Overview Breeding And Seed Production

10,816 views
13,548 views

Published on

Published in: Education
5 Comments
15 Likes
Statistics
Notes
No Downloads
Views
Total views
10,816
On SlideShare
0
From Embeds
0
Number of Embeds
2,603
Actions
Shares
0
Downloads
0
Comments
5
Likes
15
Embeds 0
No embeds

No notes for slide

Overview Breeding And Seed Production

  1. 1. Breeding and Seed Production for Aquaculture in SE Asia Evelyn Grace T. de Jesus-Ayson SEAFDEC AQD
  2. 2. Constraints to Sustainable Aquaculture Development in SE Asia <ul><li>Availability of technology </li></ul><ul><li>Reliable supply of good quality seeds </li></ul><ul><li>Availability of suitable food organisms/feeds </li></ul><ul><li>Diseases </li></ul><ul><li>Availability of trained technical manpower </li></ul>
  3. 3. Marine Fish Breeding and Seed Production
  4. 4. Milkfish Groupers Snappers Sea bass Rabbitfish Age at sexual 5 (M/F) 3 (F) 4 (M) 2.5 (M) 10 mos (M) maturity >5 (M) 5 (F) 4 (F) 1 yr (F) Size at sexual > 3 kg 2-3 kg (F) 2.5 kg (M) 1.5 kg (M) > 200 g maturity > 6 kg (M) 4 kg (F) 3 kg (F) Spawning March-Nov year round Apr-Nov April-Oct year round season Sexes separate protogynous separate protandrous separate hermaphrodite hermaphrodite Egg pelagic pelagic pelagic pelagic demersal characteristics adhesive
  5. 5. Acquisition of breeders <ul><li>collection from the wild </li></ul><ul><li>growing wild fry to broodstock in captivity </li></ul><ul><li>hatchery-reared </li></ul>
  6. 6. Broodstock facilities Tanks with recirculating water system Canvass tanks with flow-through water
  7. 7. broodstock feeds Milkfish & Siganid broodstock feeds For groupers, red snapper and sea bass * trash fish/squid * formulated feed * combination
  8. 8. When feeding with trash fish: * Remove head: potential source of VNN * Consider supplementation with essential fatty acids (fish oils) and/or vitamin mixes
  9. 9. sex determination * Apply gentle pressure on the abdomen and check for the presence of milt or check for the presence of oocytes by using a fine PE tube
  10. 10. Spawning <ul><li>Natural spawning </li></ul><ul><li>Induced spawning </li></ul>Luteinizing Hormone-Releasing Hormone analog (LHRH-A) or Human Chorionic Gonadotropin (HCG)
  11. 11. Induced Spawning <ul><li>LHRH-a injection or implants (100  g/kg BW) </li></ul><ul><li>HCG injection </li></ul>Single dose of 1000 IU/kg BW or 2 injections of 500 IU/kg BW given 24 hours apart or 1 st injection of 1000 IU/kg BW and 2 nd injection of 500 IU/kg BW given after 24 hours
  12. 12. Egg collection <ul><li>spawning normally occurs at night and eggs are collected the following morning </li></ul>Wash eggs and remove debris Incubation Get sub-samples and determine fertilization rate
  13. 13. Egg collection Incubation and hatching Larval rearing Harvesting
  14. 14. Strategies in developing seed production practices <ul><li>understanding the reproductive biology of the species </li></ul><ul><li>development of broodstock management strategies </li></ul><ul><li>improvement of egg and larval quality </li></ul><ul><li>determining the nutritional requirements of the larvae </li></ul><ul><li>determining physiological requirements of the larvae </li></ul>
  15. 15. Timing of events related to the onset of feeding milkfish sea bass rabbitfish grouper total eye pigmentation (h) opening of mouth (h) complete yolk resorption (h) oil globule resorption (h) time available to initiate feeding (h) mouth width at opening (  m) 54 32 32 55* 54 32 36 55 120 60 70 75 120 72 90 66 88 36 35 500 250 125 180
  16. 16. endogenous feeding period larvae are dependent on their yolk reserves as source of energy yolk oil globule red snapper yolk oil globule sea bass yolk grouper milkfish yolk
  17. 17. day 1 within 24 hours from hatching: grouper no functional eyes mouth still closed stomach poorly developed yolk Newly-hatched larva
  18. 18. mixed feeding period larvae survive on yolk reserves and external food yolk oil globule rabbitfish grouper yolk oil globule critical period: between 55-90 hours transition from endogenous to exogenous feeding
  19. 19. exogenous feeding period larvae are dependent solely on external food grouper day 4 day 2 grouper
  20. 20. What to feed ? first feeding period: considerations <ul><li>size of food </li></ul><ul><li>density of food </li></ul>Chlorella rotifer * small-sized or screened rotifers are given as initial food; the green microalgae serve both as food for the rotifers and water conditioner Chlorella culture Rotifer
  21. 21. What to feed ? * Copepod nauplii may also be introduced at first feeding * Adult copepods may be seeded into the larval rearing tank a few days before stocking the larvae * Mass production of copepods is difficult copepods
  22. 22. Criteria in choosing a suitable food <ul><li>easily perceived by the larvae </li></ul><ul><li>of appropriate size to fit the mouth size </li></ul><ul><li>of the larvae </li></ul><ul><li>easily digested by the larvae </li></ul><ul><li>satisfies the nutrient requirement </li></ul><ul><li>available in large quantities </li></ul>
  23. 23. As the larvae grow: grouper day 4 Other food items are given including: * copepods * mysids * brine shrimps * trash fish * formulated feeds
  24. 24. Considerations for artificial diet <ul><li>particle size </li></ul><ul><li>physical performance in water </li></ul><ul><li>attractability </li></ul><ul><li>digestibility </li></ul><ul><li>nutritional composition </li></ul><ul><li>cost effectiveness </li></ul>
  25. 25. Larval feeds Milkfish: before day 15 day 15 up Grouper: graded sizes
  26. 26. live food vs formulated diet <ul><li>deficit of essential substances in formulated diets </li></ul><ul><li>dry diets are susceptible to leaching – loss of nutrients </li></ul><ul><li>zooplankton remain suspended in water column </li></ul>
  27. 27. days of culture 0 10 20 30 40 50 60 Protocol for rearing grouper larvae feeding management Nannochlorum (1-3 x 10 5 cells/ml) rotifers (ind/ml) artificial diet Artemia (1-3 ind/ml) water management siphoning of tank bottom 20-30 % 50-70 % flow-through 3 10 20 1 2 3-5g/ton/day
  28. 28. days of culture 0 5 10 15 20 Protocol for rearing milkfish larvae feeding management Nannochlorum sp . (1-3 x 10 5 cells/ml) rotifers (ind/ml) water management siphoning of tank bottom water change 10-20 % 50 % 1-2 g/ton/day larval diet 2-3 10 10-20 20-40 %
  29. 29. Freshwater Fish Breeding and Seed Production
  30. 30. <ul><li>Easy to culture (ideal for most systems) </li></ul><ul><li>Simple hatchery, nursery technology </li></ul><ul><li>Wide consumer acceptance (Asia, Europe, N.& S. America) </li></ul><ul><li>Used to control luminous bacteria in shrimp ponds </li></ul><ul><li>Disease resistant </li></ul>Why Tilapia?
  31. 31. Investment opportunities in tilapia: Hatchery <ul><li>short turn-over (1.5 - 2 months) </li></ul><ul><li>small farm area requirement </li></ul><ul><li>more investment options (high,medium, small) </li></ul><ul><li>low risk </li></ul><ul><li>less feed feed requirement </li></ul><ul><li>greater control on prices </li></ul><ul><li>wider market opportunities e.g. market for saline-tolerant tilapia, improved strains etc. </li></ul>
  32. 32. TILAPIA HATCHERY MGMT. <ul><li>Broodstock dev’t, selection </li></ul><ul><li>Hatching </li></ul><ul><li>Size grading </li></ul><ul><li>Nursery rearing </li></ul><ul><li>Marketing </li></ul>
  33. 33. BROODSTOCK SELECTION <ul><li>Criteria </li></ul><ul><ul><ul><li>Growth </li></ul></ul></ul><ul><ul><ul><li>Body shape </li></ul></ul></ul><ul><ul><ul><li>Body thickness </li></ul></ul></ul><ul><ul><ul><li>Color </li></ul></ul></ul><ul><ul><ul><li>No deformities </li></ul></ul></ul><ul><ul><ul><li>Feeding efficiency </li></ul></ul></ul><ul><ul><ul><li>sexual maturity </li></ul></ul></ul><ul><ul><ul><li>resistance to diseases </li></ul></ul></ul><ul><ul><ul><li>social behavior </li></ul></ul></ul>
  34. 34. Hatchery Systems <ul><li>Concrete tanks </li></ul>Hapa in ponds Hapa in lakes Ponds (Direct)
  35. 35. Hapa in Pond Hatchery <ul><li>Medium scale investment </li></ul><ul><li>Minimal water management </li></ul><ul><li>low feed requirement - 2% of fish biomass </li></ul><ul><li>Stock movement </li></ul><ul><li>Frequent size-grading </li></ul>Ideal sex ratio 1M:4F or 1M:5F 1M:7F – 1M:10F OK but M more prone to spawning fatigue
  36. 36. Harvesting <ul><li>Methods </li></ul><ul><li>egg collection </li></ul><ul><li>fry collection </li></ul>75% eggs 25% fry Egg collection: day 14 total harvest Fry collection day 10 onwards 75% fry 25% eggs
  37. 37. Hapa in Lake (or SWBs) Hatchery <ul><li>Low to medium scale investment </li></ul><ul><li>Water quality – nature dependent </li></ul><ul><li>Feeding is minimal (2% of the fish biomass) </li></ul><ul><li>Production less sustainable than other systems </li></ul><ul><li>Broodstock quality/unreliable (entry of unwanted species) </li></ul><ul><li>Low cost of fingerlings </li></ul>
  38. 38. Tank Hatchery <ul><li>High level investment </li></ul><ul><li>Greater control on water quality </li></ul><ul><li>Cleaner environment for young fish </li></ul><ul><li>Requires life support system </li></ul><ul><li>Nursery ponds - an integral part of the system </li></ul><ul><li>100% dependence on artificial feeds </li></ul><ul><li>Ease in moving stocks i.e, grading, culling etc. </li></ul><ul><li>Highest fry output </li></ul>
  39. 39. Earthen Pond Hatchery <ul><li>Traditional </li></ul><ul><li>low input </li></ul><ul><li>minimal water management </li></ul><ul><li>relatively low seed yield </li></ul><ul><li>problems w/ cannibalism </li></ul><ul><li>shorter broodstock use </li></ul><ul><li>once a month total harvesting </li></ul>
  40. 40. Crustacean Breeding and Seed Production
  41. 41. Life Cycle Adult Estuary Eggs Nauplius Protozoea Mysis Postlarva Juvenile Hatchery phase
  42. 42. <ul><li>Wild-caught gravid female </li></ul><ul><li>Wild-caught female </li></ul><ul><li>Nauplii dealers </li></ul><ul><li>Nauplii from domesticated stocks </li></ul>Source of Nauplii
  43. 43. Growth Molting Hatchery Operations Broodstock Management <ul><li>Procurement of wild spawner or broodstock </li></ul><ul><li>2. Stocking in tank (5 broodstock/ ton) </li></ul><ul><li>3. Feeding with pellets, </li></ul><ul><li>trashfish, mussel meat, and </li></ul><ul><li>annelids </li></ul><ul><li>4. Ablation (if necessary) after </li></ul><ul><li>a week of holding </li></ul>
  44. 44. Induced Maturation : ablation (endocrine manipulation) <ul><li>After ablation: </li></ul><ul><li>Restocking in tanks </li></ul><ul><li>Regular sampling to </li></ul><ul><li>separate gravid </li></ul><ul><li>females </li></ul><ul><li>Spawners placed in </li></ul><ul><li>separate tanks </li></ul>
  45. 45. Spawning (8 PM- 4 AM) Nauplius (1.5-2 days) <ul><li>After eggs hatch to nauplius stage, they are stocked in larval tanks at a density of 80 to 100 nauplii/ liter </li></ul>
  46. 46. Hatchery Operations Feeding Diatoms*( or Tetraselmis ) STAGE: N I -N VI Z I Z II Z III M I M II M III PL 1-5 PL 10-15 5,000-10,000 cells/ml Feeding Scheme Protozoea Stages (3-5 days) Z I Z II Z III
  47. 47. Growth Molting Hatchery Operations Natural food production in the hatchery Algae that are frequently used as food for the larvae: Skeletonema Chaetoceros Tetraselmis
  48. 48. Hatchery Operations Feeding Diatoms*( or Tetraselmis ) Artificial Diet Artemia Egg custard * Skeletonema or Chaetoceros STAGE: N I -N VI Z I Z II Z III M I M II M III PL 1-5 PL 10-15 5,000-10,000 cells/ml 0.5 1 2- 5 ind/ml Feeding Scheme as recommended Mysis Postlarva
  49. 49. Mud crab production (tons) from aquaculture (FAO Fishery Statistics, 2004) Country 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 Indonesia 1,906 1,339 5,176 866 5,143 5,126 3,879 9,039 7,152 2,243 Malaysia 623 381 277 231 188 225 219 311 204 174 Philippines 2,782 2,463 3,7 59 4,033 4,826 4,968 4,608 4,747 4,809 6,245 Singapore 342 353 215 45 78 86 75 93 104 60 Sri Lanka 1 2 1 - - - - - - - Thailand 45 132 115 19 9 9 5 10 10 10 Taiwan 1,526 797 430 796 381 315 423 239 226 239 Total 10,006 5,465 9,972 5,990 10,625 10,729 9,209 14,440 12,507 8,972 Export revenue in million Php P was valued at P1, 050 - 2003; P1,590 - 2004; P1,693 -2005) Tremendous growth underscores the importance of hatchery for seed supply. Major source of crablets for farming is from the wild.
  50. 50. Different kinds of alimango in the Philippines: *Hatchery technology is feasible for bulik * Scylla serrata (Giant mud crab – ‘kinis’ or ‘bulik’ ) Scylla tranquebarica (Purple mud crab – ‘lawodnon’) Scylla olivacea (Orange mud crab – ‘pulang alimango’)
  51. 51. Life cycle of mud crab Coastal water Open sea Estuary Mangrove forest Juvenile Sub-adult Adult mating Spawner Eggs Zoea 1 Zoea 2 Megalopa Crab instar hatching spawning Etq rev 030401 Zoea 3 Zoea 4 Zoea 5 HATCHERY PHASE
  52. 52. Broodstock sourcing BROODSTOCK MANAGEMENT Water change 2-3x / week > 500g ♀ with ‘aligi’ Stocking in tank Acclimation & disinfection Feeding
  53. 53. Incubation 300 or 500 L tank/female Disinfection Sampling for berried females 0.8 to 5 million zoeae per female (450-750 g BW) Stocking of zoeae in tanks flowing seawater Zoeae Collection of newly hatched zoeae
  54. 54. Feeding Rotifers Artemia Mussel & fish 0.5 – 1/ml satiation 2x daily Addition of Microalgae (optional) Z1 Z2 Z3 Z4 Z5 Megalopa Crab instar Stage Day 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 45 Activities LARVAL REARING Water Management Salinity Water replacement Prophylaxis 10-15/ml 100,000 cells/ml 30-60% 30-50 % 28-32 ppt 24-28 ppt
  55. 55. • mesh size 1 mm • area 20 m 2 or bigger • bamboo poles as support • net bottom buried 3-5 cm into the soil • 80- 100 cm deep Net cages Tanks • 80- 100 cm deep • area 40 m 2 or bigger megalopa 5-7 d + 3 weeks Fly size crabs (0.35-0.40 cm) (0.40 – 0.45 cm) (0.8-1.0 cm)
  56. 56. Abalone Breeding and Seed Production
  57. 57. Abalone - Supply/Demand Aquaculture Department 7,000 mt deficit
  58. 58. Aquaculture Department Diatom Culture tanks Dry Lab/ Stockroom Overhead Reservoir Sand Filter Box Seawater Pump Air Blower Settlement tanks Spawning tanks Incubation tanks Broodstock Holding tanks A Typical Abalone Hatchery Lay-out Seaweed tanks Primary nursery tanks Working area Worker’s room Intermediate nursery tanks
  59. 59. <ul><li>HATCHERY OPERATION </li></ul><ul><li>BROODSTOCK </li></ul><ul><ul><ul><li>Source – wild or hatchery-bred </li></ul></ul></ul><ul><ul><ul><li>Size – 4-5 cm shell length (initial) </li></ul></ul></ul><ul><ul><ul><li>Optimum size for spawning - 6-8 cm </li></ul></ul></ul><ul><ul><ul><li>Sex ratio – 1 male: 4 females </li></ul></ul></ul><ul><ul><ul><li>Spawning technique – spontaneous, </li></ul></ul></ul><ul><ul><ul><li>group spawning </li></ul></ul></ul>Mature Gonads male female SEAWEED Gracilaria CONDITIONING CAGES Aquaculture Department
  60. 60. Female Male Group spawning female male Female Male Group spawning Aquaculture Department
  61. 61. Group Spawning Periodicity and Fecundity in Hatchery-bred Abalone 2,494 + 304 224,150 + 37,760 1-8 44 74 87 HB-2B/6 7,671 + 1,461 186,610 + 35,371 2-5 33 48 25 HB-2A/6 4,324 + 782 572,630 + 100,000 1-2 94 81 135 HB-1/7 Ave. # eggs per g BW Ave. # eggs per spawn Spawning Days interval frequency/ between month spawning SL BW cm g Group/ n Aquaculture Department
  62. 62. Creeping larvae ready for stocking Settlement tanks LARVAE PREPARATION FOR SETTLEMENT Benthic diatoms as larval food INCUBATORS Artificial illumination Aquaculture Department
  63. 63. IMPORTANT CONSIDERATIONS DURING LARVAL SETTLEMENT & PRIMARY NURSERY <ul><li>Combined diatom-crustose coralline algal films on settlement plates attract the highest numbers of post-larvae </li></ul><ul><li>2. Supplemental feeding using diatom slurries can improve survival rate </li></ul><ul><li>3. Continuous lighting to attract settling larvae to the upper water layer and to prevent respiration of diatoms that may cause oxygen depletion </li></ul><ul><li>4. Stocking density 250 - 300 veligers per liter </li></ul><ul><li>5. Static water condition no flow-thru of UV-treated rearing water within first 5 days; flow-thru filtered seawater on 6 th day from stocking </li></ul><ul><li>6. Mild aeration upon stocking then increase intensity from 5th day onward </li></ul>Diatom culture cca-diatom complex 40W DL Aquaculture Department
  64. 64. PRIMARY NURSERY REARING “ Clearing of diatoms on surfaces of settlement plate indicates the presence of settled and metamorphosed post-larvae...” Crustose coralline algae- diatom complex Indoor settlement tanks Outdoor nursery tanks 10 days Aquaculture Department
  65. 65. Mesh basket for Intermediate nursery INTERMEDIATE NURSERY REARING Early juveniles (5-8 mm) ready to feed on seaweeds Indoor tanks Outdoor nursery tanks Raceway-type Flow-through Aquaculture Department
  66. 66. ABALONE NURSERY IN SEA CAGES CAGE NURSERY REARING: Material: Amazon screen Size: 30cm high x 60cm-diam. Shelter surface area: 1.24m 2 Stocking density/cage: 1000-1,500 Food: Fresh seaweed Gracilaria Feeding rate: 40-50% of bw/day Rearing period: 90 days Final size at harvest: 28-30mm SL Survival: 90-95% Black net cover Wooden or Bamboo raft Aquaculture Department
  67. 67. Artificial Feeding in Abalone Juveniles <ul><li>Disadvantages: </li></ul><ul><li>limited to tank culture </li></ul><ul><li>water quality problems </li></ul><ul><li>variable growth response </li></ul><ul><li>Advantages: </li></ul><ul><li>replacement for seaweeds </li></ul><ul><li>provides complete nutrition </li></ul><ul><li>easy to store/readily available </li></ul><ul><li>produce shell-marking for stock enhancement activity </li></ul>Fed formulated diet Fed seaweed Aquaculture Department
  68. 68. Seaweeds Production
  69. 69. Commonly used farming techniques Spider web (‘ambian’) Hanging long line (‘palabad’) Hanging long line (single) Multiple raft (‘alul’) Fixed off-bottom (‘parasdas’)
  70. 70. Regeneration of E. denticulatum from callus-like structures 1 2 3 4 5 Young plants grown in a nursery cage Outplanted plants in a cage 6 7
  71. 71. Plantlet regeneration of Kappaphycus alvarezii var. adik-adik 4b 4a 4c 5 6 7a 7b 1 3 2
  72. 72. Sporulation/Tissue Culture Wild source Slides/ Plates/ Cell wells 50mL t25 350 mL culture flask 2.0 L culture flask Aquaria Tanks Summary Research Hanging longline (inside cages) Outplanting (Cabalagnan) After Typhoon Frank 2008 2007 Cylindrical cages
  73. 73. GRACILARIA grown from spores Tissue culture of KAPPAPHYCUS Nursery in tanks Grow-out
  74. 74. Recommendations: Way Forward <ul><li>Continuous refinement of developed technologies </li></ul><ul><li>Domestication of other potential species for aquaculture </li></ul><ul><li>Determination of physiological requirements for optimum reproductive performance </li></ul><ul><li>Determine physiological requirements of larvae/fry </li></ul>
  75. 75. Thank you!

×