Hallow or Hollow fight for Climate-Story of HFCs


Published on

There are on going global efforts to get consensus on HFC phase down. Similar global alliance needs to be formed for removing market barriers for low GWP alternatives, which are energy efficient. Research need to go beyond the material compatibility of the refrigerants and beyond the risk assessment studies and beyond the experiments with flammable refrigerants. It should include energy efficiency of the system, region specific studies that would take into account the high ambient temperature to Asses the energy efficiency.

Without such global alliance for collective and collaborative effort the HFC phase down talk would remain as ‘complacency after success’ and without any actions.

Published in: Technology, News & Politics
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Hallow or Hollow fight for Climate-Story of HFCs

  1. 1. Complacency  after  a  Success    World’s  desire  to  phase  down  HFCs  is  not  matched  by  the  actions.    By    Rajendra  Shende,  Chairman  TERRE  Policy  Centre    Former  Director  UNEP.    26th  May  2013.    The  world  is  in  the  middle  of  celebrations  and  mourning  at  the  same  time.  25th  Anniversary  of  the  Montreal  Protocol  celebrated  last  year  was  scene  of  jubilation  because  it  has  successfully  reduced  the  abundance  of  the  atmospheric  concentration  of  Ozone  Depleting  Substances  (ODS)  and  set  the  stratospheric  ozone  layer  on  the  path  of  recovery.  Pulling  out  the  life-­‐protecting  ozone  layer  from  depletion  mode  to  recovery  mode  is  not  small  achievement,  particularly  when  the  global  efforts  in  climate  change  regime  are  nowhere  near  to  such  climate  recovery.      The  Montreal  Protocol  has  also  effectively  protected  climate”,  stated  number  of  scientists  in  the  prestigious  science  journals,  highlighting  the  co-­‐benefits  of  the  success.    And  rightly  so.        Since  most  ODSs  are  also  potent  greenhouse  gases,  actions  under  the  Montreal  Protocol  have  had  the  very  positive  effect  of  substantially  reducing  a  main  source  of  global  warming.  Indeed,  phasing  out  ODSs  led  to  a  drop  between  1988  and  2010  of  8.0  Gt  CO2eq  per  year  (gigatonnes  equivalent  CO2  emissions)  and  avoided  approximately  10  GtCO2-­‐eq  of  annual  emissions  in  2010.  This  figure  for  2010  is  about  five  times  greater  than  the  annual  emissions  
  2. 2. reduction  target  for  the  first  commitment  period  (2008–2012)  of  the  Kyoto  Protocol  and  is  one  of  the  largest  reductions  to  date  in  global  greenhouse  gas  emissions.  The  countries  were  upbeat  in  their  celebrations.  There  is  reason,  therefore,  for  reiterating  the  famous  saying  that  ‘  Success  breeds  more  success’.    Well not any more!The   Montreal   Protocol   has   proved   to   be   an   effective  instrument  for  protecting  the  earth’s  stratospheric  ozone  layer  by  providing  an  international  framework  for  phasing  out   ODSs,   including   chlorofluorocarbons   (CFCs)   and  hydrochlorofluorocarbons  (HCFCs).  The  phase  out  of  ODSs  has  been  accomplished  by  restricting  their  production  and  consumption   according   to   universally   agreed   the  international   timetable.   Every   country   in   the   United  Nations  system  is  Party  to  these  decisions.  In 2007, all the signatories to the Protocol agreed to acceleratethe phasing out of hydrochlorofluorocarbons (HCFCs), the lastremaining ozone-depleting substance that is still widely used inroom air conditioners.The  phase  out  of  ODSs  requires  either  substitute  chemicals  or   other   approaches   to   carry   out   the   same   function.   For  now   hydrofluorocarbons   (HFCs)   are   the   main  replacements  in  many  ODS  applications  (Figure 1)  including  HCFCs,  which  having  phased  out  CFCs  and  other  ODS,  will  now   be   the   last   group   of   ODS   to   be   phased   out   with  accelerated   time   table.   HFCs,   which   have   no   known  natural  sources,  are  used  because  they  do  not  deplete  the  stratospheric   ozone   layer   and   can   be   used   with   relative  ease  (technically)  in  place  of  CFCs  and  HCFCs.    The  developed  countries  that  took  the  rightful  and  logical  lead   in   phasing   out   CFCs   (and   now   HCFCs)   have  generously  used  HFCs  and  their  blends  as  alternatives  to  
  3. 3. CFCs   and   HCFCs.   They   of   course   were   aware   of   the   high  GWP  of  HFCs,  however,  they  considered  getting  rid  of  CFCs  as   the   first   priority.   This   for   example,   CFC   12   were  replaced  by  HFC  134a  (GWP  1400)  in  car  air-­‐conditioning  all   over   the   developed   countries   and   then   developing  countries   followed   this   ‘   example’   a   decade   after.  Developed  countries  also  have  achieved  nearly  80  percent  of  the  phased  out  of  HCFCs,  most  of  it  by  using  HFCs.  For  example  in  room  AC,  HCFC  22  (GWP  1800)  was  replaced  by  HFC  410A  (GWP  2100).  This  trend  too  continued  in  the  developing   countries.   Volumes   have   been   written   about  lessons   learned   from   the   Montreal   Protocol,   but   it   looks  like   all   lessons   are   lost   and   forgotten.   The   remaining  issues  are  the  rising  consumption  of  high-­‐GWP-­‐HFCs,  their  ever-­‐growing   banks   and   the   legacy   of   the   Montreal  Protocol  as  an  agreement  that  may  contribute  significantly  to  climate  change  in  coming  decades.          Figure 1 Global consumption (in kilotonnes per year) of ozone depleting CFCs and HCFCs. Thephasing in of HFCs as replacements for CFCs is evident from the decrease in CFC usageconcomitant with the increasing usage of HFCs. HCFC use also increased with the decreasing useof CFCs. HCFCs are expected to be replaced in part by HFCs as the 2007 Provisions of theMontreal Protocol on HCFCs continue to be implemented. Thus, HFCs are increasing primarilybecause they are replacing CFCs and HCFCs.  
  4. 4.  Figure 2 Trends in CO2-eq emissions of CFCs, HCFCs, and HFCs since 1950 and projected to 2050.  The  climate  benefits  of  the  Montreal  Protocol  may  be  offset  by  increased  use  of  HFCs.    Although  current  contribution  of  HFCs  to  climate  forcing  is  less  than  2%  of  all  other  greenhouse  gases,  HFCs  have  dangerous  the  potential  to  influence  climate  in  future  due  to  rapidly  increasing  use  of  HFCs,  and  consequently  their  emissions.        For  example,  CO2  equivalent  emissions  of  HFCs  (excluding  HFC-­‐23  which  is  by  product  from  manufacture  of  HCFC22)  increased  by  approximately  8%  per  year  from  2004  to  2008.    As  a  consequence,  the  abundances  of  HFCs  in  the  atmosphere  are  also  rapidly  increasing  (Figure  3).  For  example,  HFC-­‐134a,  the  most  abundant  HFC,  has  increased  by  about  10%  per  year  from  2006  to  2010.    
  5. 5.  Figure 3 Global average atmospheric abundances of four major HFCs used as ODS replacements(HFC-134a, HFC-143a, HFC125 and HFC-152a) since 1990. This illustrates the rapid growth inatmospheric abundances as a result of rapid increases in their emissions. These increases are attributedto their increased usage in place of CFCs and/or HCFCs. The increases in HFC-23, the second mostabundant HFC in the atmosphere, is not shown since it is assumed that the majority of this chemical isproduced as a byproduct of HCFC-22 and not because of its uses, if any, to replace CFCs and HCFCs.  With  regards  to  future  trends,  HFC  emissions  have  the  potential  to  become  very  large.  Under  current  practices,  the  consumption  of  HFCs  is  projected  to  exceed  by  2050  the  peak  consumption  level  of  CFCs  in  the  1980s.  This  is  primarily  due  to  growing  demand  in  emerging  economies  and  increasing  populations.        Without  intervention,  the  increase  in  HFC  emissions  is  projected  to  offset  much  of  the  climate  benefit  achieved  by  the  earlier  reduction  in  ODS  emissions.  Annual  emissions  of  HFCs  are  projected  to  rise  to  about  3.5  to  8.8  Gt  CO2eq  in  2050  which  is  comparable  to  the  drop  mentioned  above  in  ODS  annual  emissions  of  8.0  Gt  CO2eq  between  1988  and  2010.  If  continued  production  of  HFC23  is  taken  into  account  (production  of  HCFC22  for  feedstock  purposes  ,  and  hence  of  byproduct  HFC  23  would  continue  even  after  HCFC22  is  phased  out  under  the  Montreal  Protocol)  the  figures  would  be  even  higher.      
  6. 6. To  appreciate  the  significance  of  projected  HFCs  emissions,  they  would  be  equivalent  to  7  to  19%  of  the  CO2  emissions  in  2050  based  on  the  IPCC’s  Special  Report  on  Emissions  Scenarios  (SRES),  and  equivalent  to  18  to  45%  of  CO2  emissions  based  on  the  IPCC’s  450  ppm  CO2  emissions  pathway  scenario.    As we start closing the doors for HCFCs, the environmentalcrises in the form of rapid rise in HFCs require action beyondeven the scale of the worlds response to the ozone-depletionemergency in the late 20th century. Apart from high growth ofHFC production and consumption there are other challenges thatworld has to face:* A threat from "banks" of ozone-depleting substances:Though the production of CFCs has been phased out, CFCproduced in the past (before 2010) exists in various equipmentthat are still running, like old refrigerators. Such CFCs and otherozone-depleting substances that still exist in equipment all overthe world are called "banks". About 21 gigatons of carbondioxide equivalents contained in old equipment will inevitablyseep into the atmosphere in the absence of any significant effortsto chemically destroy them by incineration.* Market imperatives: The center of gravity for global air-conditioning with HCFCs is moving to China. The country facesmultiple challenges. It is global hub of room ACs (nearly 112million units manufactured in 2011 which accounts for 90percent of global production and of which 37milllion units areexported). It has to supply the - alternative air-conditioningsystems to the developing and developed countries.Low GWP alternatives like R32 and R290 and their blends aregetting promoted on countries like United States, and high GWPsystems are getting banned in regions such as the EuropeanUnion.
  7. 7. The world is also looking at China, India and Japan to developlow-GWP and energy-efficient air-conditioning systems thatwould be economically and environmentally beneficial. Highambient temperature in the developing countries would be thekey barrier for energy-efficient systems.Today, the reputation of the Montreal Protocol is at stake.Without immediate action to address these challenges andstrengthen it, the Montreal Protocol is in danger of becoming aliability to the global community.Climate change and global warming are linked to the ozone. Ifwe protect the ozone layer, we protect the planet. The agreementhas shown how government and the public can work together,but they must continue to do so to overcome the remainingchallenges.  Options  to  minimize  the  climate  influence  of  HFCs.    Technical options for minimizing the influence of HFCs onclimate fall into three categories:I.  Alternative  methods  and  processes  (also  called  ‘not-­‐in-­‐kind’  alternatives):    Commercially  used  examples  include  fibre  insulation  materials;  dry-­‐powder  asthma  inhalers  and  building  designs  that  avoid  the  need  for  air-­‐conditioners.  Similalry,  deploying    of  vapour  absorption  systems  where  waste  heat  and  renewable  energy  is  available,  would  avoid  the  use  of  refrigerants  at  all.        II.  Using  non-­‐HFC  substances  with  low  or  zero  GWP:    Commercially  used  examples  include  hydrocarbons,  ammonia,  CO2,  water  and  other  diverse  substances  used  in  various  types  of  foam  products,  refrigeration,  and  fire  protection  systems.    
  8. 8. III.  Using  low-­‐GWP  HFCs:    HFCs  currently  in  use  have  a  range  of  atmospheric  lifetimes  and  GWPs  (generally  speaking,  the  shorter  the  lifetime,  the  lower  the  GWP).    The  current  mix,  weighted  by  usage  (tonnage),  has  an  average  lifetime  of  15  years.  However,  several  low-­‐GWP  HFCs  (with  lifetimes  of  less  than  a  few  months)  are  now  being  introduced,  e.g.  HFC-­‐1234ze  in  foam  products  and  HFC-­‐1234yf  for  mobile  air-­‐conditioners.  If  the  current  mix  were  to  be  replaced  by  these  or  other  HFCs  with  short  lifetimes  (few  months  or  less),  the  impact  of  HFCs  on  future  radiative  forcing  would  be  as  negligibly  small  as  it  is  today  (<1%  of  CO2’s  forcing).  It  is  noteworthy  that  a  major  fraction  of  new  equipment  already  uses  low-­‐GWP  alternatives  (e.g.,  36%  of  domestic  refrigerators  and  between  15  and  40%  of  industrial  air  conditioners).  It  should  be  noted,  however,  that  low-­‐GWP  alternatives  at  present  make  up  only  a  small  fraction  of  other  commercial  markets,  particulalry  unitary  air  conditioning  ,  although  they  have  the  potential  to  substantially  increase  their  market  share.    Challenges  and  emerging  efforts:      Energy  Efficiency  -­‐much  needs  to  be  done  :  While  there  is  some  concern  that  replacing  HFCs  will  lead  to  lower  energy  efficiency,  recent  studies  have  shown  that  many  systems  using  low-­‐GWP  substances  have  equal  or  better  energy  efficiency  than  systems  using  high-­‐GWP  HFCs.    Policy  barriers-­‐standards  and  regulations:  It  is  not  unusual  that  policy  barriers  stand  in  the  way  of  a  change  in  technology,  and  this  applies  also  to  the  case  of  alternatives  to  high-­‐GWP  HFCs.  The  chemistry  till  now  has  dictated  that  low  GWP  alternatives  are  flammable.  Though  DuPont  and  Honeywell  are  working  to  break  this  
  9. 9. ‘Chemistry  Equation’  by  developing  low  GWP  blends,  much  needs  to  be  done.          Overcoming  these  barriers  would  need  further  technical  developments;  risks  assessment  of  flammability  and  toxicity;  regulations  and  standards  for  the  flammable  low  GWP  alternatives,  inadequate  supply  of  components;  incentives  for  initial  investment  costs;  and  exchange  of  information  and  training  to  develop  skills.  Skills.  While  various  options  are  being  evaluated  or  developed,  there  are  also  some  measures  that  can  be  immediately  implemented.  For  example,  the  design  of  equipment  can  be  modified  to  reduce  leakage  and  the  quantity  of  HFC  used.  Another  example  is  to  implement  practices  to  reduce  emissions  during  manufacture,  use,  servicing  and  disposal  of  equipment.    As  regards  HFC  23  ,  disposal  by  incenration  is  the  only  way  to  eliminate  its  atmospheric  concentration.  Such  incineration  plants  would  also  be  useful  for  disposal  and  destructio  of  other  HFCs  indicated  above.    As  a  general  conclusion  about  HFC  alternatives,  it  can  be  said  that  there  is  no  ‘one-­‐size  fits  all’  solution.  The  solution  that  works  best  will  depend  on  many  factors  such  as  the  service  to  be  provided,  the  costs  of  different  alternatives,  the  availability  of  technology,  and  the  feasibility  of  implementation.    On  1  May  2013  safety  standard  (GD4706 which equals toIEC 60335-2-40) for  home  appliances  (including  air  conditioners)  for  flammable  refrigerants  in  China  have  come  into  force.    This  has  been  major  step  forward  for  High  GWP  HFC  phase  down.  However  there  is  need  to  
  10. 10. update  this  standard  as  well  as  clarify  its  lien  with  GB  9237  and  ISO  5149  which  also  directly  or  indirectly  deal  with  room  AC.    Going forward with actions:There  are  global  efforts  to  get  consensus  on  HFC  phase  down.  Similar  global  alliance  needs  to  be  formed  for  removing  market  barriers  for  low  GWP  alternatives,  which  are  energy  efficient.  Research  need  to  go  beyond  the  material  compatibility  of  the  refrigerants  and  beyond  the  risk  assessment  studies  and  beyond  the  experiments  with  flammable  refrigerants.  It  should  include  energy  efficiency  of  the  system,  region  specific  studies  that  would  take  into  account  the  high  ambient  temperature  to  Asses  the  energy  efficiency.      Without  such  global  alliance  for  collective  and  collaborative  effort  the  HFC  phase  down  talk  would  remain  as  ‘complacency  after  success’  and  without  any  actions.      End