Understanding the  radioactivity at Fukushima
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

Understanding the radioactivity at Fukushima

on

  • 3,269 views

Understanding the

Understanding the
radioactivity at Fukushima
A physics and engineering perspective
Prof. Ben Monreal
UCSB Department of Physics

Statistics

Views

Total Views
3,269
Views on SlideShare
2,657
Embed Views
612

Actions

Likes
4
Downloads
166
Comments
1

21 Embeds 612

http://www.ritholtz.com 477
http://lawrencekok.blogspot.com 70
http://static.slidesharecdn.com 24
http://ryviewpoint.blogspot.com 11
http://translate.googleusercontent.com 8
http://lawrencekok.blogspot.se 3
http://bb-app.csufresno.edu 2
http://ryviewpoint.blogspot.pt 2
http://www.blogger.com 2
http://lawrencekok.blogspot.de 2
http://lawrencekok.blogspot.ca 1
http://lawrencekok.blogspot.in 1
http://lawrencekok.blogspot.it 1
file:// 1
http://noticiasdefukushima.wikispaces.com 1
http://webcache.googleusercontent.com 1
http://www.hanrss.com 1
http://feeds.feedburner.com 1
http://justeconomics.wirtschaftsdenker.de 1
http://127.0.0.1:8795 1
http://salcortes.blogspot.com 1
More...

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Understanding the radioactivity at Fukushima Presentation Transcript

  • 1. Understanding theradioactivity at Fukushima A physics and engineering perspective Prof. Ben Monreal UCSB Department of Physics Q&A Panel: Ben Monreal Prof. Theo Theofanous, UCSB Chem E. Prof. Patrick McCray, UCSB HistoryBen Monreal, UCSB Physics 3/11
  • 2. • Introduction to radioactivity • Radiation hazards and health • What escapes in a meltdown? • Where does it go? • How worried should we be?Ben Monreal, UCSB Physics 3/11
  • 3. Periodic Table of the Elements Chemistry Reference Sheet California Standards Test 1 18 1A 8A 1 H 1 Hydrogen 2 “Tritium” (hydrogen) 13 14 15 16 17 He 2 Helium 1.01 2A Key 3A 4A 5A 6A 7A 4.00 3 4 5 6 7 8 9 10 11 Atomic number 2 Li Be Na Element symbol B C N O F Ne Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon 6.94 9.01 Sodium Element name 10.81 12.01 14.01 16.00 19.00 20.18 22.99 11 12 Average atomic mass* 13 14 15 16 17 18 3 Na Mg Al Si P S Cl Ar Sodium Magnesium 3 4 5 6 7 8 9 10 11 12 Aluminum Silicon Phosphorus Sulfur Chlorine Argon 22.99 24.31 3B 4B 5B 6B 7B 8B 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton 39.10 40.08 44.96 47.87 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.61 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.07 102.91 106.42 107.87 112.41 114.82 118.71 121.76 127.60 126.90 131.29 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Cesium Barium Lanthanum Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury Thallium Lead Bismuth Polonium Astatine Radon Iodine 132.91 137.33 138.91 178.49 180.95 183.84 186.21 190.23 192.22 195.08 196.97 200.59 204.38 207.2 208.98 (209) (210) (222) 87 88 89 104 105 106 107 108 109 7 Fr Ra Ac Rf Db Sg Bh Hs Mt Francium Radium Actinium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Cesium (223) (226) (227) (261) (262) (266) (264) (269) (268) * If this number is in parentheses, then 58 Ce Cerium 140.12 59 Pr Praseodymium 140.91 60 Nd Pm 61 62 Sm Neodymium Promethium Samarium 144.24 (145) 150.36 Uranium and Plutonium 63 Eu Europium 151.96 64 Gd Gadolinium 157.25 65 Tb Terbium 158.93 66 Dy Dysprosium 162.50 67 Ho Holmium 164.93 68 Er Erbium 167.26 69 Tm Thulium 168.93 70 Yb Ytterbium 173.04 71 Lu Lutetium 174.97 it refers to the atomic mass of the 90 91 92 93 94 95 96 97 98 99 100 101 102 103 most stable isotope. Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium 232.04 231.04 238.03 (237) (244) (243) (247) (247) (251) (252) (257) (258) (259) (262)Copyright © 2008 California Department of Education
  • 4. 230 keV 126.5 ms 19.255 s 20.39 m 5730 y 6 +2+4-4 12.0107 0.033% 0+ (3/2-) ECp,ECp2",... EC 0+ EC 3/2- 0+ 98.90 1/2- 1.10 !- 0+ 2 2075° 3 B 4000° B7 B8 B9 B10 B11 B12 B13 Boron 1.4 MeV 770 ms 0.54 keV 20.20 ms 17.36 ms 5 +3 10.811 -8 6.9#10 % (3/2-) 2+ EC2" 2p" 3/2- 3+ 19.9 3/2- 80.1 !-3" 1+ !-n 3/2- 2 1287° 2 Be 2471° Be5 Be6 Be7 Be8 Be9 Be10 Be11 Be12 92 keV 53.29 d 6.8 eV 1.51E+6 y 13.81 s 23.6 ms Beryllium 9.012182 4 +2 0+ 3/2- 0+ 3/2- 0+ 1/2+ 0+ -9 2.38#10 % 2p EC 2" 100 !- !-" !- 2 180.5° 1 Li 1342° Li4 Li5 Li6 Li7 Li8 Li9 Li10 Li11 1.5 MeV 838 ms 178.3 ms 1.2 MeV 8.5 ms Lithium 3 +1 6.941 2- 3/2- 1+ 3/2- 2+ 3/2- 3/2-elementsDifferent 1.86#10 -7% p 7.5 92.5 !-2" !-n n !-n,!-2n,... 2 -272.2° He -268.93° He3 He4 He5 He6 He7 He8 He9 He10 Helium -267.96° 0.60 MeV 806.7 ms 160 keV 119.0 ms 0.30 MeV 0.3 MeV 2 0 4.002602 8.9% 1/2+ 0.000137 0+ 99.999863 n 3/2- !- 0+ n (3/2)- !-n 0+ n (1/2-) n 0+ 1 -259.34° H -252.87° H1 H2 H3 H4 H5 H6 Hydrogen 1 1.00794 +1-1 91.0% -240.18° 1/2+ 99.985 1+ 0.015 !- 12.33 y 1/2+ 2- 6 8 n1 !- 614.8 s 1/2+ 2 4 Different isotopes Ben Monreal, UCSB Physics 3/11 http://nndc.lbl.gov
  • 5. 230 keV 126.5 ms 19.255 s 20.39 m 5730 y 6 +2+4-4 12.0107 0.033% 0+ (3/2-) ECp,ECp2",... EC 0+ EC 3/2- 0+ 98.90 1/2- 1.10 !- 0+ 2 2075° 3 B 4000° B7 B8 B9 B10 B11 B12 B13 Boron 1.4 MeV 770 ms 0.54 keV 20.20 ms 17.36 ms 5 +3 10.811 -8 6.9#10 % (3/2-) 2+ EC2" 2p" 3/2- 3+ 19.9 3/2- 80.1 !-3" 1+ !-n 3/2- 2 1287° 2 Be 2471° Be5 Be6 Be7 Be8 Be9 Be10 Be11 Be12 92 keV 53.29 d 6.8 eV 1.51E+6 y 13.81 s 23.6 ms Beryllium 9.012182 4 +2 0+ 3/2- 0+ 3/2- 0+ 1/2+ 0+ -9 2.38#10 % 2p EC 2" 100 !- !-" !- 2 180.5° 1 Li 1342° Li4 Li5 Li6 Li7 Li8 Li9 Li10 Li11 1.5 MeV 838 ms 178.3 ms 1.2 MeV 8.5 ms Lithium 3 +1 6.941 2- 3/2- 1+ 3/2- 2+ 3/2- 3/2-elementsDifferent 1.86#10 -7% p 7.5 92.5 !-2" !-n n !-n,!-2n,... 2 -272.2° He -268.93° He3 He4 He5 He6 He7 He8 He9 He10 Helium -267.96° 0.60 MeV 806.7 ms 160 keV 119.0 ms 0.30 MeV 0.3 MeV 2 0 4.002602 8.9% 1/2+ 0.000137 0+ 99.999863 n 3/2- !- 0+ n (3/2)- !-n 0+ n (1/2-) n 0+ 1 -259.34° H -252.87° H1 H2 H3 H4 H5 H6 Hydrogen 1 1.00794 +1-1 91.0% -240.18° 1/2+ 99.985 1+ 0.015 !- 12.33 y 1/2+ 2- 6 8 n1 !- 614.8 s 1/2+ 2 4 Different isotopes Ben Monreal, UCSB Physics 3/11 http://nndc.lbl.gov
  • 6. 0.00294% ECp ECp ECp ECp ECp EC EC EC 5.8 EC 91.72 2.2 0.28 ! ! ! ! Z=0-28 Part 1 of 2 2 1246° 8 Mn 2061° Mn44 Mn45 Mn46 Mn47 Mn48 Mn49 Mn50 Mn51 Mn52 Mn53 Mn54 Mn55 Mn56 Mn57 Mn58 Mn59 Mn60 Mn6 13 41 ms 100 ms 158.1 ms 382 ms 283.88 ms 46.2 m 5.591 d 3.74E+6 y 312.3 d 2.5785 h 85.4 s 3.0 s 4.6 s 51 s 0.71 25 2 +2+3+4+7 54.938049 0.000031% ECp ECp 4+ ECp,EC",... EC 5/2- EC 0+ * EC 5/2- EC 6+ * EC 7/2- EC,!- 3+ 5/2- 100 !- 3+ !- 5/2- !- 0+ * !- 3/2-,5/2- !- 0+ * !- (5/2 2 1907° 8 Cr 2671° Cr42 Cr43 Cr44 Cr45 Cr46 Cr47 Cr48 Cr49 Cr50 Cr51 Cr52 Cr53 Cr54 Cr55 Cr56 Cr57 Cr58 Cr59 Cr6 13 21 ms 53 ms 50 ms 0.26 s 500 ms 21.56 h 42.3 m 1.8E+17 y 27.702 d 3.497 m 5.94 m 21.1 s 7.0 s 0.74 s 0.57 24 1 +2+3+6 51.9961 0.000044% (3/2+) ECp,EC",... ECp 0+ ECp EC 0+ EC 3/2- EC 0+ 5/2- ECEC 0+ 4.345 EC 7/2- 0+ 83.789 3/2- 9.501 0+ 2.365 !- 3/2- !- 0+ 3/2-,5/2-,7/2- !- !- 0+ !- !- 0+ 2 1910° 8 V 3407° V40 V41 V42 V43 V44 V45 V46 V47 V48 V49 V50 V51 V52 V53 V54 V55 V56 V57 V58 V5 11 800 ms 90 ms 547 ms 422.37 ms 32.6 m 15.9735 d 330 d 1.4E+17 y 3.743 m 1.61 m 49.8 s 6.54 s Vanadium 23 2 +2+3+4+5 50.9415 -7 9.6#10 % EC (7/2-) EC" (2+) * EC 7/2- EC 0+ * EC 3/2- EC 4+ 7/2- EC,!- 6+ 0.250 7/2- 99.750 !- 3+ !- 7/2- !- 3+ !- (7/2-) 2 1668° 8 Ti 3287° Ti38 Ti39 Ti40 Ti41 Ti42 Ti43 Ti44 Ti45 Ti46 Ti47 Ti48 Ti49 Ti50 Ti51 Ti52 Ti53 Ti54 Ti55 Ti56 Ti57 Ti5 Titanium 22 10 2 +2+3+4 47.867 0+ 26 ms (3/2+) 50 ms 0+ 80 ms 3/2+ 199 ms 0+ 509 ms 7/2- 63 y 0+ 184.8 m 7/2- 0+ 5/2- 0+ 7/2- 0+ 5.76 m 3/2- 1.7 m 0+ 32.7 s (3/2)- 0+ 0+ 0+ -6 7.8#10 % ECp EC ECp EC EC EC EC 8.0 7.3 73.8 5.5 5.4 !- !- !- 2 1541° 8 Sc 2836° Sc36 Sc37 Sc38 Sc39 Sc40 Sc41 Sc42 Sc43 Sc44 Sc45 Sc46 Sc47 Sc48 Sc49 Sc50 Sc51 Sc52 Sc53 Sc54 Sc55 Sc56 Sc5 9 182.3 ms 596.3 ms 681.3 ms 3.891 h 3.927 h 83.79 d 3.3492 d 43.67 h 57.2 m 102.5 s 12.4 s 8.2 s Scandium 21 2 +3 44.955910 (7/2-) 4- 7/2- 0+ * 7/2- 2+ * 7/2- * 4+ * 7/2- 6+ 7/2- 5+ * (7/2)- 3+ 1.12#10 -7% ECp,EC",... EC EC EC EC 100 !- !- !- !- !- !- !- 2 842° 8 Ca 1484° Ca34 Ca35 Ca36 Ca37 Ca38 Ca39 Ca40 Ca41 Ca42 Ca43 Ca44 Ca45 Ca46 Ca47 Ca48 Ca49 Ca50 Ca51 Ca52 Ca53 Ca54 Ca55 Ca5 8 50 ms 102 ms 181.1 ms 440 ms 859.6 ms 1.03E+5 y 162.61 d 4.536 d 6E+18 y 8.718 m 13.9 s 10.0 s 4.6 s 90 ms Calcium 20 2 +2 40.078 0.000199% 0+ EC2p ECp 0+ ECp 3/2+ EC 0+ EC 3/2+ 0+ 96.941 EC 7/2- 0+ 0.647 7/2- 0.135 0+ 2.086 !- 7/2- 0+ 0.004 !- 7/2- 0+ !-,!-!- 0.187 3/2- !- 0+ !-n (3/2-) !- 0+ (3/2-,5/2-) !-n 0+ 0+ 2 63.38° 8 K 759° K32 K33 K34 K35 K36 K37 K38 K39 K40 K41 K42 K43 K44 K45 K46 K47 K48 K49 K50 K51 K52 K53 K54 K5 8 190 ms 342 ms 1.226 s 7.636 m 1.277E+9 y 12.360 h 22.3 h 22.13 m 17.3 m 105 s 17.50 s 6.8 s 1.26 s 472 ms 365 ms 105 ms 30 ms 10 ms Potassium 19 1 +1 39.0983 0.0000123% ECp 3/2+ 2+ ECp,EC",... EC 3/2+ EC 3+ * 3/2+ 93.2581 4- EC,!- 0.0117 3/2+ 6.7302 !- 2- !- 3/2+ !- 2- !- 3/2+ !- (2-) !- 1/2+ !-n (2-) !-n (3/2+) !-n (0-,1,2-) (1/2+,3/2+) !-n !-n !-n (3/2+) !-n 2 -189.35° 8 Ar -185.85° Ar30 Ar31 Ar32 Ar33 Ar34 Ar35 Ar36 Ar37 Ar38 Ar39 Ar40 Ar41 Ar42 Ar43 Ar44 Ar45 Ar46 Ar47 Ar48 Ar49 Ar50 Ar51 Ar52 Ar53 Argon 18 8 0 39.948 0.000329% -122.28° 15.1 ms ECp,EC2p,...ECp 98 ms 0+ 173.0 ms ECp 1/2+ 844.5 ms EC 0+ EC 1.775 s 3/2+ 0+ 0.337 EC 35.04 d 3/2+ 0+ 0.063 !- 269 y 7/2- 0+ 99.600 109.34 m !- 7/2- !- 32.9 y 0+ 5.37 m (3/2,5/2) !- !- 11.87 m 0+ !- 21.48 s !- 8.4 s 0+ !-n 700 ms 0+ 0+ 0+ 3 2 -101.5° 8 Cl -34.04° Cl28 Cl29 Cl30 Cl31 Cl32 Cl33 Cl34 Cl35 Cl36 Cl37 Cl38 Cl39 Cl40 Cl41 Cl42 Cl43 Cl44 Cl45 Cl46 Cl47 Cl48 Cl49 Cl50 Cl51 7 143.8° 150 ms 298 ms 2.511 s 1.5264 s 3.01E+5 y 37.24 m 55.6 m 1.35 m 38.4 s 6.8 s 3.3 s 434 ms 400 ms 223 ms Chlorine 17 +1+5+7-1 35.4527 0.000017% ECp 1+ ECp,EC",... EC 3/2+ EC 0+ * 3/2+ 75.77 2+ EC,!- 3/2+ 24.23 !- 2- * !- 3/2+ !- 2- (1/2,3/2)+ !- !- !- !-n !-n !-n !-n 2 115.21° 8 S 444.60° S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45 S46 S47 S48 S49 Sulfur 16 6 +4+6-2 32.066 0.00168% 1041° 21 ms ECp,EC2p,...ECp 125 ms 0+ ECp 187 ms 5/2+ EC 1.178 s 0+ EC 2.572 s 1/2+ 0+ 95.02 3/2+ 0.75 0+ 4.21 !- 87.51 d 3/2+ 0+ 0.02 !- 5.05 m 7/2- !- 170.3 m 0+ 11.5 s (3/2,5/2,7/2)- !- !- 8.8 s 0+ !-n 0.56 s 0+ !-n 220 ms !-n 123 ms 0+ !-n 82 ms 0+ 0+ 34 2 44.15° 8 P 280.5° P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 P41 P42 P43 P44 P45 P46 Phosphorus 15 5 +3+5-3 30.973761 0.000034% 721° ECp 20 ms (3+) ECp 260 ms 1/2+ 270.3 ms 3+ ECp,EC",... EC 4.140 s 1/2+ EC 2.498 m 1+ 1/2+ 100 14.262 d !- 1+ !- 25.34 d 1/2+ !- 12.43 s 1+ !- 47.3 s 1/2+ !- 5.6 s !- 2.31 s !-n 0.64 s !-n 0.16 s !-n 260 ms !-n 120 ms !-n 110 ms !-n 33 ms 32 2 1414° 8 Si 3265° Si22 Si23 Si24 Si25 Si26 Si27 Si28 Si29 Si30 Si31 Si32 Si33 Si34 Si35 Si36 Si37 Si38 Si39 Si40 Si41 Si42 Silicon 14 4 +2+4-4 28.0855 0.00326% ECp 6 ms 0+ ECp 102 ms 0+ ECp 220 ms 5/2+ EC 2.234 s 0+ EC 4.16 s 5/2+ 0+ 92.23 1/2+ 4.67 0+ 3.10 !- 157.3 m 3/2+ !- 172 y 0+ !- 6.18 s !- 2.77 s 0+ !- 0.78 s !-n 0.45 s 0+ 0+ 0+ 0+ 30 2 660.32° 8 Al 2519° Al21 Al22 Al23 Al24 Al25 Al26 Al27 Al28 Al29 Al30 Al31 Al32 Al33 Al34 Al35 Al36 Al37 Al38 Al39 Aluminum 13 3 +3 26.981538 0.000277% ECp 70 ms ECp 0.47 s EC" 2.053 s 4+ * EC 7.183 s 5/2+ EC 7.4E+5 y 5+ * 5/2+ 100 2.2414 m !- 3+ !- 6.56 m 5/2+ !- 3.60 s 3+ 644 ms (3/2,5/2)+ !- !- 33 ms 1+ !-n 60 ms !-n 150 ms 28 2 650° 8 Mg 1090° Mg20 Mg21 Mg22 Mg23 Mg24 Mg25 Mg26 Mg27 Mg28 Mg29 Mg30 Mg31 Mg32 Mg33 Mg34 Mg35 Mg36 Mg37 Magnesium 12 2 +2 24.3050 0.00350% ECp 95 ms 0+ 122 ms (3/2,5/2)+ ECp EC 3.857 s 0+ EC 11.317 s 3/2+ 0+ 78.99 5/2+ 10.00 0+ 11.01 !- 9.458 m 1/2+ !- 20.91 h 0+ !- 1.30 s 3/2+ !- 335 ms 0+ !-n 230 ms !-n 120 ms 0+ !-n 90 ms !-n 20 ms 0+ 0+ 26 2 97.80° 8 Na 883° Na18 Na19 Na20 Na21 Na22 Na23 Na24 Na25 Na26 Na27 Na28 Na29 Na30 Na31 Na32 Na33 Na34 Na35 1 447.9 ms 22.49 s 2.6019 y 14.9590 h 59.1 s 1.072 s 301 ms 30.5 ms 44.9 ms 48 ms 17.0 ms 13.2 ms 8.2 ms 5.5 ms 1.5 ms Sodium 11 +1 22.989770 2+ 3/2+ 3+ 3/2+ 4+ * 5/2+ 3+ 5/2+ 1+ 3/2 2+ 3/2+ (3-,4-) 0.000187% p EC" 100 !- !- !- !-n !-n !-n !-n,!-2n,... !-n,!-2n,... !-n,!-2n,... !-n,!-2n,... !-2n !-n 2 -248.59° 8 Ne -246.08° Ne16 Ne17 Ne18 Ne19 Ne20 Ne21 Ne22 Ne23 Ne24 Ne25 Ne26 Ne27 Ne28 Ne29 Ne30 Ne31 Ne32 Neon 10 0 -228.7° 20.1797 0.0112% 2p 122 keV 0+ 109.2 ms 1/2- ECp,EC",... EC 1672 ms 0+ EC 17.22 s 1/2+ 0+ 90.48 3/2+ 0.27 0+ 9.25 !- 37.24 s 5/2+ !- 3.38 m 0+ 602 ms (1/2,3/2)+ !- !-n 197 ms 0+ !-n 32 ms !-n 17 ms 0+ !- 0.2 s 0+ 0+ 24 2 -219.62° 7 F -188.12° F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 Fluorine 9 -1 18.9984032 -6 2.7#10 % p -129.02° (2-) p 1.0 MeV (1/2+) p 40 keV 0- EC 64.49 s 5/2+ EC 109.77 m 1+ 1/2+ 100 !- 11.00 s 2+ !- 4.158 s 5/2+ !- 4.23 s 4+,(3+) 2.23 s (3/2,5/2)+ !- !- 0.34 s (1,2,3)+ !-n 59 ms 22 2 -218.79° 6 O -182.95° O12 O13 O14 O15 O16 O17 O18 O19 O20 O21 O22 O23 O24 O25 O26 Oxygen 8 -2 -118.56° 15.9994 0.078% 0.40 MeV 2p 0+ ECp 8.58 ms (3/2-) EC 70.606 s 0+ EC 122.24 s 1/2- 0+ 99.762 5/2+ 0.038 0+ 0.200 !- 26.91 s 5/2+ !- 13.51 s 0+ 3.42 s (1/2,3/2,5/2)+ !- !- 2.25 s 0+ !-n 82 ms !-n 61 ms 0+ 20 2 -210.00° 5 N -195.79° N10 N11 N12 N13 N14 N15 N16 N17 N18 N19 N20 N21 N22 N23 N24 Nitrogen 7 -146.94° ±1±2±3+4+5 14.00674 0.0102% p 740 keV 1/2+ 11.000 ms EC3" 1+ EC 9.965 m 1/2- 1+ 99.634 1/2- 0.366 !-" 7.13 s 2- !-n 4.173 s 1/2- 624 ms 1- !-n,!-",... !-n 0.304 s (1/2-) !-n 100 ms !-n 85 ms !-n 24 ms 18 2 4492t° 4 C 3642s° C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 230 keV 126.5 ms 19.255 s 20.39 m 5730 y 2.449 s 0.747 s 193 ms 95 ms 46 ms 14 ms Carbon 6 +2+4-4 12.0107 0+ (3/2-) 0+ 3/2- 0+ 1/2- 0+ 1/2+ 0+ 0+ 0+ 0+ 0.033% ECp,ECp2",... EC EC 98.90 1.10 !- !- !-n !-n !-n !-n !-n 2 2075° 3 B B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 Boron 4000° 5 +3 10.811 -8 6.9#10 % 1.4 MeV (3/2-) 770 ms 2+ EC2" 2p" 0.54 keV 3/2- 3+ 19.9 3/2- 80.1 !-3" 20.20 ms 1+ !-n 17.36 ms 3/2- !- 13.8 ms 2- !- 10.5 ms n 200 Ps (0-) !-n 5.08 ms (3/2-) 16 2 1287° 2 Be 2471° Be5 Be6 Be7 Be8 Be9 Be10 Be11 Be12 Be13 Be14 Beryllium 4 +2 9.012182 -9 2.38#10 % 2p 92 keV 0+ 53.29 d EC 3/2- 2" 6.8 eV 0+ 3/2- 100 1.51E+6 y !- 0+ !-" 13.81 s 1/2+ !- 23.6 ms 0+ n 0.9 MeV (1/2,5/2)+ 4.35 ms 0+ !-n,!-2n,... 12 14 2 180.5° Li Li4 Li5 Li6 Li7 Li8 Li9 Li10 Li11 Li12 Lithium 1 1342° 3 +1 6.941 1.86#10 -7% 2- p 1.5 MeV 3/2- 1+ 7.5 3/2- 92.5 !-2" 838 ms 2+ !-n 178.3 ms 3/2- n 1.2 MeV 8.5 ms 3/2- !-n,!-2n,... 10elementsDifferent 2 -272.2° He -268.93° He3 He4 He5 He6 He7 He8 He9 He10 Helium2 0 -267.96° 1/2+ 0+ 0.60 MeV 3/2- 806.7 ms 0+ 160 keV (3/2)- 119.0 ms 0+ 0.30 MeV (1/2-) 0.3 MeV 0+ 4.002602 8.9% 0.000137 99.999863 n !- n !-n n n 1 -259.34° H H1 H2 H3 H4 H5 H6 Hydrogen -252.87° 1 +1-1 1.00794 91.0% -240.18° 1/2+ 99.985 1+ 0.015 !- 12.33 y 1/2+ 2- 6 8 n1 !- 614.8 s 1/2+ 2 4 Different isotopes Ben Monreal, UCSB Physics 3/11
  • 7. elementsDifferent Different isotopes Ben Monreal, UCSB Physics 3/11
  • 8. The reactor’s job is to turn U into fission products. Uranium &95% of reactor power comes from the fission Plutoniumevents themselves.5% comes from the opeslater fission product le i sotdecays. StabThe products include ctsmany different produelements. ion Fiss FissionelementsDifferent Different isotopes Ben Monreal, UCSB Physics 3/11
  • 9. While it’s running, the reactor’s Neutron capture Uranium & neutrons can undergo side on fuel Plutonium reactions that make moreunstable elements in the fuel ... Minor Actinides opesand in other materials. le i sot Stab cts produ ion Fiss Fission Neutron capture on water,elementsDifferent air, reactor materials Different Induced radioactivity isotopes Ben Monreal, UCSB Physics 3/11
  • 10. Radiation damage Alpha decay: common in minor actinides (damages every 10th atom it passes.) 222Rn → 218Po + 4He Beta & gamma decay: fission products(damages every 3000th atom it passes.) 14C → 14N + e- + ν Ben Monreal, UCSB Physics 3/11 http://education.jlab.org
  • 11. How much damage? • One becquerel = 1 decay per second • One curie = 37 billion decays per second. • A measure of amount, as in “There are 20 million curies of 137Cs in the fuel pond” • One gray = absorbing 1 billion 238U decays, or 10 billion 137Cs decays, per gram of body mass • One sievert = absorbing 0.05B 238U decays, or 10B of 137Cs, per gram of body mass • A measure of “dose” = fraction of body’s chemical bonds damaged. For fission products, gray = sievertBen Monreal, UCSB Physics 3/11
  • 12. Radiation numeracy Natural backgrounds• You are all getting irradiated vary; 1.5 - 7 mSv/y right now. • natural 40K in your body: ~0.2 mSv/yr. • natural 222Rn in the air: ~1 mSv/yr.• Moving to Denver? Add ~1 mSv/yr.• Are you a flight attendant? Add ~few mSv/yr. Lesson: a few milliSieverts dose is not worth worrying about at all. (but mSv/h rate can add up.)Ben Monreal, UCSB Physics 3/11 “Chernobyl Record” R.F. Mould, IOP 2000
  • 13. Radiation and cancer Ionization ≈ DNA damage (rarely) DNA damage ≈ changed cells (rarely) changed cells ≈ cancer (rarely) Extra cases per 10000 people with Type of cancer 1000mSv doses Leukemia 3 Lesson: 1 Sv = 1000 mSv Breast is a risk you would go out 7 Thyroid of your way to avoid, 1.6 Lung like texting while driving. 4 Stomach 5 Colon 2 From John D. Boice, Natl. Cancer InstituteBen Monreal, UCSB Physics 3/11 in “Health Effects from Exposure to Low-Level Ionizing Radiation”, IOP 1996
  • 14. Acute radiation sickness Lesson: >5 Sv = run for your life • Extraordinarily rare. • “Slotin Incident”: 21 Sv, victim died 9 d later • “Daghlian incident”: 5 Sv, victim died 1 month later • Goiania accident: 5 Sv/hr medical source got loose. 4 dead (all > 5 Sv), 15 hospitalized (all betwen 0.5 and 5 Sv). • Chernobyl first-responders: dose rates of 10 Sv/hr in many areas; 30 dead, 200 hospitalized • Many victims of Hiroshima and NagasakiBen Monreal, UCSB Physics 3/11
  • 15. Units in the news Last Defense at Troubled Reactors: 50 Japanese Workers Radiation 2011 Published: March 15, close to the reactors was reported to reach 400 millisieverts per ← we know 5000 mSv = fatal hour on Tuesday after a blast inside so 400 mSv/hr for would be fatal reactor No. 2 and fire at reactor No. 4, but has since dropped back to as low as 0.6 if you had 5000/400 = 12 hours millisieverts at the plant gate. ← 0.6 mSv per hour 1000 mSv = texting while driving 1000/0.6 = two monthsRadiation levels on the edge of the plantcompound briefly spiked at 8217 microsieverts ← 8000 µSv/hr = 8 mSv/hrper hour but later fell to about a third that. Ben Monreal, UCSB Physics 3/11
  • 16. They meant “millisieverts per hour” NYTimes.comBen Monreal, UCSB Physics 3/11
  • 17. Are low doses proportionally dangerous? • Probably?? There is no case where a small extra risk was detectable. (Chernobyl area: thyroid cancer at 100 mSv) added added cancer cancer rate rate ?? ?? ?? dose 1mSv 100mSv 1Sv 2Sv years since doseFukushima? Ben Monreal, UCSB Physics 3/11 “Health effects of low-level exposure to ionizing radiation”, ed. Hendee & Edwards, 1oP 1996
  • 18. What’s getting out? Uranium & What’s getting out? Minor Actinides Plutonium opes le i sot Stab cts produ ion FisselementsDifferent Different Induced radioactivity isotopes Ben Monreal, UCSB Physics 3/11
  • 19. Periodic Table of the Elements Chemistry Reference Sheet California Standards Test 1 18 1A H 1 Induced radioactivity 8A He 2 1 Hydrogen 2 13 14 15 16 17 Helium 1.01 2A Key 3A 4A 5A 6A 7A 4.00 3 4 5 6 7 8 9 10 11 Atomic number 2 Li Be Na Element symbol B C N O F Ne Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon 6.94 9.01 Sodium Element name 10.81 12.01 14.01 16.00 19.00 20.18 22.99 11 12 Average atomic mass* 13 14 15 16 17 18 3 Na Mg Al Si P S Cl Ar Sodium Magnesium 3 4 5 6 7 8 9 10 11 12 Aluminum Silicon Phosphorus Sulfur Chlorine Argon 22.99 24.31 3B 4B 5B 6B 7B 8B 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton 39.10 40.08 44.96 47.87 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.61 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.07 102.91 106.42 107.87 112.41 114.82 118.71 121.76 127.60 126.90 131.29 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fission products Cesium Barium Lanthanum Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury Thallium Lead Bismuth Polonium Astatine Radon 132.91 137.33 138.91 178.49 180.95 183.84 186.21 190.23 192.22 195.08 196.97 200.59 204.38 207.2 208.98 (209) (210) (222) 87 88 89 104 105 106 107 108 109 7 Fr Ra Ac Rf Db Sg Bh Hs Mt Francium Radium Actinium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium (223) (226) (227) (261) (262) (266) (264) (269) (268) 58 59 60 61 62 63 64 65 66 67 68 69 70 71 * If this number is in parentheses, then Ce Cerium 140.12 Pr Praseodymium 140.91 Nd 144.24 Pm (145) Sm Neodymium Promethium Samarium 150.36 Eu Europium 151.96 Gd Gadolinium 157.25 Tb Terbium 158.93 Dy minor actinides Dysprosium 162.50 Ho Holmium 164.93 Er Erbium 167.26 Tm Thulium 168.93 Yb Ytterbium 173.04 Lu Lutetium 174.97 it refers to the atomic mass of the 90 91 92 93 94 95 96 97 98 99 100 101 102 103 most stable isotope. Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium 232.04 231.04 238.03 (237) (244) (243) (247) (247) (251) (252) (257) (258) (259) (262) Ben Monreal, UCSB Physics 3/11Copyright © 2008 California Department of Education
  • 20. Periodic Table of the Elements Chemistry Reference Sheet California Standards Test 1 18 1A 8A 1 2 1 H He Hydrogen 2 13 14 15 16 17 Helium 1.01 2A Key 3A 4A 5A 6A 7A 4.00 2 3 Li Lithium 6.94 Be 4 Beryllium 9.01 Na 11 Sodium Atomic number Element symbol Element name B 5 Boron 10.81 C 6 Carbon 12.01 N 7 Gases Nitrogen 14.01 O 8 Oxygen 16.00 9 F Fluorine 19.00 10 Ne Neon 20.18 22.99 er 11 12 Average atomic mass* 13 14 15 16 17 18 bl e 3 Na Mg Al Si P S Cl Ar 3 4 5 6 7 8 9 10 11 12 wat Sodium Magnesium Aluminum Silicon Phosphorus Sulfur Chlorine Argon 22.99 24.31 3B 4B 5B 6B 7B 8B 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 solu 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton 39.10 40.08 44.96 47.87 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.61 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.07 102.91 106.42 107.87 112.41 114.82 118.71 121.76 127.60 126.90 131.29 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Cesium Barium Lanthanum Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury Thallium Lead Bismuth Polonium Astatine Radon Inert metals 132.91 137.33 138.91 178.49 180.95 183.84 186.21 190.23 192.22 195.08 196.97 200.59 204.38 207.2 208.98 (209) (210) (222) 87 88 89 104 105 106 107 108 109 7 Fr Ra Ac Rf Db Sg Bh Hs Mt Francium Radium Actinium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium (223) (226) (227) (261) (262) (266) (264) (269) (268) 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium * If this number is in parentheses, then 140.12 140.91 144.24 (145) 150.36 151.96 157.25 158.93 162.50 164.93 167.26 168.93 173.04 174.97 it refers to the atomic mass of the 90 91 92 93 94 95 96 97 98 99 100 101 102 103 most stable isotope. Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium 232.04 231.04 238.03 (237) (244) (243) (247) (247) (251) (252) (257) (258) (259) (262) Ben Monreal, UCSB Physics 3/11Copyright © 2008 California Department of Education
  • 21. Healthy reactor: In Zircalloy casing: fuel + fission products + actinides In cooling water: activation products In steam: activation products In environment: practically nothingBen Monreal, UCSB Physics 3/11
  • 22. Meltdown: In Zircalloy casing: fuel + fission products + actinides In cooling water: fission products like Cs, I, Tc In steam: fission products like Xe, Kr, Rn In environment: practically nothingBen Monreal, UCSB Physics 3/11
  • 23. Meltdown + emergencyThree-Mile venting: Island In Zircalloy casing: fuel + fission products + actinides In cooling water: fission products like Cs, I, Tc In steam: fission products like Xe, Kr, Rn In environment: practically nothing Xe, Kr, Rn
  • 24. Meltdown + containmentFukushima failure: Daiishi 2 In Zircalloy casing: fuel + fission products + actinides In cooling water: fission products like Cs, I, Tc In steam: fission products like Xe, Kr, Rn In environment: Xe, Kr, Rn, Cs, I, Tc Xe, Kr, Rn
  • 25. Meltdown + fuel fire??? In Zircalloy casing: fuel + fission products + actinides In environment: fuel + fission products + actinides Briefly happened at Fukushima spent-fuel pools? (reports vary?) This is very bad but still not as bad as Chernobyl http://mitnse.com
  • 26. Chernobyl no real “containment vessel” Core filled with graphite (fuel for huge fire) Reactor fissioning during explosions and fire (Fukushima reactors have now been “off” for 5 days)Ben Monreal, UCSB Physics 3/11
  • 27. Ben Monreal, UCSB Physics 3/11 wikipedia
  • 28. Saving graces at Fukushima • Reactor survived earthquake intact (!!!!!) • Shut down properly • First hour of containment saved factor of 5x • First day: factor 20x • Evacuation • Biggest fire risk is 100- day-old spent fuel, i.e. 100x less radioactive than Chernobyl materialBen Monreal, UCSB Physics 3/11
  • 29. Nuclides to watch Nuclide Half-life Effect at Chernobyl 131Iodine quick ~0.5 mSv dose to 8 days everyone in Eastern Europe 137Cesium 30 years Additional ~1 mSv over 30y 90Strontium Lower amount than Cs, but 30 years accumulates in bone 241Plutonium Large doses near reactor 9 years site; easier to decontaminateBen Monreal, UCSB Physics 3/11 Cooper, Randle, and Sokhi, Wiley 2003
  • 30. In case of fire ... soot Nuclide Half-life 95Zirconium 60 days 99Molybdenum 3 days 103Ruthenium 40 days 141Cerium 30 days 140Barium 14 days• Worst concern to first responders. Weather may move sootplumes around (Chernobyl: bad plumes to 60km)• This is what the “stay indoors” advisories are talking about. Soot inyour driveway doesn’t dose you; soot on your clothes does.• Can be cleaned from streets/buildings. Agriculture, fisherieshave to wait it out (or remove top 10cm soil) Ben Monreal, UCSB Physics 3/11
  • 31. Conclusions• The worst general-public effects of Chernobyl were stress/fear; HUGE education/communication failure • You have the information: count the millisieverts and decide how to respond• My feeling: the worst-case radiation hazards from Fukushima are mitigatable and local • (early evacuation + controls on 131I in food)• My feeling: the global radiation hazard is nil. • The best way to reduce worldwide low-level radiation releases is ... stop burning coal• Save your energy for those affected by the tsunami and “50 plant workers” at FukushimaBen Monreal, UCSB Physics 3/11