory generation  Pitch error compensation  ……
  • 46. DMP Motion/Motor-Control Library  High-Level Motor Control Functions  BLDC-specific PWM generator  SPWM & SVPWM generator  Clarke/Park transforms  PID controller  ……  Keep Continuous Library Evolution
  • 47. System Reference Designs  Open-Source Reference Designs  Sample motion controller (with G-code interpretation)  BLDC motor driver  IM spindle VFD  ……  Open-Source Toolkit  Dedicated LinuxCNC (EMC2) HAL
  • 48. Conclusions
  • 49. Low-Cost Configurations x86 & motion interface integrated in a Vortex86EX SoC make low-cost motion control platforms possible Vortex86EX HMI + Motion Control + Motor Control Vortex86EX HMI + Motion Control PWM IGBT Pulse A/B, Index Motor Encoder Pulse/DIR CW/CCW Pulse A/B P-cmd Servo Driver Pulse A/B, Index Motor Encoder
  • 50. High C/P Configuration Vortex86EX can constitute a high C/P motion control system with other high-end Vortex86 SoC Servo Driver Vortex86DX2 HMI PCIe Bus Vortex86EX Real-Time Motion Controller Pulse/DIR CW/CCW Pulse A/B EtherCAT Mechatrolink … Pulse A/B, Index Motor Encoder
  • 51. Thank You! Q&A DMP Electronics Inc.

×