Introduction to Vortex86DX2 Motion-Control Evaluation Board


Published on

Published in: Technology, Business
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Introduction to Vortex86DX2 Motion-Control Evaluation Board

  1. 1. DM&P Vortex86DX2inMotion ControlDMP Electronics Inc.
  2. 2. The Vortex86 SoC FamilyCPCPUUNorthNorthBridgeBridgeSouthSouthBridgeBridgeBIOSBIOSI/OI/OK/BK/BI/OI/O2sizesizecostcostShrinking the entire motherboardShrinking the entire motherboardinto a tiny chipinto a tiny chipx86x86 isn’t just a PCisn’t just a PC x86x86 as a MCU,as a MCU, x86x86 as a DSP, …as a DSP, …
  3. 3. The Vortex86 SoC Family• Jul. 1998• 40MHz• 0.50 um(2007 EOL)• Feb. 2007• 300MHz• 0.13 um• Aug. 2008• 800MHz• 90 nm• Jun. 2009• 1GHz• 90nm• GPU• Jun. 2010• 1GHz• 90nm• GPU• Q1 2012• 1GHz• 90nm• GPU• Motor/Motion Ctrl.DMP Design x86 SoC since 1995DMP Design x86 SoC since 1995 Guaranteed 10 Years Long Term SupplyGuaranteed 10 Years Long Term Supply
  4. 4. Vortex86 SoC RoadmapTarget ApplicationsHMI /Motion ControlEmbedded /Thin Client /HMIEmbeddedControllerMicroprocessor(uP)CPU Clock Speed 300MHz 500MHz 800MHz 1GHz 1.5GHzSXSXDXDXMX/MX+MX/MX+DX2DX2DX3 40nmEXEX
  5. 5. Key Benefits of Vortex86 SoC x86 Instruction Set Compatiblex86 Instruction Set Compatible Highly IntegratedHighly Integrated Simplified system designSimplified system design Low system BOM costLow system BOM cost Low Power ConsumptionLow Power Consumption Fan-less designFan-less design Long Term SupplyLong Term Supply
  6. 6. The Vortex86DX2 SoCThe 1stThe 1st x86x86 SoC withSoC withIntegrated Motion/Motor-ControlIntegrated Motion/Motor-ControlInterface !!!Interface !!!VGAUSBLANPCI-E/ISAAudioRS232/RS485SATAServoEncoderDRAM(DDR II)Vortex86DX2CPUCPU NBNBMotion/Motor ControlMotion/Motor ControlGPUGPUFPUFPU BIOSBIOS SBSB
  7. 7. Key Specifications of Vortex86DX2CPUCPU 800MHz / 1000 MHz800MHz / 1000 MHzx86x86 Compatible, Support FPU & ACPICompatible, Support FPU & ACPIDRAMDRAM 400MHz DDR2 DRAM (up to 2GB)400MHz DDR2 DRAM (up to 2GB)CacheCache - L1: 16K I-Cache, 16K D-CacheL1: 16K I-Cache, 16K D-Cache- L2: 4-way 256KB L2 CacheL2: 4-way 256KB L2 CacheGPUGPU - 2D Graphics Engine2D Graphics Engine- 720720 ×× 480 x 30fps Capture-In480 x 30fps Capture-In- VGA / DVO (TTL 18 or 24-bit)VGA / DVO (TTL 18 or 24-bit)- 12-bit TV-out12-bit TV-out- HDMI (with HMI transmitter EP32M or ITE6610)HDMI (with HMI transmitter EP32M or ITE6610)- 1280 x 1024 @ 32bpp1280 x 1024 @ 32bpp
  8. 8. Key Specifications of Vortex86DX2BusBus - PCI-E (PCI-E (××1) Slots1) Slots ×× 22- 16-bit ISA (8.3MHz / 16.6MHz /16-bit ISA (8.3MHz / 16.6MHz / 33MHz33MHz))Mass StorageMass Storage - Parallel IDEParallel IDE- SD CardSD Card- SATA-ISATA-IAudioAudio High Definition AudioHigh Definition AudioLANLAN Ethernet 10/100MbpsEthernet 10/100MbpsUSBUSB USB Host 2.0USB Host 2.0 ×× 4 Ports4 PortsUSB Device 1.1USB Device 1.1 ×× 1 Port1 Port
  9. 9. Key Specifications of Vortex86DX2I/O InterfaceI/O Interface - UART x 9 PortsUART x 9 Ports- SPISPI ×× 2 Ports2 Ports- II22CC ×× 2 Ports2 Ports- GPIOGPIO ×× 10 Ports10 Ports- Parallel Port (SPP/EPP/ECP)Parallel Port (SPP/EPP/ECP) ×× 11- PS2 Keyboard/MousePS2 Keyboard/MouseMotion/Motor-Motion/Motor-ControlControlInterfaceInterface12 Motion-Control Modules, to support12 Motion-Control Modules, to support- Pulse/DIR, CW/CCW, Pulse A/B outputPulse/DIR, CW/CCW, Pulse A/B output- Edge-/Center-aligned PWM outputEdge-/Center-aligned PWM output- Quadrature Encoder InterfaceQuadrature Encoder Interface- SSI Absolute Encoder InterfaceSSI Absolute Encoder Interface- Hall Sensor InterfaceHall Sensor Interface
  10. 10. Supported Operating Systems
  11. 11. Performance Comparisonwith LX800DM&P Vortex86DX2 @ 1GHzDM&P Vortex86DX2 @ 1GHzAMD Geode LX800AMD Geode LX800performance test by HDBENCH v3.40performance test by HDBENCH v3.40
  12. 12. Design Goals of Vortex86DX2 More Computing PowerMore Computing Power Higher IntegrationHigher Integration CPU + FPU + GPU + NB + SB + I/O in a single chipCPU + FPU + GPU + NB + SB + I/O in a single chip Richer I/ORicher I/O 9 UART ports, Motion/Motor-control interface, …9 UART ports, Motion/Motor-control interface, … Optimized for Real-Time I/O ApplicationOptimized for Real-Time I/O Application 100MHz 8051 I/O coprocessor100MHz 8051 I/O coprocessor Optimized I/O & interrupt responding timeOptimized I/O & interrupt responding time
  13. 13. Motion-Control ModulesofVortex86DX2
  14. 14. Motion-Control Modules (MCMs)x86corePCIMotion-ControlModule 0Motion-ControlModule 1Motion-ControlModule 11South Bridge8051core8051I/O BusVortex86DX2Vortex86DX2Integrate a total ofIntegrate a total of 12 motion-control modules (MCMs)12 motion-control modules (MCMs) in Southin SouthBridge to support at max.Bridge to support at max. 72 pins72 pins for motion/motor controlfor motion/motor controlservoservomotormotorencoderencoder
  15. 15. Motion-Control Modules (MCMs)Make FullyMake Fully PC-BasedPC-BasedPlatform PossiblePlatform PossiblePC-BasedHMI/Host ControllerPC-BasedMotion-Control CardPC-BasedServo DriverMachine,ACMotorEncoder,Home/Limit Switch
  16. 16. Vortex86DX2 as anOpen Motion-Control Platform Reduce System CostReduce System Cost x86 core & motion-control interface in a single chipx86 core & motion-control interface in a single chip Easy to Support Mainstream Field-BusEasy to Support Mainstream Field-Bus EtherCAT, MECHATROLINK, CANopen, …EtherCAT, MECHATROLINK, CANopen, … Open PC-Based ArchitectureOpen PC-Based ArchitectureWide range of development resourcesEase of migration, integration, and maintenance
  17. 17. Intended ApplicationsCNC MachineCNC MachineAOI MachineAOI MachineMotion ControllerMotion ControllerRubber MachineRubber MachineRobotRobotPAC/PLCPAC/PLCMotor ControllerMotor Controller
  18. 18. Feature Overview of MCMs 4 Modes for Motion Control4 Modes for Motion ControlModeMode ApplicationApplicationServo modeStepping motors,AC servo driversEncoder mode Incremental encodersSSI mode SSI absolute encodersCapture modeTachometers,Home/limit switches
  19. 19. Feature Overview of MCMs 2 Modes for Motor Control2 Modes for Motor ControlModeMode ApplicationApplicationPWM modeDC motors,Brushless DC (BLDC) motors,PMSM motors,AC Induction motorsHall sensor mode Hall sensors in BLDC
  20. 20. Feature Overview of MCMs Max. 25MHz, 36-axis Pulse OutputMax. 25MHz, 36-axis Pulse Output Support Pulse/DIR, CW/CCW, Pulse A/B outputSupport Pulse/DIR, CW/CCW, Pulse A/B output Max. 25MHz, 24-axis 32-bit Encoder InputMax. 25MHz, 24-axis 32-bit Encoder Input Support Pulse/DIR, CW/CCW, Pulse A/B inputSupport Pulse/DIR, CW/CCW, Pulse A/B input Max. 12-axis 3-phase PWM outputMax. 12-axis 3-phase PWM output Support edge-aligned & center-aligned PWM forSupport edge-aligned & center-aligned PWM forrealizing SPWM & SVPWMrealizing SPWM & SVPWM
  21. 21. Key SpecificationofMotion-Control Modules
  22. 22. Servo Mode of MCMMCM in Servo ModeServo AServo APulsePulseDIRDIRServo BServo BCWCWCCWCCWServo CServo CPulse APulse APulse BPulse BP-commandP-commandservo driverservo driversteppingsteppingmotormotor
  23. 23. Supported Pulse Waveforms Pulse/DIRPulse/DIR CW/CCWCW/CCW Pulse A/BPulse A/BMotor Motor
  24. 24. Main Features of Servo Mode Configurable Pulse ClockConfigurable Pulse Clock Arbitrary rational clock between 10Hz ~ 25MHzArbitrary rational clock between 10Hz ~ 25MHz Configurable Interpolation CycleConfigurable Interpolation Cycle 20 nanosecond ~ 100 second20 nanosecond ~ 100 second Channel SynchronizationChannel Synchronization Allow to begin and stop 32-axis pulse outputAllow to begin and stop 32-axis pulse outputsimultaneouslysimultaneously
  25. 25. Main Features of Servo Mode Output MaskingOutput Masking Allow to mask pulse output anytime by external I/O pinsAllow to mask pulse output anytime by external I/O pins Implement emergency stop without software effortImplement emergency stop without software effort Sufficient Interrupt SourcesSufficient Interrupt Sources Interpolation cycle interruptInterpolation cycle interrupt Pulse cycle interruptPulse cycle interrupt User-defined interrupt eventUser-defined interrupt event ……
  26. 26. Encoder Mode of MCMMCM in Encoder ModeEncoderEncoderInterface AInterface AAABBEncoderEncoderInterface BInterface BZ (index)Z (index)AABBZ (index)Z (index)rotaryrotaryencoderencoderlinearlinearencoderencoder
  27. 27. Main Features of Encoder Mode Support Pulse/DIR, CW/CCW, Pulse A/B InputSupport Pulse/DIR, CW/CCW, Pulse A/B Input 32-bit position counter, max. 25MHz input32-bit position counter, max. 25MHz input Configurable Digital Noise FiltersConfigurable Digital Noise Filters 16-bit noise filter to remove 10ns (min.) ~ 655us (max.)16-bit noise filter to remove 10ns (min.) ~ 655us (max.)glitches on every input pinglitches on every input pin Allow synchronous & asynchronous filtering of differentAllow synchronous & asynchronous filtering of differentpinspins
  28. 28. Main Features of Encoder Mode Position Compare FunctionPosition Compare Function Z Index & External Trigger LatchZ Index & External Trigger Latch Automatic Input Speed ComputationAutomatic Input Speed Computation 10ns timer resolution10ns timer resolution Sufficient Interrupt SourcesSufficient Interrupt Sources Direction-changing interruptDirection-changing interrupt Z-index interruptZ-index interrupt ……
  29. 29. SSI Mode of MCMMCM in SSI ModeSSI Interface ASSI Interface ASSI CLKSSI CLKSSI DATASSI DATASSI Interface BSSI Interface BSSI CLKSSI CLKSSI DATASSI DATASSI absolute encoderSSI absolute encoder××××
  30. 30. Main Features of SSI Mode Configurable SSI ClockConfigurable SSI Clock Arbitrary clock between 10Hz ~ 25MHzArbitrary clock between 10Hz ~ 25MHz Configurable Input ResolutionConfigurable Input Resolution Support max. 32-bit SSI encoderSupport max. 32-bit SSI encoder Gray-to-Binary ConversionGray-to-Binary Conversion Data-Format Error CheckingData-Format Error Checking
  31. 31. Capture Mode of MCMMCM in Capture ModeCapture InterfaceCapture InterfaceDigital IN 1Digital IN 1Digital IN 2Digital IN 2Digital IN 3Digital IN 3Digital IN 4Digital IN 4Digital IN 5Digital IN 5Digital IN 6Digital IN 6HOME/LIMIT switchHOME/LIMIT switchTachometerTachometer
  32. 32. Main Features of Capture Mode Pulse Width MeasurePulse Width Measure 28-bit timer in 10ns resolution28-bit timer in 10ns resolution Programmable Input TriggerProgrammable Input Trigger Level triggerLevel trigger Edge trigger by raising edge, falling edge, or bothEdge trigger by raising edge, falling edge, or both One-shot trigger mode & continuous trigger modeOne-shot trigger mode & continuous trigger mode User-defined trigger eventsUser-defined trigger events
  33. 33. Main Features of Capture Mode Configurable Digital Noise FiltersConfigurable Digital Noise Filters 16-bit noise filter on every input pin16-bit noise filter on every input pin Synchronous & asynchronous filtering of different pinsSynchronous & asynchronous filtering of different pins Sufficient Interrupt SourcesSufficient Interrupt Sources Capture event interruptCapture event interrupt Trigger interruptTrigger interrupt ……
  34. 34. PWM Mode of MCMMCM in PWM Mode3-Phase3-PhaseComplementaryComplementaryPWM InterfacePWM InterfacePWM U+PWM U+PWM UPWM U−−PWM W+PWM W+PWM WPWM W−−PWM V+PWM V+PWM VPWM V−−
  35. 35. Supported PWM Waveforms Edge-Aligned PWMEdge-Aligned PWM Center-Aligned PWMCenter-Aligned PWMPWM U+PWM V+PWM W+PWM U+PWM V+PWM W+
  36. 36. Main Features of PWM Mode High-Resolution PWMHigh-Resolution PWM 32-bit PWM duty & period in 10ns resolution32-bit PWM duty & period in 10ns resolution Configurable Sampling CycleConfigurable Sampling Cycle 1 PWM period ~ 21 PWM period ~ 22929PWM periodsPWM periods Deadband InsertionDeadband Insertion Allow to insert 10ns (min.) ~ 160ms (max.) deadbandAllow to insert 10ns (min.) ~ 160ms (max.) deadbanddeadbanddeadband deadbanddeadbandPWM+PWM−
  37. 37. Main Features of PWM Mode Programmable Fault Output MaskProgrammable Fault Output Mask Mask PWM output in real-time by external fault signalsMask PWM output in real-time by external fault signals Allow different fault output for different fault signalsAllow different fault output for different fault signalsOriginalCenter-AlignedPWM outputMaskedPWM outputFault Signalfault outputfault output
  38. 38. Main Features of PWM Mode Sufficient Interrupt SourcesSufficient Interrupt Sources PWM interruptPWM interrupt Sampling cycle interruptSampling cycle interrupt User-defined interrupt eventUser-defined interrupt event ……
  39. 39. Hall Sensor Mode of MCMMCM in Hall Sensor ModeHall Interface AHall Interface AHall AHall AHall BHall BHall Interface BHall Interface BHall CHall CHall AHall AHall BHall BHall CHall CNNSSHall AHall BHall CHall AHall BHall CNNSSHall AHall BHall CHall AHall BHall C
  40. 40. Main Features of Hall Sensor Mode Dedicated to BLDC Motor ControlDedicated to BLDC Motor Control Programmable Commutation PatternProgrammable Commutation Pattern Commutation Error CheckingCommutation Error Checking Sufficient Interrupt SourcesSufficient Interrupt Sources Commutation interruptCommutation interrupt Input error interruptInput error interrupt ……
  41. 41. 8051 I/O CoprocessorofVortex86DX2
  42. 42. 8051 Coprocessor An Integrated 8051 as I/O CoprocessorAn Integrated 8051 as I/O Coprocessor Share all MCMs with x86 coreShare all MCMs with x86 core Serve as PLC or any low-speed I/O auxiliary devicesServe as PLC or any low-speed I/O auxiliary devicesx86coreinternalPCI bus8051coreinternal8051I/O bus12MCMsinternalPCI busorinternalUART port
  43. 43. Key Specifications of CoprocessorCPUCPU100MHz100MHz1T 8051 Core1T 8051 CoreProgram &Program &External DataExternal DataMemoryMemory32KB SRAM32KB SRAMI/O InterfaceI/O Interface(Exclusive)(Exclusive)- High-Speed UARTHigh-Speed UART ×× 2 Ports2 Portsup to 6Mbps, one port connected toup to 6Mbps, one port connected to x86x86 corecore- GPIOGPIO ×× 9 Ports9 PortsI/O InterfaceI/O Interface(Shared with(Shared with x86x86Core)Core)- Motion-Control ModulesMotion-Control Modules ×× 1212- SPISPI ×× 2 Ports2 Portsfor DAC, ADC accessfor DAC, ADC access
  44. 44. ISA Bus FeaturesofVortex86DX2 for Motion Control
  45. 45. ISA GPCS 2 General-Purpose Chip Selectors (2 General-Purpose Chip Selectors (GPCSGPCS)) Allow both I/O mapping and memory mappingAllow both I/O mapping and memory mapping 2 ~ 64K I/O-space addressing2 ~ 64K I/O-space addressing 512 ~ 4G memory-space addressing512 ~ 4G memory-space addressing Low Cost Solution to Add Digital I/O PointsLow Cost Solution to Add Digital I/O Points Extend massive I/O ports using a few standard logicExtend massive I/O ports using a few standard logicgates or CPLDgates or CPLD
  46. 46. ISA GPCSExtend input ports with 74HC138 & 74HC244Extend input ports with 74HC138 & 74HC244Extend output ports with 74HC138 & 74HC374Extend output ports with 74HC138 & 74HC374
  47. 47. ISA Dual-Port SRAM Built-in 4KB Dual-Port SRAMBuilt-in 4KB Dual-Port SRAM Can be shared by two Vortex86DX2 via ISA busCan be shared by two Vortex86DX2 via ISA bus Low Cost Solution for DualLow Cost Solution for Dual x86x86 CPUCPUCooperationCooperation Connect directly via ISA BusConnect directly via ISA Bus No need extra circuitNo need extra circuit EachEach x86x86 serves as either HMI or motion processor,serves as either HMI or motion processor,which makes easy to build a fault-tolerant systemwhich makes easy to build a fault-tolerant system
  48. 48. ISA Dual-Port SRAMVortex86DX2 A Vortex86DX2 BISA BusISA Bus4KB SRAM4KB SRAM
  49. 49. Vortex86DX2Motion Evaluation Board
  50. 50. Overview of Motion EVBVortex86DX2 Motion EVBVortex86DX2 Motion EVBVortex86DX2 SOM-304Vortex86DX2 SOM-304CPU ModuleCPU ModuleMotion Daughter BoardMotion Daughter Board Motion Connector BoardMotion Connector Board
  51. 51. Overview of Motion EVBVGAVGA LANLAN USBUSB PCI-EPCI-E PS/2 Keyboard/MousePS/2 Keyboard/MouseSATASATAPC/104PC/104ISA BusISA BusLCDLCDII22CCDC-to-DCDC-to-DCPower ModulesPower Modules24V ~ 48V DC Input24V ~ 48V DC Input9-Axis Isolated9-Axis IsolatedMotion I/O:Motion I/O:PulsePulseEncoderEncoderHome/LimitHome/LimitAlarm RSTAlarm RSTDACDAC……ADCADC
  52. 52. Overview of Motion EVBCombined with theCombined with theConnector Board byConnector Board byStackingStackingConnected with theConnected with theConnector Board viaConnector Board viaSCSI CablesSCSI Cables
  53. 53. Vortex86DX2 SOM-304 CPU ModuleA core module with Vortex86DX2 CPU,A core module with Vortex86DX2 CPU,512MB~1GB DRAM, and massive I/O for512MB~1GB DRAM, and massive I/O forthe following benefits:the following benefits:• Simplify & speed-up design taskSimplify & speed-up design task• Save design costSave design cost• Reduce design riskReduce design risk• Easy to do maintenanceEasy to do maintenance
  54. 54. Vortex86DX2 SOM-304 CPU Module
  55. 55. Motion I/O of Motion EVB9-Axis9-AxisConnector BoardConnector BoardSingle-Axis PinSingle-Axis PinAllocation:Allocation: Linear Driver Output PinsLinear Driver Output Pins Pulse A+Pulse A+ Pulse APulse A−− Pulse B+Pulse B+ Pulse BPulse B−− Linear Driver Input PinsLinear Driver Input Pins Encoder A+Encoder A+ Encoder AEncoder A−− Encoder B+Encoder B+ Encoder BEncoder B−− Encoder Z+Encoder Z+ Encoder ZEncoder Z−− Optical Isolated Output PinsOptical Isolated Output Pins Servo ONServo ON Alarm RSTAlarm RST Optical Isolated Input PinsOptical Isolated Input Pins HomeHome Limit+Limit+ LimitLimit−− AlarmAlarm Servo RDYServo RDY Analog Output PinAnalog Output Pin DACDAC
  56. 56. On-Board D/A & A/D Interface D/A ConverterD/A Converter 8-channel D/A implemented by two AD5754 chips8-channel D/A implemented by two AD5754 chips 16-bit resolution,16-bit resolution, ±±10V output10V output A/D ConverterA/D Converter 8-channel A/D implemented by a AD7606 chip8-channel A/D implemented by a AD7606 chip 16-bit resolution,16-bit resolution, ±±10V input10V input Isolated Analog PowerIsolated Analog Power
  57. 57. System Reference Designs Open-Source Reference DesignsOpen-Source Reference Designs Sample motion controller (with G-code interpretation)Sample motion controller (with G-code interpretation) BLDC motor driverBLDC motor driver IM spindle VFDIM spindle VFD ………… Open-Source ToolkitOpen-Source Toolkit Dedicated LinuxCNC (EMC2) HALDedicated LinuxCNC (EMC2) HAL
  58. 58. Conclusions
  59. 59. Low-Cost ConfigurationsVortex86DX2HMI+ Motion Control+ Motor ControlIGBT MotorEncoderPWMPulse A/B, IndexVortex86DX2HMI+ Motion ControlMotorEncoderP-cmdServo DriverPulse/DIRCW/CCWPulse A/BPulse A/B, Indexx86x86 & motion interface integrated in a Vortex86DX2 SoC& motion interface integrated in a Vortex86DX2 SoCmakemake low-costlow-cost motion control platforms possiblemotion control platforms possible
  60. 60. Mid-End ConfigurationDual Vortex86DX2 constitute aDual Vortex86DX2 constitute a homogeneoushomogeneous,, fault-tolerantfault-tolerant,,andand higher-performancehigher-performance motion control systemmotion control systemVortex86DX2HMIMotorEncoderServo DriverISA BusPulse/DIRCW/CCWPulse A/BEtherCATMechatrolink…Vortex86DX2Real-TimeMotion ControllerPulse A/B, Index
  61. 61. High-End ConfigurationVortex86DX2’sVortex86DX2’s computing power also enables realizationcomputing power also enables realization of high-high-speedspeed soft-motionsoft-motion controllers for integration into high-end systemscontrollers for integration into high-end systemsIntel/AMDmulti-corex86/x64High-End HMIwith3D GraphicsVortex86DX2Real-TimeMotion ControllerPCI/PCI-EBridgeMotorEncoderServo DriverPulse/DIRCW/CCWPulse A/BEtherCATMechatrolink…Pulse A/B, Index
  62. 62. Video DEMOMotion & BLDC Experiments on Vortex86DX2 EVBMotion & BLDC Experiments on Vortex86DX2 EVB
  63. 63. Thank You!DMP Electronics Inc.Q&A