CONCRETE  CONSTRUCTION “ Concrete is a plastic material susceptible to the impressions of the imagination.”   Frank Lloyd ...
<ul><li>Rocklike Material </li></ul><ul><li>Ingredients </li></ul><ul><ul><li>Portland Cement </li></ul></ul><ul><ul><li>C...
Concrete Properties <ul><li>Versatile </li></ul><ul><li>Pliable when mixed </li></ul><ul><li>Strong & Durable </li></ul><u...
Santiago Calatrava <ul><li>Generic Term </li></ul><ul><li>Man Made Product </li></ul><ul><li>Fine gray powder </li></ul><u...
Concrete <ul><li>APPROX. COST OF CONCRETE </li></ul><ul><li>25% - 30% concrete </li></ul><ul><ul><li>Placing concrete </li...
Meditation Center for UNESCO Paris, France  1995  Tadao Ando, Architect “ a space of prayer  for world peace” “ A rchitect...
TADAO ANDO Oyamazaki Villa Museum Yagi house
 
Hoover Dam <ul><li>A Brief History of Concrete </li></ul><ul><li>1824 - Aspidin patented Portland Cement - named after Eng...
Concrete Properties <ul><li>Versatile </li></ul><ul><li>Pliable when mixed </li></ul><ul><li>Strong & Durable </li></ul><u...
Portland Cement <ul><li>Generic Term </li></ul><ul><li>Man Made Product </li></ul><ul><li>Fine gray powder </li></ul><ul><...
Type III - High Early Type I - Normal <ul><li>Type I  Normal (most applications) </li></ul><ul><li>Type II & V  Moderate a...
Lightweight Aggregates <ul><li>Vermiculite is Substituted for sand / crushed stone </li></ul><ul><li>Structural Lightweigh...
<ul><li>Specified by: </li></ul><ul><li>28 Day Compressive Strength  </li></ul><ul><ul><li>PSI - pounds per square inch </...
<ul><li>Concrete with High W/C ratio is easier to place </li></ul><ul><li>Balance workability with desired qualities </li>...
CONCRETE  Vs Other Building Materials <ul><li>Material Tension Compression </li></ul><ul><li>Wood 700 psi 1,100 psi </li><...
Sample collected Slump Measured Cone Removed and Concrete  Allowed to ‘Slump’ Slump Cone Filled
Measuring the Slump Walls/columns 4-5 in. Beams 4-5 in. Slabs 3-4 in.
Test Cylinders Filled with a Sampling of the Concrete Mix
Test Cylinders Curing and then strength tested (upper right)
Concrete Placement (1929) <ul><li>Not a Liquid - an  Unstable  mixture </li></ul><ul><li>Will segregate if handled imprope...
Placement Today  -  not  too  much has changed!
Concrete Bucket being Filled
Placement of a Wall with a Crane & Concrete Bucket
Placement with a Concrete Pump
Placement with a Concrete Pump Placement with a Concrete Pump
Placement with a Conveyor
Improperly Consolidated - “Honeycomb” Segregation - Mix  “Separates” Results - Non-uniformity & Unsatisfactory properties ...
Improperly consolidated Concrete
Extensive Reinforcing  Can  Make Placement & Consolidation Difficult
“ Cold” Joint  First lift hardened prior to the placement of the 2 nd  lift
 
Formwork Materials Steel Wall Form Round Steel Column Form Wood - Panelized <ul><li>TYPES: </li></ul><ul><ul><li>Wood </li...
Concrete Reinforcing <ul><li>Concrete - No Useful Tensile Strength </li></ul><ul><li>Reinforcing Steel  - Tensile Strength...
Reinforcing Markings <ul><li>Concrete is used in conjunction with steel to provide tensile strength  </li></ul><ul><ul><li...
 
Reinforcing Support <ul><li>Chairs or bolsters </li></ul><ul><li>Properly position the steel </li></ul>
 
Reinforcing Special Coatings <ul><li>Galvanized or Epoxy Coated </li></ul><ul><li>Exposure to Salts or Sea Water </li></ul...
WWF – Sheet (mat)
Welded Wire Fabric (WWF) <ul><li>Type of Reinforcing </li></ul><ul><li>Grid of “wires” spaced 2-12 inches apart </li></ul>...
Wall Reinforcing being secured with Wire Ties
Long Bridge Pier Requiring Reinforcing Splicing
Reinforcing Stirrups <ul><li>Position Beam Reinforcing  </li></ul><ul><li>Resist Diagonal Forces / Resist Cracking </li></ul>
Reinforcing a Continuous Concrete Beam <ul><li>Most Beams are not simple span beams </li></ul><ul><li>Location of Tension ...
Conventionally Reinforced Concrete <ul><li>Reinforced Concrete Members </li></ul><ul><li>Part of the member in compression...
 
 
 
Prestressing <ul><li>Theory; “Place all the concrete of the member in compression” (take advantage of concrete’s compressi...
Prestressing - Pretensioning
Prestressing - Posttensioning <ul><ul><li>Cables positioned prior to concrete placement </li></ul></ul><ul><ul><li>Stresse...
Post-Tension Cable Strands  or Coils <ul><li>Install (position) unstressed steel strands </li></ul><ul><ul><li>Often Drape...
Plastic-sheathed to prevent bonding to concrete  (note the cable is lubricated)
Draped to be positioned in “Tension” area of slab
Cables can be ‘Bundled’
Cable attachment to Edge Form
Hydraulic Jacking Machine to Stress Cables
Elongated Strands after Stressing (Jacking)
Slab-on-Grade (SOG) <ul><li>Level surface of concrete supported on the ground </li></ul>
<ul><ul><li>Reinforcing Purpose - Prevent cracking from </li></ul></ul><ul><ul><ul><li>Shrinkage,  </li></ul></ul></ul><ul...
Placement with a Pump
Laser-screed Often used for ‘superflat’ floors
Finishing Rotary Power Trowel  (Rider - Double Blade) Finishing Rotary Power Trowel (Walk behind)
Casting a SOG (cont.) <ul><li>Joints  </li></ul>Control Joint (tooled) Control Joint (sawed) Note the Broom Finish
Snap ties
Ties inserted through pre-drilled holes
Clamp placed over endloop of tie
Waler placed over clamp and locked down
Vertical stiffback attached to assembly
Stiffback locked in place
Completed connection:  plywood, waler, tie & stiffback
Casting a Concrete Wall <ul><li>Materials </li></ul><ul><li>Stick Built of Lumber & Plywood </li></ul><ul><li>Standardized...
Panelized Systems <ul><li>Built in-Place with: </li></ul><ul><ul><li>Panelized Sections </li></ul></ul><ul><ul><li>Multipl...
Panelized System with its Own Tires Panelized System
Metal & Fiberglass  <ul><li>Often Built: </li></ul><ul><ul><li>Specifically for a project </li></ul></ul><ul><ul><li>Examp...
Gang Forms <ul><li>Assemble formwork into large sections </li></ul><ul><ul><li>Stick built, Panels, or any other system </...
Gang Forms
Casting A Concrete Wall (cont) <ul><li>Layout, Install one side, anchor, & brace  </li></ul><ul><li>Coat w/ Form Release <...
Casting A Concrete Wall (cont) <ul><li>Install Form Ties </li></ul><ul><ul><li>“ Small diameter metal rods which hold the ...
 
Column Form Materials
Panelized Formwork
Formed and Braced
Sonotube – Waxed Cardboard  Column Form Material
Stripped Column Note the spiral formwork markings
Elevated Framing Systems <ul><li>One-Way System </li></ul><ul><ul><li>Spans across parallel lines of support furnished by ...
One Way Elevated Framing Systems <ul><li>One-Way Flat-Slab </li></ul><ul><ul><li>Limited Depth </li></ul></ul><ul><ul><li>...
One Way Elevated Framing Systems   <ul><li>One-Way Joist System </li></ul><ul><ul><li>Span Greater Distances, Less Dead Lo...
One Way Elevated Framing Systems <ul><li>Wide-Module or Skip-Joist System </li></ul>
One-Way Slab & Beam
One-Way Slab & Beam
Elevated Framing Systems <ul><li>Two-Way Framing Systems </li></ul><ul><ul><li>Often more economical than One-Way if: </li...
Two-Way Flat Slab <ul><li>Flat slab w/ reinforcing beams </li></ul><ul><li>With, or w/o Capitals or drop panels </li></ul>...
Two-Way Waffle Slab
Elevated Framing Systems Factors to Consider <ul><li>Bay Spacing - Square or Irregular </li></ul><ul><li>Span Length </li>...
Elevated Slab Preparation <ul><li>Prior to Formwork Construction </li></ul><ul><li>Prepare, submit, & approve Engineered S...
Elevated Slab Sequence <ul><li>Set Beam Bottoms (if required) </li></ul><ul><li>Erect Beam Sides </li></ul><ul><li>Form Sl...
Beam Formwork Form Beam Bottoms & Sides
Elevated Slab Sequence (cont.) <ul><li>Place Reinforcing </li></ul><ul><ul><li>Beam reinforcing </li></ul></ul><ul><ul><li...
Elevated Slab Sequence (cont.) Place, Consolidate, & Finish and Cure
Elevated Slab Sequence (cont.) <ul><li>Strip Formwork & Re-shore </li></ul><ul><li>Re-shore   (May Extend 3-4 Floors Below...
Elevated Slab Sequence <ul><li>The following group of photos shows the sequence for installation of a one-way elevated sla...
Columns Placed & Form Support (Scaffolding) Being Erected
Form Support (Scaffolding) Being Erected
Decking Support Beams Being Erected
Plywood Decking Being Erected
Plywood Decking and Beam Sides Being Erected
Plywood Decking and Beam Sides Being Erected
Plywood Decking & Beam Sides Erected
Plywood Decking and Beam Sides Erected on a Portion
Deck Support System (Scaffolding)
Beam Reinforcing Installation
Beam Reinforcing Installation
Beam Reinforcing Installation
Beam Reinforcing Installed
Beam & Deck Reinforcing Installed
Post-Tensioning Installation
Post-Tensioning Installation
Post-Tensioning Installed
Post-Tensioning Complete and MPE Sleeves Installed
Slab Poured & Cured Stripping & Post Shores
Stripping formwork
Stripping formwork
Formwork Stripped and Reshores Installed
Site Cast Post-tensioning Systems <ul><li>Can be used with any framing system </li></ul><ul><li>Reduce member size and/or ...
Lift-slab  (Note the slab supports at the columns)
Tilt-Up Walls cast Horizontally & “Tilted” into Place Commonly used in Warehouse, Distribution, Retail
The following group of photos shows the tilt-up  sequence used for construction of a Home Depot
Slab-on-Grade Placed
Formwork for Panels
Edge form & reinforcing installed Slab-on-Grade Placed
Opening Installed
Panels formed and reinforced
Panels Formed and Reinforced (Note the Inserts)
Inserts for Panel Braces, Steel Framing Anchorage,  & Panel Lifting Weld Plate for Joist Attachment Insert for Brace Inser...
Panels Poured
Lifting Inserts Stripped
Placement of Exterior Footing Panels SOG
Crane for Panel Installation
Braces Installed Prior to ‘tilting-up’ the panels
Attachment of Lifting Bracket
Panel being lifted (tilted into place)
Panel being lifted (tilted into place)
Panel being lifted (tilted into place)
Panel being lifted (tilted into place)
Panel being placed on shims set to proper elevation
Panels being braced
Panels braced
Panel grouted between footing & panel
Roof support structure anchored to panels
Subgrade prepared for panel structural connection to Slab-on-Grade
Slab-on-Grade perimeter poured to anchor the panel bottom.
Panels erected
Architectural Concrete  <ul><li>Concrete that is left exposed as finished interior or exterior surfaces. </li></ul>
 
Exposed ‘Architectural’ Concrete at the  University of Iowa
Exposed ‘Architectural’ Concrete at the  University of Iowa
Exposed ‘Architectural’ Concrete (Note the rough finish )
Architectural Concrete Finishes <ul><li>Exposed Aggregate  </li></ul><ul><ul><li>clean off paste  </li></ul></ul><ul><ul><...
 
Architectural Concrete Finishes <ul><li>Mechanically remove the paste  </li></ul><ul><ul><li>Sand Blast </li></ul></ul><ul...
Architectural Concrete Finishes <ul><li>Liners & Form mat’ls  </li></ul><ul><ul><li>Multiple # of Finishes </li></ul></ul>...
Architectural Concrete with “Bushhammered” Finish
Architectural Concrete with “Bushhammered” Finish
Simulated Stone Form Liner
Considerations / Challenges Rustication Location Form Tie Location
Considerations / Challenges Formwork Joint Formwork Blemishes
Considerations / Challenges Form Tie Holes
Considerations / Challenges Rusted Bar Supports
Patching
Designing Economically <ul><li>Of three elements - conc., reinf., formwork -  </li></ul><ul><ul><li>Formwork is generally ...
Site Cast Concrete & Building Codes <ul><li>Fire resistant </li></ul><ul><ul><li>Assuming adequate re-steel coverage </li>...
PRECAST STRUCTURAL & ARCHITECTURAL CONCRETE
 
 
Precast Hollowcore Planks/Decking Double Tee’s Single Tee’s
 
Prestressing process and finished product
Tarping  process for vapor curing of hollow cure planks Parking Garage  both  sitecast  and  precast  concrete
Correctional Facility in Texas
 
 
PRECAST CONCRETE  + POURED IN PLACECONCRETE <ul><li>PRETENSIONED </li></ul><ul><li>PRESTRESSED </li></ul>
<ul><li>Hollowcore Precast Concrete Plank </li></ul><ul><li>precast, prestressed concrete continous  </li></ul><ul><li>voi...
 
 
 
http:// www.pff.org.uk/PDFs/PFF_Hollowcore_and_prestressed.pdf
http://webs.demasiado.com/forjados/tipologia/prefa/hormigon/alveolar2.htm
CAST-IN-PLACE CONCRETE
http://www.archprecast.org/
 
 
Readily available colors.  But any color can be custom ordered.
Home Products Form Liners For architectural concrete surfaces    <ul><li>Wood Patterns   </li></ul><ul><li>Ribbed Patterns...
Form Liners For architectural concrete surfaces    A Guide Specification Form Liner &quot;Cut Sheet&quot; Detail
Ground-supported isolated concrete slab, cont’d <ul><li>Joints </li></ul><ul><ul><li>Control joints  </li></ul></ul><ul><u...
Section through control joint
Isolation joints & control joints in interior isolated slab
Section: isolated slab at load-bearing wall
Keyed construction joint in slab
Construction joint between column & footing
Horizontal construction joint in wall
Ground-supported isolated concrete slab, cont’d <ul><li>Joints </li></ul><ul><ul><li>Control joints  </li></ul></ul><ul><u...
Section through control joint
Isolation joints & control joints in interior isolated slab
Section: isolated slab at load-bearing wall
Keyed construction joint in slab
Construction joint between column & footing
Horizontal construction joint in wall
Beam and girders with slab floors increase spans, decrease economy
One-way and two-way slabs <ul><li>Slabs become thicker as spans increase </li></ul><ul><ul><li>Uneconomical when slab exce...
One-way joist floor viewed from below
Standard module formwork with beam reinforcement laid
Standard module pan sizes
Tapered pans, widened joist ends
Wide-module pans
Flat plate slab:  light occupancies, lower ceiling height, small, square bays
Flat slab has round column and drop panels
Section through hollow core slab
Precast concrete  hollow core slabs rest on site-cast concrete columns and beams
Section through double-tee floor
Double-tee units on precast inverted T-beams
Double-tee meet at column and beam
Inverted T-beam
Fire resistance of concrete members <ul><li>Thickness of member </li></ul><ul><li>Type of course aggregate </li></ul><ul><...
Building separation joint: Single column, site cast
Slip joint assembly
Slip joint assembly
The End
Upcoming SlideShare
Loading in...5
×

Concrete

26,233

Published on

Published in: Business
11 Comments
24 Likes
Statistics
Notes
No Downloads
Views
Total Views
26,233
On Slideshare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
5,615
Comments
11
Likes
24
Embeds 0
No embeds

No notes for slide
  • Course Aggregate approx. 3/4 of volume Structural strength heavily dependent on MUST BE: Strong, clean Resistant to freeze-thaw Chemically stable Properly Graded - Through SIEVES For proper “packing” of materials Largest must fit between Reinforcing Generally &lt; 3/4 of clear distance or 1/3 of slab thickness Fine Aggregate Portland Cement Water Admixtures (optional)
  • Course Aggregate approx. 3/4 of volume Structural strength heavily dependent on MUST BE: Strong, clean Resistant to freeze-thaw Chemically stable Properly Graded - Through SIEVES For proper “packing” of materials Largest must fit between Reinforcing Generally &lt; 3/4 of clear distance or 1/3 of slab thickness Fine Aggregate Portland Cement Water Admixtures (optional)
  • Specified by 28 Day Compressive Strength (psi) POUNDS PER SQUARE INCH CONCRETE IN THEORY CONTINUES TO HARDEN - TYPICALL 28 STRENGTH Primarily Determined By: STRENGTH PRIMARILY DETERMINED BY Amount of Cement PROPORTION/ AMOUNT OF CEMENT Water-Cement Ratio WEIGHT OF H2O / WEIGHT OF WATER NEED MORE WATER THAN WHAT IS NEEDED FOR HYDRATION - PLACEMENT AND FINISHING TOO MUCH WATER EXTRA WATER EVAPORATES LEAVES VOIDS - REDUCE STRENGTH CAN REDUCE WATER AND STILL GET WORKABILITY WITH ADMIXTURES (AIR, WATER REDUCING AGENTS) Proper Aggregate &amp; Gradation FINE AND COARSE AGGREGATE Strength Ranges: 2000 - 19,000+ psi COMMON - 3000, 4000, 5000, 6000psi
  • No Useful Tensile Strength GREAT IN COMPRESSION - LITTLE IN TENSION MOST STRUCTURAL MEMBERS IN BOTH NEED A MATERIAL FOR TENSION Reinforcing Steel - Tensile Strength Similar Coefficient of thermal expansion EXPAND AND CONTRACT SAME AMOUNT IF NOT, BREAK BOND Chemical Compatibility WON’T REACT W/ EACH OTHER &amp; PROTECTS STEEL FROM CORROSION Adhesion Of Concrete To Steel ADHERES WELL Theory of Steel Location “ Place reinforcing steel where the concrete is in tension” SIMPLE BEAM - IN BOTTOM MULTIPLE SPAN OVER SUPPORT @ TOP
  • Reinforcing Support Chairs or bolsters WIRE OR PLASTIC SOME WITH PROTECTIVE COATINGS ON FEET - SOME MADE OF SS Properly position the steel VARIOUS HEIGHTS POSITION REINFORCING OFF FORMWORK FOR DESIGN LOCATION AND MINIMUM CONCRETE POTECTION FOR FIRE RATINGS Special Coatings Galvanized or Epoxy Coated Exposure to Salts or Sea Water
  • Type of Reinforcing Grid of “wires” spaced 2-12 inches apart STEEL WIRE Specified by wire gauge and spacing Typical Use - Horizontal Surfaces ELEVATED SLABS SOG USED IN SOME WALLS Comes in Mats or Rolls MATS FOR LARGER GAUGE WIRE Advantage - Labor Savings BUT CAN’T HANDLE LARGE LOADINGS
  • Location of Tension Forces Changes Midspan - Bottom in Tension At Beam Supports - Top in Tension NOTE; SLAB REINFORCING PRINCIPALS SIMILAR LIKE A LARGE/WIDE BEAM EXCEPT OFTEN ADD TEMPERATURE STEEL
  • Reinforced Concrete Members AT ANY LOCATION IN THE MEMBER Part of the member in compression Part of the member in tension Over half of the concrete Not carrying any load, it’s: “ Holding” reinforcing in position &amp; Providing protective cover NOT GETTING THE FULL / EFFECTIVE USE OF THE MEMBER
  • Theory; “Place all the concrete of the member in compression” (take advantage of concrete’s compressive strength of the entire member) Advantages Increase the load carrying capacity or Reduce the member’s size
  • Stressing high strength steel stands either before or after concrete placement HIGH LOADS - 30,000 POUNDS/ STRAND Pretensioning Prior to concrete placement Generally performed at a “plant” HIGH LOADS - 30,000 POUNDS/ STRAND NEED SOMETHING TO JACK AGAINST Posttensioning After concrete placement (&amp; curing) Generally performed at the jobsite JACK AGAINST THE POURED/CURED CONCRETE
  • “ Level surface of concrete supported on the ground” Loading; Carries little or no structural stress except: Transmission of superimposed loads LIVE LOADS - TRAFIC, EQUIPMENT, STORAGE Thickness &amp; Reinforcing determined by: Continuity &amp; Capacity of the soil STRENGHT / BEARING CAPACITY CONTINUITY OF SOIL CAPACITY Loads imposed
  • Materials Custom Built of Lumber &amp; Plywood 2x &amp; PLYWOOD BUILT FOR LOCATION/USE/PROJECT “ STICK” BUILT” Prefabricated steel, fiberglass PARTICULAR PROJECT/USE HIGH REUSE - SHEARWALLS Standardized prefabricated panels ASSEMBLE FOR USE / STANDARD SIZES COMBINATION GANG FROMS MAY INCORPORATE SEVERAL Choice Depends on : Number of uses, Irregularity of wall HIGH USE - STEEL/FIBERGLAS/MDO Wall finish &amp; tie spacing, HIGH FINISH EXPOSED VS STRUCTURAL Availability &amp; Cost
  • Layout, Install one side, anchor, &amp; brace ANCHOR AND PLUMB Coat w/ Form Release EASE OF STRIPPING Install Reinforcing (or after form ties)
  • Install Form Ties “ Small diameter metal rods which hold the forms together (remain in the wall) MANY DIFFERENT TYPES HYDROSTATIC LOAD
  • One-Way Slab System “ Spans across parallel lines of support furnished by walls and/or beams” Limited Span Length One-Way Joist System Span Greater Distances, “Less Dead Load” DEAD LOAD OF SLAB / “TENSILE” CONCRETE Spaced ribs or joists w/ a thin top slab 3-5” SLAB Utilizes “pans” (metal, plastic, fiberglass) HIGH NUMBER OF REUSES Wide-Module or “Skip-Joist” System
  • Bay Spacing - Square or Irregular SQUARE - TWO WAY Span Length GREATER - JOIST VS FLAT SLAB Loading HIGHER LOADS - DEEPER SECTION Ceiling Treatment EXPOSED - FLAT SLAB Lateral Stability HIGH STABILITY - DEEPER SECTION
  • Prior to Formwork Construction Prepare, submit, &amp; approve Engineered Shop Drawings MAY TAKE WEEKS FORMWORK DESIGN FORMWORK SUPPORT RESHORE AMOUNT &amp; PLACEMENT ALL HAVE SOME IMPACT ON REQUIRED AMOUNT OF FORMWORK ALSO AFFECTED BY CONCRETE DESIGN &amp; SCHEDULE FRPS supporting walls/columns
  • Set Beam Bottoms (if required) Erect Beam Sides Form Slab OPTIONS SCAFFOLD - SINGLE / GANGED TABLES LARGE COST - MINIMZE LABOR Install MPE sleeves, block outs, “Cast in” electrical roughin PENETRATIONS THROUGH SLAB OTHER OPTION - CORE Clean “Deck” &amp; apply form release
  • Place Reinforcing Generally START FROM THE BOTTOM UP Beam reinforcing Slab bottom &amp; then top reinforcing
  • Strip Formwork Re-shore May Extend 3-4 Floors Below Re-shore Purpose Support Construction Load Support the Weight of the next Floor
  • Can be used with any framing system Reduce member size and/or Extend span capacity
  • Transcript of "Concrete"

    1. 1. CONCRETE CONSTRUCTION “ Concrete is a plastic material susceptible to the impressions of the imagination.” Frank Lloyd Wright
    2. 2. <ul><li>Rocklike Material </li></ul><ul><li>Ingredients </li></ul><ul><ul><li>Portland Cement </li></ul></ul><ul><ul><li>Course Aggregate </li></ul></ul><ul><ul><li>Fine Aggregate </li></ul></ul><ul><ul><li>Water </li></ul></ul><ul><ul><li>Admixtures (optional) </li></ul></ul>
    3. 3. Concrete Properties <ul><li>Versatile </li></ul><ul><li>Pliable when mixed </li></ul><ul><li>Strong & Durable </li></ul><ul><li>Does not Rust or Rot </li></ul><ul><li>Does Not Need a Coating </li></ul><ul><li>Resists Fire </li></ul>
    4. 4. Santiago Calatrava <ul><li>Generic Term </li></ul><ul><li>Man Made Product </li></ul><ul><li>Fine gray powder </li></ul><ul><li>Glue (Binder) </li></ul><ul><li>Curing & Hydration </li></ul>Portland Cement
    5. 5. Concrete <ul><li>APPROX. COST OF CONCRETE </li></ul><ul><li>25% - 30% concrete </li></ul><ul><ul><li>Placing concrete </li></ul></ul><ul><ul><li>Finishing concrete </li></ul></ul><ul><li>20% - 25% steel reinforcement </li></ul><ul><ul><li>Placing rebar </li></ul></ul><ul><ul><li>Making rebar cages, etc. </li></ul></ul><ul><li>50% - 55% formwork </li></ul><ul><ul><li>Percent even higher in highly complex shapes and forms </li></ul></ul>
    6. 6. Meditation Center for UNESCO Paris, France 1995 Tadao Ando, Architect “ a space of prayer for world peace” “ A rchitecture, to me , is an endless search of one’s engagement with oneself and with society From the construction of an abstract concept to its realization.” TADAO ANDO AIA Gold Medal 2003
    7. 7. TADAO ANDO Oyamazaki Villa Museum Yagi house
    8. 9. Hoover Dam <ul><li>A Brief History of Concrete </li></ul><ul><li>1824 - Aspidin patented Portland Cement - named after English Portland limestone </li></ul><ul><li>1850s; reinforced concrete </li></ul><ul><li>1900s applied to building construction </li></ul><ul><li>1920s; prestessed concrete </li></ul>
    9. 10. Concrete Properties <ul><li>Versatile </li></ul><ul><li>Pliable when mixed </li></ul><ul><li>Strong & Durable </li></ul><ul><li>Does not Rust or Rot </li></ul><ul><li>Does Not Need a Coating </li></ul><ul><li>Resists Fire </li></ul>
    10. 11. Portland Cement <ul><li>Generic Term </li></ul><ul><li>Man Made Product </li></ul><ul><li>Fine gray powder </li></ul><ul><li>Glue (Binder) </li></ul><ul><li>Curing - Hydration (a chemical process) </li></ul><ul><li>Air-entraining admixtures </li></ul><ul><li>Water-reducing admixtures </li></ul><ul><li>High range water-reducers - superplasticizers </li></ul><ul><li>Accelerating & retarding admixtures </li></ul><ul><li>Fly ash </li></ul><ul><li>Workability agents </li></ul><ul><li>Fibrous admixtures </li></ul><ul><li>Coloring agents </li></ul>Admixtures: used to alter concrete properties
    11. 12. Type III - High Early Type I - Normal <ul><li>Type I Normal (most applications) </li></ul><ul><li>Type II & V Moderate and High Sulfate Resistance </li></ul><ul><li>Type III High Early Strength </li></ul><ul><li>Type IV Low Heat of Hydration </li></ul><ul><li>Type 1A, IIA, IIIA - Air Entrained </li></ul>
    12. 13. Lightweight Aggregates <ul><li>Vermiculite is Substituted for sand / crushed stone </li></ul><ul><li>Structural Lightweight </li></ul><ul><ul><li>Density approx. 80% of reg. concrete </li></ul></ul><ul><ul><li>Purpose; Reduces dead weight </li></ul></ul><ul><ul><li>Often made from shale in Nonstructural Lightweight concrete </li></ul></ul><ul><ul><li>Density 20-25% of regular weight </li></ul></ul><ul><ul><li>Purpose: Insulating material - under roofs </li></ul></ul><ul><li>AIR ENTRAINING </li></ul><ul><li>Causes microscopic air </li></ul><ul><li>bubbles in concrete </li></ul><ul><li>Usually 5% - 8% of volume </li></ul><ul><li>Properties: </li></ul><ul><ul><li>Improved workability </li></ul></ul><ul><ul><li>Increased freeze-thaw </li></ul></ul><ul><ul><li>resistance </li></ul></ul><ul><li>Paving & Exposed concrete </li></ul>
    13. 14. <ul><li>Specified by: </li></ul><ul><li>28 Day Compressive Strength </li></ul><ul><ul><li>PSI - pounds per square inch </li></ul></ul><ul><li>Primarily Determined By: </li></ul><ul><ul><li>Amount of Cement </li></ul></ul><ul><ul><li>Water-Cement Ratio </li></ul></ul><ul><ul><li>Admixture(s) </li></ul></ul><ul><li>Strength Ranges: 2000 - 22,000+ psi </li></ul>Concrete Compressive Strength
    14. 15. <ul><li>Concrete with High W/C ratio is easier to place </li></ul><ul><li>Balance workability with desired qualities </li></ul>Water-Cement Ratio Concrete Compressive Strength
    15. 16. CONCRETE Vs Other Building Materials <ul><li>Material Tension Compression </li></ul><ul><li>Wood 700 psi 1,100 psi </li></ul><ul><li>Brick 0 psi 250 psi </li></ul><ul><li>Steel 22,000 psi 30,000 psi </li></ul><ul><li>tp 60,000psi </li></ul><ul><li>Concrete 0 psi 2,000 psi to </li></ul><ul><li>22,000+ psi </li></ul>
    16. 17. Sample collected Slump Measured Cone Removed and Concrete Allowed to ‘Slump’ Slump Cone Filled
    17. 18. Measuring the Slump Walls/columns 4-5 in. Beams 4-5 in. Slabs 3-4 in.
    18. 19. Test Cylinders Filled with a Sampling of the Concrete Mix
    19. 20. Test Cylinders Curing and then strength tested (upper right)
    20. 21. Concrete Placement (1929) <ul><li>Not a Liquid - an Unstable mixture </li></ul><ul><li>Will segregate if handled improperly </li></ul><ul><li>Deposit in Formwork (methods) </li></ul><ul><ul><li>Direct From the Truck </li></ul></ul><ul><ul><li>Bucket </li></ul></ul><ul><ul><li>Pump </li></ul></ul>Concrete Placement
    21. 22. Placement Today - not too much has changed!
    22. 23. Concrete Bucket being Filled
    23. 24. Placement of a Wall with a Crane & Concrete Bucket
    24. 25. Placement with a Concrete Pump
    25. 26. Placement with a Concrete Pump Placement with a Concrete Pump
    26. 27. Placement with a Conveyor
    27. 28. Improperly Consolidated - “Honeycomb” Segregation - Mix “Separates” Results - Non-uniformity & Unsatisfactory properties Common Causes Excessive Vibration Dropping From Excessive Heights Moving Concrete Horizontally
    28. 29. Improperly consolidated Concrete
    29. 30. Extensive Reinforcing Can Make Placement & Consolidation Difficult
    30. 31. “ Cold” Joint First lift hardened prior to the placement of the 2 nd lift
    31. 33. Formwork Materials Steel Wall Form Round Steel Column Form Wood - Panelized <ul><li>TYPES: </li></ul><ul><ul><li>Wood </li></ul></ul><ul><ul><li>Metal </li></ul></ul><ul><ul><li>Plastic/Fiberglass </li></ul></ul><ul><ul><li>Cardboard </li></ul></ul>
    32. 34. Concrete Reinforcing <ul><li>Concrete - No Useful Tensile Strength </li></ul><ul><li>Reinforcing Steel - Tensile Strength </li></ul><ul><ul><li>Similar Coefficient of thermal expansion </li></ul></ul><ul><ul><li>Chemical Compatibility </li></ul></ul><ul><ul><li>Adhesion Of Concrete To Steel </li></ul></ul><ul><li>Theory of Steel Location </li></ul><ul><li>“ Place reinforcing steel where the </li></ul><ul><li>concrete is in tension” </li></ul>Sizes Eleven Standard Diameters 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 18 Number refers to 1/8ths of an inch Grades 40, 50, 60 Steel Yield Strength (in thousands)
    33. 35. Reinforcing Markings <ul><li>Concrete is used in conjunction with steel to provide tensile strength </li></ul><ul><ul><li>Thermal expansion the same for both materials </li></ul></ul><ul><ul><ul><li>No stress created due to differential expansion and contraction </li></ul></ul></ul><ul><ul><li>Steel bonds well to concrete </li></ul></ul><ul><ul><ul><li>Chemical bond </li></ul></ul></ul><ul><ul><ul><li>Mechanical bond, enhanced by using deformed steel rebar </li></ul></ul></ul><ul><ul><li>Reinforcing steel commonly available in </li></ul></ul><ul><ul><ul><li>40,000 psi (grade 40) - used when bars must be field bent </li></ul></ul></ul><ul><ul><ul><li>60,000 psi (grade 60) - most common, difficult to bend </li></ul></ul></ul>
    34. 37. Reinforcing Support <ul><li>Chairs or bolsters </li></ul><ul><li>Properly position the steel </li></ul>
    35. 39. Reinforcing Special Coatings <ul><li>Galvanized or Epoxy Coated </li></ul><ul><li>Exposure to Salts or Sea Water </li></ul>Epoxy Coating
    36. 40. WWF – Sheet (mat)
    37. 41. Welded Wire Fabric (WWF) <ul><li>Type of Reinforcing </li></ul><ul><li>Grid of “wires” spaced 2-12 inches apart </li></ul><ul><li>Specified by wire gauge and spacing </li></ul><ul><li>Typical Use - Horizontal Surfaces </li></ul><ul><li>Comes in Mats or Rolls </li></ul><ul><li>Advantage - Labor Savings </li></ul>
    38. 42. Wall Reinforcing being secured with Wire Ties
    39. 43. Long Bridge Pier Requiring Reinforcing Splicing
    40. 44. Reinforcing Stirrups <ul><li>Position Beam Reinforcing </li></ul><ul><li>Resist Diagonal Forces / Resist Cracking </li></ul>
    41. 45. Reinforcing a Continuous Concrete Beam <ul><li>Most Beams are not simple span beams </li></ul><ul><li>Location of Tension Forces Changes </li></ul><ul><li>Midspan - Bottom in Tension </li></ul><ul><li>At Beam Supports - Top in Tension </li></ul>
    42. 46. Conventionally Reinforced Concrete <ul><li>Reinforced Concrete Members </li></ul><ul><li>Part of the member in compression </li></ul><ul><li>Part of the member in tension </li></ul><ul><li>Over half of the concrete </li></ul><ul><li>Not carrying any load, it’s: Holding reinforcing in position & providing protective cover </li></ul>
    43. 50. Prestressing <ul><li>Theory; “Place all the concrete of the member in compression” (take advantage of concrete’s compressive strength of the entire member) </li></ul><ul><li>Advantages </li></ul><ul><ul><li>Increase the load carrying capacity </li></ul></ul><ul><ul><li>Increase span length, or </li></ul></ul><ul><ul><li>Reduce the member’s size </li></ul></ul>
    44. 51. Prestressing - Pretensioning
    45. 52. Prestressing - Posttensioning <ul><ul><li>Cables positioned prior to concrete placement </li></ul></ul><ul><ul><li>Stressed after concrete placement (& curing) </li></ul></ul><ul><ul><li>Generally performed </li></ul></ul><ul><ul><ul><li>at the jobsite </li></ul></ul></ul>
    46. 53. Post-Tension Cable Strands or Coils <ul><li>Install (position) unstressed steel strands </li></ul><ul><ul><li>Often Draped </li></ul></ul><ul><ul><li>Positioned to follow tensile forces </li></ul></ul><ul><li>Place and Cure Concrete </li></ul><ul><li>Stress steel stands w/ hydraulic jack </li></ul><ul><ul><li>From one or both ends of the stand </li></ul></ul><ul><li>Anchor the ends of the stands </li></ul><ul><li>Trim cables (& patch) </li></ul>Coated / Sheathed to prevent bonding and Precut to Length
    47. 54. Plastic-sheathed to prevent bonding to concrete (note the cable is lubricated)
    48. 55. Draped to be positioned in “Tension” area of slab
    49. 56. Cables can be ‘Bundled’
    50. 57. Cable attachment to Edge Form
    51. 58. Hydraulic Jacking Machine to Stress Cables
    52. 59. Elongated Strands after Stressing (Jacking)
    53. 60. Slab-on-Grade (SOG) <ul><li>Level surface of concrete supported on the ground </li></ul>
    54. 61. <ul><ul><li>Reinforcing Purpose - Prevent cracking from </li></ul></ul><ul><ul><ul><li>Shrinkage, </li></ul></ul></ul><ul><ul><ul><li>Temperature stresses </li></ul></ul></ul><ul><ul><ul><li>Concentrated loads, </li></ul></ul></ul><ul><ul><ul><li>Frost heaving </li></ul></ul></ul><ul><ul><ul><li>Ground Settlement </li></ul></ul></ul>Slab-on-Grade with Vapor Barrier & WWF (Note lapping of WWF)
    55. 62. Placement with a Pump
    56. 63. Laser-screed Often used for ‘superflat’ floors
    57. 64. Finishing Rotary Power Trowel (Rider - Double Blade) Finishing Rotary Power Trowel (Walk behind)
    58. 65. Casting a SOG (cont.) <ul><li>Joints </li></ul>Control Joint (tooled) Control Joint (sawed) Note the Broom Finish
    59. 66. Snap ties
    60. 67. Ties inserted through pre-drilled holes
    61. 68. Clamp placed over endloop of tie
    62. 69. Waler placed over clamp and locked down
    63. 70. Vertical stiffback attached to assembly
    64. 71. Stiffback locked in place
    65. 72. Completed connection: plywood, waler, tie & stiffback
    66. 73. Casting a Concrete Wall <ul><li>Materials </li></ul><ul><li>Stick Built of Lumber & Plywood </li></ul><ul><li>Standardized prefabricated panels </li></ul><ul><li>Prefabricated steel, fiberglass </li></ul><ul><li>Insulated Concrete Forms </li></ul><ul><li>Choice Depends on: </li></ul><ul><ul><li>Number of uses, Irregularity of wall </li></ul></ul><ul><ul><li>Wall finish & tie spacing, </li></ul></ul><ul><ul><li>Availability & Cost </li></ul></ul>
    67. 74. Panelized Systems <ul><li>Built in-Place with: </li></ul><ul><ul><li>Panelized Sections </li></ul></ul><ul><ul><li>Multiple Sizes </li></ul></ul><ul><ul><li>Rent or Buy </li></ul></ul><ul><li>Materials: (often) </li></ul><ul><ul><li>Higher Quality Facing Mat’l </li></ul></ul><ul><ul><li>Metal “support system” </li></ul></ul><ul><ul><li>Ties appropriate for the “system” </li></ul></ul><ul><li>Tie Spacing </li></ul><ul><ul><li>Spaced @ or > “Stick built” </li></ul></ul><ul><li>Uses </li></ul><ul><ul><li>Multiple Reuses </li></ul></ul><ul><ul><li>Regular shapes </li></ul></ul>
    68. 75. Panelized System with its Own Tires Panelized System
    69. 76. Metal & Fiberglass <ul><li>Often Built: </li></ul><ul><ul><li>Specifically for a project </li></ul></ul><ul><ul><li>Examples: </li></ul></ul><ul><ul><ul><li>Multi-level Shear Walls </li></ul></ul></ul><ul><ul><ul><li>Exposed /Architectural </li></ul></ul></ul><ul><li>Materials: (often) </li></ul><ul><ul><li>High Quality Facing Mat’l </li></ul></ul><ul><ul><li>Higher “quality / strength” Ties </li></ul></ul><ul><li>Tie Spacing </li></ul><ul><ul><li>Larger spacing </li></ul></ul><ul><li>Uses </li></ul><ul><ul><li>Multiple Reuses </li></ul></ul><ul><ul><li>Irregular or Regular shapes </li></ul></ul>
    70. 77. Gang Forms <ul><li>Assemble formwork into large sections </li></ul><ul><ul><li>Stick built, Panels, or any other system </li></ul></ul><ul><ul><li>Minimizes labor, increases equipment requirements, </li></ul></ul><ul><ul><li>Increases speed of construction </li></ul></ul><ul><ul><li>Generally used only for large, similar & repeated wall elements </li></ul></ul>
    71. 78. Gang Forms
    72. 79. Casting A Concrete Wall (cont) <ul><li>Layout, Install one side, anchor, & brace </li></ul><ul><li>Coat w/ Form Release </li></ul>
    73. 80. Casting A Concrete Wall (cont) <ul><li>Install Form Ties </li></ul><ul><ul><li>“ Small diameter metal rods which hold the forms together (generally remain in the wall) </li></ul></ul>Snap Tie
    74. 82. Column Form Materials
    75. 83. Panelized Formwork
    76. 84. Formed and Braced
    77. 85. Sonotube – Waxed Cardboard Column Form Material
    78. 86. Stripped Column Note the spiral formwork markings
    79. 87. Elevated Framing Systems <ul><li>One-Way System </li></ul><ul><ul><li>Spans across parallel lines of support furnished by walls and/or beams </li></ul></ul><ul><li>Two-Way System </li></ul><ul><ul><li>Spans supports running in both directions </li></ul></ul>
    80. 88. One Way Elevated Framing Systems <ul><li>One-Way Flat-Slab </li></ul><ul><ul><li>Limited Depth </li></ul></ul><ul><ul><li>Limited Spans </li></ul></ul><ul><ul><li>Shorter Story Hghts </li></ul></ul><ul><ul><li>Underside often exposed </li></ul></ul>
    81. 89. One Way Elevated Framing Systems <ul><li>One-Way Joist System </li></ul><ul><ul><li>Span Greater Distances, Less Dead Load </li></ul></ul><ul><ul><li>Spaced ribs or joists w/ a thin top slab </li></ul></ul><ul><ul><li>Utilizes pans (metal, plastic, fiberglass) </li></ul></ul>
    82. 90. One Way Elevated Framing Systems <ul><li>Wide-Module or Skip-Joist System </li></ul>
    83. 91. One-Way Slab & Beam
    84. 92. One-Way Slab & Beam
    85. 93. Elevated Framing Systems <ul><li>Two-Way Framing Systems </li></ul><ul><ul><li>Often more economical than One-Way if: </li></ul></ul><ul><ul><ul><li>Bay spacing (columns) square </li></ul></ul></ul><ul><ul><li>Can be accomplished with a flat slab, joists, beams, etc. </li></ul></ul><ul><ul><li>Often associated with higher loadings </li></ul></ul>
    86. 94. Two-Way Flat Slab <ul><li>Flat slab w/ reinforcing beams </li></ul><ul><li>With, or w/o Capitals or drop panels </li></ul>Drop Panel Drop Panel w/ Capital Flat Plate
    87. 95. Two-Way Waffle Slab
    88. 96. Elevated Framing Systems Factors to Consider <ul><li>Bay Spacing - Square or Irregular </li></ul><ul><li>Span Length </li></ul><ul><li>Loading </li></ul><ul><li>Ceiling Treatment </li></ul><ul><li>Lateral Stability </li></ul>
    89. 97. Elevated Slab Preparation <ul><li>Prior to Formwork Construction </li></ul><ul><li>Prepare, submit, & approve Engineered Shop Drawings </li></ul><ul><li>FRPS supporting walls/columns </li></ul>
    90. 98. Elevated Slab Sequence <ul><li>Set Beam Bottoms (if required) </li></ul><ul><li>Erect Beam Sides </li></ul><ul><li>Form Slab </li></ul>
    91. 99. Beam Formwork Form Beam Bottoms & Sides
    92. 100. Elevated Slab Sequence (cont.) <ul><li>Place Reinforcing </li></ul><ul><ul><li>Beam reinforcing </li></ul></ul><ul><ul><li>Slab bottom & </li></ul></ul><ul><ul><li>Then top reinforcing </li></ul></ul>
    93. 101. Elevated Slab Sequence (cont.) Place, Consolidate, & Finish and Cure
    94. 102. Elevated Slab Sequence (cont.) <ul><li>Strip Formwork & Re-shore </li></ul><ul><li>Re-shore (May Extend 3-4 Floors Below) </li></ul><ul><li>Re-shore Purpose - Support </li></ul><ul><li>Construction Load </li></ul><ul><li>Weight of the next Floor </li></ul>
    95. 103. Elevated Slab Sequence <ul><li>The following group of photos shows the sequence for installation of a one-way elevated slab. </li></ul><ul><li>(Slab & Beam with Reinforcing & Post-Tensioning) </li></ul>
    96. 104. Columns Placed & Form Support (Scaffolding) Being Erected
    97. 105. Form Support (Scaffolding) Being Erected
    98. 106. Decking Support Beams Being Erected
    99. 107. Plywood Decking Being Erected
    100. 108. Plywood Decking and Beam Sides Being Erected
    101. 109. Plywood Decking and Beam Sides Being Erected
    102. 110. Plywood Decking & Beam Sides Erected
    103. 111. Plywood Decking and Beam Sides Erected on a Portion
    104. 112. Deck Support System (Scaffolding)
    105. 113. Beam Reinforcing Installation
    106. 114. Beam Reinforcing Installation
    107. 115. Beam Reinforcing Installation
    108. 116. Beam Reinforcing Installed
    109. 117. Beam & Deck Reinforcing Installed
    110. 118. Post-Tensioning Installation
    111. 119. Post-Tensioning Installation
    112. 120. Post-Tensioning Installed
    113. 121. Post-Tensioning Complete and MPE Sleeves Installed
    114. 122. Slab Poured & Cured Stripping & Post Shores
    115. 123. Stripping formwork
    116. 124. Stripping formwork
    117. 125. Formwork Stripped and Reshores Installed
    118. 126. Site Cast Post-tensioning Systems <ul><li>Can be used with any framing system </li></ul><ul><li>Reduce member size and/or </li></ul><ul><li>Extend span capacity </li></ul>
    119. 127. Lift-slab (Note the slab supports at the columns)
    120. 128. Tilt-Up Walls cast Horizontally & “Tilted” into Place Commonly used in Warehouse, Distribution, Retail
    121. 129. The following group of photos shows the tilt-up sequence used for construction of a Home Depot
    122. 130. Slab-on-Grade Placed
    123. 131. Formwork for Panels
    124. 132. Edge form & reinforcing installed Slab-on-Grade Placed
    125. 133. Opening Installed
    126. 134. Panels formed and reinforced
    127. 135. Panels Formed and Reinforced (Note the Inserts)
    128. 136. Inserts for Panel Braces, Steel Framing Anchorage, & Panel Lifting Weld Plate for Joist Attachment Insert for Brace Insert for Lifting Bracket
    129. 137. Panels Poured
    130. 138. Lifting Inserts Stripped
    131. 139. Placement of Exterior Footing Panels SOG
    132. 140. Crane for Panel Installation
    133. 141. Braces Installed Prior to ‘tilting-up’ the panels
    134. 142. Attachment of Lifting Bracket
    135. 143. Panel being lifted (tilted into place)
    136. 144. Panel being lifted (tilted into place)
    137. 145. Panel being lifted (tilted into place)
    138. 146. Panel being lifted (tilted into place)
    139. 147. Panel being placed on shims set to proper elevation
    140. 148. Panels being braced
    141. 149. Panels braced
    142. 150. Panel grouted between footing & panel
    143. 151. Roof support structure anchored to panels
    144. 152. Subgrade prepared for panel structural connection to Slab-on-Grade
    145. 153. Slab-on-Grade perimeter poured to anchor the panel bottom.
    146. 154. Panels erected
    147. 155. Architectural Concrete <ul><li>Concrete that is left exposed as finished interior or exterior surfaces. </li></ul>
    148. 157. Exposed ‘Architectural’ Concrete at the University of Iowa
    149. 158. Exposed ‘Architectural’ Concrete at the University of Iowa
    150. 159. Exposed ‘Architectural’ Concrete (Note the rough finish )
    151. 160. Architectural Concrete Finishes <ul><li>Exposed Aggregate </li></ul><ul><ul><li>clean off paste </li></ul></ul><ul><ul><li>& expose aggregate </li></ul></ul><ul><li>Key </li></ul><ul><ul><li>Aggregate choice </li></ul></ul><ul><ul><li>Mix Placement </li></ul></ul>
    152. 162. Architectural Concrete Finishes <ul><li>Mechanically remove the paste </li></ul><ul><ul><li>Sand Blast </li></ul></ul><ul><ul><li>Bushhammer </li></ul></ul>
    153. 163. Architectural Concrete Finishes <ul><li>Liners & Form mat’ls </li></ul><ul><ul><li>Multiple # of Finishes </li></ul></ul>Form Liner & Bush-hammer
    154. 164. Architectural Concrete with “Bushhammered” Finish
    155. 165. Architectural Concrete with “Bushhammered” Finish
    156. 166. Simulated Stone Form Liner
    157. 167. Considerations / Challenges Rustication Location Form Tie Location
    158. 168. Considerations / Challenges Formwork Joint Formwork Blemishes
    159. 169. Considerations / Challenges Form Tie Holes
    160. 170. Considerations / Challenges Rusted Bar Supports
    161. 171. Patching
    162. 172. Designing Economically <ul><li>Of three elements - conc., reinf., formwork - </li></ul><ul><ul><li>Formwork is generally the most expensive element </li></ul></ul><ul><ul><li>Formwork - high % of labor </li></ul></ul><ul><li>Economies - simplification & standardization </li></ul><ul><ul><li>Identical bay spacing </li></ul></ul><ul><ul><li>Flat plate - when possible </li></ul></ul><ul><ul><li>Standardize column & beam sizes </li></ul></ul>
    163. 173. Site Cast Concrete & Building Codes <ul><li>Fire resistant </li></ul><ul><ul><li>Assuming adequate re-steel coverage </li></ul></ul><ul><ul><li>Most uses - Unlimited Height & Area </li></ul></ul><ul><li>Resistance to lateral loading </li></ul><ul><ul><li>Rigid joints </li></ul></ul>
    164. 174. PRECAST STRUCTURAL & ARCHITECTURAL CONCRETE
    165. 177. Precast Hollowcore Planks/Decking Double Tee’s Single Tee’s
    166. 179. Prestressing process and finished product
    167. 180. Tarping process for vapor curing of hollow cure planks Parking Garage both sitecast and precast concrete
    168. 181. Correctional Facility in Texas
    169. 184. PRECAST CONCRETE + POURED IN PLACECONCRETE <ul><li>PRETENSIONED </li></ul><ul><li>PRESTRESSED </li></ul>
    170. 185. <ul><li>Hollowcore Precast Concrete Plank </li></ul><ul><li>precast, prestressed concrete continous </li></ul><ul><li>voids reduce weight, cost </li></ul><ul><li>electrical or mechanical conduits </li></ul><ul><li>top surfaces can be prepared for the installation of floor covering </li></ul><ul><li>underside can be used as a finished ceilling </li></ul><ul><li>excellent fire resistance </li></ul>SPANCRETE
    171. 189. http:// www.pff.org.uk/PDFs/PFF_Hollowcore_and_prestressed.pdf
    172. 190. http://webs.demasiado.com/forjados/tipologia/prefa/hormigon/alveolar2.htm
    173. 191. CAST-IN-PLACE CONCRETE
    174. 192. http://www.archprecast.org/
    175. 195. Readily available colors. But any color can be custom ordered.
    176. 196. Home Products Form Liners For architectural concrete surfaces   <ul><li>Wood Patterns </li></ul><ul><li>Ribbed Patterns </li></ul><ul><li>Fractured Patterns </li></ul><ul><li>Other Patterns </li></ul><ul><li>Form Liner Materials </li></ul>Home | Products | MSDS Index | Contact Us | International | Careers | Site Map | Search © 2006 SYMONS                                                                      BY DAYTON SUPERIOR 200 East Touhy Avenue Des Plaines, IL 60018 800-800-SYMONS [email_address]                                     Wood Patterns <ul><li>Patterns include: </li></ul><ul><li>4&quot; Wide Aged Cedar </li></ul><ul><li>2&quot; Wide Aged Wood </li></ul><ul><li>4&quot; Wide Aged Wood </li></ul><ul><li>Barnwood </li></ul><ul><li>6&quot; Wide Cedar </li></ul><ul><li>Cedar Stake </li></ul><ul><li>Grooved Barnwood </li></ul><ul><li>Rough-Sawn Plank </li></ul><ul><li>Extra Rough-Sawn </li></ul><ul><li>1½&quot; Variable Sawn </li></ul><ul><li>Tongue and Groove </li></ul>
    177. 197. Form Liners For architectural concrete surfaces   A Guide Specification Form Liner &quot;Cut Sheet&quot; Detail
    178. 198. Ground-supported isolated concrete slab, cont’d <ul><li>Joints </li></ul><ul><ul><li>Control joints </li></ul></ul><ul><ul><ul><li>accommodate shrinkage, reduce random cracking </li></ul></ul></ul><ul><ul><ul><li>Extend about 1/4 of depth of slab </li></ul></ul></ul><ul><ul><ul><li>Typically 1/8 inch wide, sawcut or tooled </li></ul></ul></ul><ul><ul><li>Isolation joints </li></ul></ul><ul><ul><ul><li>Isolates slab from structural components </li></ul></ul></ul><ul><ul><ul><li>full depth of slab </li></ul></ul></ul><ul><ul><li>Construction joint (cold joint) </li></ul></ul><ul><ul><ul><li>Non-movement joint </li></ul></ul></ul><ul><ul><ul><li>Used where concrete cannot be placed in one operation </li></ul></ul></ul><ul><ul><ul><li>Shear key </li></ul></ul></ul><ul><ul><ul><ul><li>prevents differential movement </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Assures aggregate interlock </li></ul></ul></ul></ul>
    179. 199. Section through control joint
    180. 200. Isolation joints & control joints in interior isolated slab
    181. 201. Section: isolated slab at load-bearing wall
    182. 202. Keyed construction joint in slab
    183. 203. Construction joint between column & footing
    184. 204. Horizontal construction joint in wall
    185. 205. Ground-supported isolated concrete slab, cont’d <ul><li>Joints </li></ul><ul><ul><li>Control joints </li></ul></ul><ul><ul><ul><li>accommodate shrinkage, reduce random cracking </li></ul></ul></ul><ul><ul><ul><li>Extend about 1/4 of depth of slab </li></ul></ul></ul><ul><ul><ul><li>Typically 1/8 inch wide, sawcut or tooled </li></ul></ul></ul><ul><ul><li>Isolation joints </li></ul></ul><ul><ul><ul><li>Isolates slab from structural components </li></ul></ul></ul><ul><ul><ul><li>full depth of slab </li></ul></ul></ul><ul><ul><li>Construction joint (cold joint) </li></ul></ul><ul><ul><ul><li>Non-movement joint </li></ul></ul></ul><ul><ul><ul><li>Used where concrete cannot be placed in one operation </li></ul></ul></ul><ul><ul><ul><li>Shear key </li></ul></ul></ul><ul><ul><ul><ul><li>prevents differential movement </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Assures aggregate interlock </li></ul></ul></ul></ul>
    186. 206. Section through control joint
    187. 207. Isolation joints & control joints in interior isolated slab
    188. 208. Section: isolated slab at load-bearing wall
    189. 209. Keyed construction joint in slab
    190. 210. Construction joint between column & footing
    191. 211. Horizontal construction joint in wall
    192. 212. Beam and girders with slab floors increase spans, decrease economy
    193. 213. One-way and two-way slabs <ul><li>Slabs become thicker as spans increase </li></ul><ul><ul><li>Uneconomical when slab exceeds 8 inches </li></ul></ul><ul><ul><li>Dimensions maximized </li></ul></ul><ul><ul><ul><li>One-way slab, 16 fts wide </li></ul></ul></ul><ul><ul><ul><li>Two-way, square slab 24 ft. wide </li></ul></ul></ul><ul><li>Beams and girders can be added to slabs to increase spans & reduce slab thickness </li></ul><ul><ul><li>Beam and girder sizes vary </li></ul></ul><ul><ul><ul><li>Increase cost and complexity of formwork </li></ul></ul></ul><ul><ul><li>Not commonly used due to lack of economy </li></ul></ul>
    194. 214. One-way joist floor viewed from below
    195. 215. Standard module formwork with beam reinforcement laid
    196. 216. Standard module pan sizes
    197. 217. Tapered pans, widened joist ends
    198. 218. Wide-module pans
    199. 219. Flat plate slab: light occupancies, lower ceiling height, small, square bays
    200. 220. Flat slab has round column and drop panels
    201. 221. Section through hollow core slab
    202. 222. Precast concrete hollow core slabs rest on site-cast concrete columns and beams
    203. 223. Section through double-tee floor
    204. 224. Double-tee units on precast inverted T-beams
    205. 225. Double-tee meet at column and beam
    206. 226. Inverted T-beam
    207. 227. Fire resistance of concrete members <ul><li>Thickness of member </li></ul><ul><li>Type of course aggregate </li></ul><ul><li>Covering of reinforcement and prestressing tendons </li></ul>
    208. 228. Building separation joint: Single column, site cast
    209. 229. Slip joint assembly
    210. 230. Slip joint assembly
    211. 231. The End

    ×