Your SlideShare is downloading. ×
  • Like
Maritime Robotics
Upcoming SlideShare
Loading in...5

Thanks for flagging this SlideShare!

Oops! An error has occurred.


Now you can save presentations on your phone or tablet

Available for both IPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Paco Santana of iRobot explains the current state of art for maritime robotics and the way ahead. The brief can be found …

Paco Santana of iRobot explains the current state of art for maritime robotics and the way ahead. The brief can be found here

Published in News & Politics , Technology
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads


Total Views
On SlideShare
From Embeds
Number of Embeds



Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

    No notes for slide


  • 1. Maritime SystemsOverviewPaco Santana
  • 2. iRobot Proprietary +NEKTON RESEARCH, LLC•Innovative • From the Lab into the•Talented Engineers World•Connected • Producibility • Experience Delivering Globally
  • 3. iRobot ProprietaryMaritime Robots In the Water: • Seaglider In Development: • Ranger • Transphibian • Reacquire, Identify, Localize, Swimmer (RILS) • Next Generation Torpedo Counter Measures In Concept: • Air Deployable AUV Platform for Sensors (ADAPS)
  • 4. iRobot ProprietarySeaglider Highlights: • 15,000+ days at sea • 70% at 1000m depths • NAVO uses 15 Seagliders • Exceeds 10 months at sea • 5500km Range
  • 5. iRobot ProprietaryWorld Record UUV Endurance SG144 – Ocean Station Papa Mission* 6/14/2009 – 4/2/2010 Dives: 878 Duration at Sea: 9.6 months Vertical Distance through Water: 1734 km Horizontal Distance over Ground: 5076 km Horizontal Distance through Water: 6798m Velocities through Water: Max Horizontal: 39.9 cm/s Average Horizontal: 21.6  cm/s Max Vertical: 9.3 cm/s Average Vertical: 6.25 cm/s Total Battery Remaining after Mission:  13.6% *Data includes a 1300km transit back to  coastal pickup location. SG144 – Entire Ocean Station Papa Mission Including a 1300km transect back to coastal pickup location
  • 6. iRobot ProprietarySeaglider Specifications: • Body: 1.8m long, 30cm maximum diameter • Wing span: 1m • Antenna mast length: 1m • Weight: 52kg (dry) • Power: Lithium primaries, 24V and 10V packs, 17μJGuidance and Control: • Speed: 25cm/s (1/2kt)• Dead reckoning using 3-axis • Glide angle: 16-45° digital compass• Kalman filter prediction• Acoustic altimetry system• Bathymetry map system
  • 7. iRobot ProprietarySeaglider Sensors: • Conductivity, Temperature & Depth • Dissolved Oxygen • Backscatter/Flourometer • Photosynthetically Active Radiation (PAR) Expanding Capabilities: • Acoustic Doppler Current Profiler • Acoustic Recorders • CO2 • Hydrocarbon
  • 8. iRobot ProprietarySeaglider: Shallow to Deep
  • 9. iRobot ProprietarySeagliderApplications: • Physical, chemical, and biological oceanography • Tactical oceanography and ASW • Long-term, long-range maritime reconnaissance • Communication gateway • Navigation aid • Weather studies • Water quality • Environmental evaluations and monitoring
  • 10. iRobot ProprietaryRanger • Low logistics • High functioning • Compact size
  • 11. iRobot Proprietary Ranger: Modular Architecture Ranger  General Purpose UUV Will vary with mission/ customer. Standard backbone Standard Will vary withPropulsion & Rear Bulkhead Standard mission/ customer Main Payload Nose & Fwd Bulkhead Mid Bulkhead •Standard Ranger is “A” sized, 4.8” diameter Batteries Wifi Card GPS Module •Typically less than 40 lbs Compass Motors Altimeter Payload Mother Main Proc (COM Cntrl Surface Pwr Switch Brd w/ Proc Express) Mission Mechanics GigE Ethernet Port Extended run GigE Network Switch Sensors (FL Propeller Visual Indicator batteries Motor Cntrller SONAR, CTD, GPS Mast Mission Fin Cntrller Homer, etc ) Wifi Mast Sensors Leak Detector GigE Network Depth Sensor Swtich
  • 12. iRobot ProprietaryRanger: Modular Architecture Main Section Payload Module Propulsion Module Nose & Fwd Bulkhead Sensor Config Payload Support Board & Processor GPS Standard Research Ranger RF Comms Altimeter Batt Batt Batt Batt Batt Batt Depth Sensor ery ery ery ery ery ery Acoustic Modem Pwr Switch Watertight Ethernet Port Visual Indicator Sensor Config GPS Payload Support Board & Processor Main Board & Proc RF Comms Motor Drvs Recon Ranger Altimeter CTD Batt Batt Batt Batt Batt Batt Batt Batt ery ery ery ery ery ery ery ery Side Scan Sonar FL Sonar Standard Standard Bluetooth Motors Battery * Cntrl Surface IMU Sensor Config Mechanics Main Proc GPS X-fin Motor Payload Support Board & Processor RF Comms Cntrller Altimeter Fin Cntrller Scan Ranger Acoustic Modem Leak Batt Batt Batt Batt Batt Batt CTD Detector ery ery ery ery ery ery FL/ Microbath Combo
  • 13. iRobot ProprietaryTransphibian Capabilities: • 6 Degrees of Freedom Maneuvering • FBN/SLAM Navigation • Scalable Design • Awkward Payloads
  • 14. iRobot ProprietaryRILSOperational Capability•Transit: >8kts•Sonar: 450kHz Horizontal Beam 45°FOV, 100m Range 900kHz VerticalBeam 45° FOV, 60m Range 5 frameper second update rate•Mass: 25kg, single man deployable•Radio: 2.4GHz, 1km Range, otherradio options are available•User Interface: Laptop, Dual monitors with BlueView Sonar imagery orTop side camera video on one monitor. Other monitor displaysoverhead view of operations area with vehicle represented at currentlyreported GPS coordinates. Vehicle Telemetry - depth, speed, pitch,roll and magnetic heading is also displayed.
  • 15. iRobot Proprietary
  • 16. iRobot ProprietaryNext Generation Countermeasures Mod X•Sub/ship defense torpedo countermeasures•Up to 15 kts•Compatible with 3” signal ejector tube•High efficiency acoustics projector with towedhydrophone
  • 17. iRobot ProprietaryRecap of Maritime Robots In the Water: • Seaglider • Endurance • Buoyancy-driven In Development: • Ranger • Compact size • Propeller-driven • Transphibian • 6 degrees of freedom • Fin-driven • Reacquire, Identify, Localize, Swimmer (RILS) • Speed • Next Generation Torpedo Counter Measures • Deployable wings for lift
  • 18. iRobot ProprietaryFuture Application of These Technologies
  • 19. iRobot Proprietary Challenges with existing AUV CONOPS: Littoral Combat Ship (LCS) Notional Mission Cycles – BPAUV example Launch Post‐Launch BPAUV Time (hrs): 6 1 2 12 8 (Bluefin 12) Pre‐Launch Sortie Turnaround Post Mission Manning: 5 ‐ 6 5 6 3 ‐ 5 4 • Equipment Prep. • Recovery • RecoveryWeight: ~750 lbs. • Position Vehicle • Turnaround Vehicle • Post Mission Ops. 10’ L x 21” D • Launch Prep. • LaunchSize: •About 1/3rd to half of mission energy consumed by transit to target zone •29 hours before data is available from mission inception •Average of 5 people to man mission
  • 20. iRobot ProprietaryCNO Guidance for 2011*Navy will invest in UUV Endurance“Way Ahead: • We will pursue unmanned systems as an integrated part of our force, ensuring that the move to ‘unmanned’ truly reduces personnel requirements. •We will develop a long-endurance, safe power source for UUVs” *Executing the Maritime Strategy” (1 October 2010 )“Roughead says he wants to spend about 50% of available UUV researchand development money on improving their endurance. Ultimately hewould like to see 3-4 weeks of endurance and reserve power for somehigher-speed maneuvers and to handle strong underwater currents.” Aviation Week, 8-25-2010: CNO Speaks about Unmanned Vehicles at AUVSI
  • 21. iRobot ProprietaryWhy wait for a breakthrough in batteryendurance to achieve unmannedunderwater goals?
  • 22. iRobot ProprietaryADAPS Alternative approach to underwater vehicle energy limits
  • 23. iRobot ProprietaryFuture air deployment of AUV’s near targets of interest willreduce transit time, improves tactical utility and relevance
  • 24. iRobot ProprietaryReduced turnaround time on AUV missions is enabled bynew digital data link relays deployed on maritime UAV’sADAPS passively loitering on surface to establish data link to relaycollected data and receive commands from remote control site
  • 25. iRobot ProprietaryADAPS Concept Illustration Antenna for communication when surfaced Buoyancy changing mechanism Wings to supply lift for gliding Vectored thruster to provide auxiliary or primary propulsion and heading control
  • 26. iRobot ProprietarySonobuoy support is everywhere in Navy P-3 Orion Ship deck
  • 27. iRobot ProprietaryUUV Sensor platforms Average  Average  Max  Nominal  Propulsion Loitering  Mission  Max  Vehicle  Max  energy   energy  duration speed  Nominal  Weight  depth  Program Deployed from (W) (W) (hrs) ( kts ) diameter in air (m) BPAUV LCS Mission  53 cm             363 kg  Module 120 50 18 4 ( 21 in) (799 lbs) 6000 LBS‐AUV 32 cm  240 kg  TA‐GS‐60 (NAVO) 42 45 70 5 (12.75 in)  (530 lbs) 600 MK‐18  19 cm              44 kg   Swordfish Small craft, RHIB 35 35 22 5 (7.5 in) ( 97 lbs) 100 Sonobuoys P‐3, P‐8, MH‐60,  12 cm         18 kgs         Ships NA 10 10 NA (4.8 in) ( 40 lbs) 100 ADAPS  (“Air  P‐3, P‐8, MH‐60,  12 cm          18 kgs   –Ranger”) Firescout, etc 10 4 330 8 (4.8 in) ( 40 lbs) 200
  • 28. iRobot ProprietaryThings we miss by using robots… Contact: Paco Santana
  • 29. iRobot ProprietaryiRobot Maritime Key Partners Applied Physics Lab ‐ UW Duke University Marine lab