0
Upcoming SlideShare
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Standard text messaging rates apply

# Solving Equations (Algebra 2)

10,774

Published on

Students review properties of equality, used for solving equations.

Students review properties of equality, used for solving equations.

Published in: Technology, Education
3 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

Views
Total Views
10,774
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
381
0
Likes
3
Embeds 0
No embeds

No notes for slide

### Transcript

• 1. Solving Equations
• 2. You'll Learn To: Solving Equations Vocabulary 1) open sentence 2) equation 3) solution
• Translate verbal expressions into algebraic expression and equations and vice versa.
• Solve equations using the properties of equality.
• 3. A mathematical sentence (expression) containing one or more variables is called an open sentence . Solving Equations
• 4. A mathematical sentence (expression) containing one or more variables is called an open sentence . A mathematical sentence stating that two mathematical expressions are equal is called an _________. Solving Equations
• 5. A mathematical sentence (expression) containing one or more variables is called an open sentence . A mathematical sentence stating that two mathematical expressions are equal is called an _________. equation Solving Equations
• 6. A mathematical sentence (expression) containing one or more variables is called an open sentence . A mathematical sentence stating that two mathematical expressions are equal is called an _________. equation Open sentences are neither true nor false until the variables have been replaced by numbers. Solving Equations
• 7. A mathematical sentence (expression) containing one or more variables is called an open sentence . A mathematical sentence stating that two mathematical expressions are equal is called an _________. equation Open sentences are neither true nor false until the variables have been replaced by numbers. Each replacement that results in a true statement is called a ________ of the open sentence. Solving Equations
• 8. Solving Equations A mathematical sentence (expression) containing one or more variables is called an open sentence . A mathematical sentence stating that two mathematical expressions are equal is called an _________. equation Open sentences are neither true nor false until the variables have been replaced by numbers. Each replacement that results in a true statement is called a ________ of the open sentence. solution
• 9. To solve equations, we can use properties of equality. Some of these equivalence relations are listed in the following table. Solving Equations
• 10. To solve equations, we can use properties of equality. Some of these equivalence relations are listed in the following table. Reflexive Symmetric Transitive Substitution Solving Equations Properties of Equality Property Symbol Example
• 11. To solve equations, we can use properties of equality. Some of these equivalence relations are listed in the following table. Reflexive Symmetric Transitive Substitution For any real number a , a = a , Solving Equations Properties of Equality Property Symbol Example
• 12. To solve equations, we can use properties of equality. Some of these equivalence relations are listed in the following table. Reflexive Symmetric Transitive Substitution For any real number a , a = a , – 5 + y = – 5 + y Solving Equations Properties of Equality Property Symbol Example
• 13. To solve equations, we can use properties of equality. Some of these equivalence relations are listed in the following table. Reflexive Symmetric Transitive Substitution For any real number a , a = a , For all real numbers a and b , If a = b, then b = a – 5 + y = – 5 + y Solving Equations Properties of Equality Property Symbol Example
• 14. To solve equations, we can use properties of equality. Some of these equivalence relations are listed in the following table. Reflexive Symmetric Transitive Substitution For any real number a , a = a , For all real numbers a and b , If a = b, then b = a – 5 + y = – 5 + y If 3 = 5x – 6, then 5x – 6 = 3 Solving Equations Properties of Equality Property Symbol Example
• 15. To solve equations, we can use properties of equality. Some of these equivalence relations are listed in the following table. Reflexive Symmetric Transitive Substitution For any real number a , a = a , For all real numbers a and b , If a = b, then For all real numbers a , b , and c . If a = b, and b = c, then b = a a = c – 5 + y = – 5 + y If 3 = 5x – 6, then 5x – 6 = 3 Solving Equations Properties of Equality Property Symbol Example
• 16. To solve equations, we can use properties of equality. Some of these equivalence relations are listed in the following table. Reflexive Symmetric Transitive Substitution For any real number a , a = a , For all real numbers a and b , If a = b, then For all real numbers a , b , and c . If a = b, and b = c, then b = a a = c – 5 + y = – 5 + y If 3 = 5x – 6, then 5x – 6 = 3 If 2x + 1 = 7 and 7 = 5x – 8 then, 2x + 1 = 5x – 8 Solving Equations Properties of Equality Property Symbol Example
• 17. To solve equations, we can use properties of equality. Some of these equivalence relations are listed in the following table. Reflexive Symmetric Transitive Substitution For any real number a , a = a , For all real numbers a and b , If a = b, then For all real numbers a , b , and c . If a = b, and b = c, then If a = b, then a may be replaced by b and b may be replaced by a. b = a a = c – 5 + y = – 5 + y If 3 = 5x – 6, then 5x – 6 = 3 If 2x + 1 = 7 and 7 = 5x – 8 then, 2x + 1 = 5x – 8 Solving Equations Properties of Equality Property Symbol Example
• 18. To solve equations, we can use properties of equality. Some of these equivalence relations are listed in the following table. Reflexive Symmetric Transitive Substitution For any real number a , a = a , For all real numbers a and b , If a = b, then For all real numbers a , b , and c . If a = b, and b = c, then If a = b, then a may be replaced by b and b may be replaced by a. b = a a = c – 5 + y = – 5 + y If 3 = 5x – 6, then 5x – 6 = 3 If 2x + 1 = 7 and 7 = 5x – 8 then, 2x + 1 = 5x – 8 If (4 + 5) m = 18 then 9m = 18 Solving Equations Properties of Equality Property Symbol Example
• 19. Sometimes an equation can be solved by adding the same number to each side or by subtracting the same number from each side or by multiplying or dividing each side by the same number. Solving Equations
• 20. Sometimes an equation can be solved by adding the same number to each side or by subtracting the same number from each side or by multiplying or dividing each side by the same number. Addition and Subtraction Properties of Equality For any real numbers a , b , and c , if a = b, then Solving Equations
• 21. Sometimes an equation can be solved by adding the same number to each side or by subtracting the same number from each side or by multiplying or dividing each side by the same number. Addition and Subtraction Properties of Equality For any real numbers a , b , and c , if a = b, then a = b + c + c Solving Equations
• 22. Sometimes an equation can be solved by adding the same number to each side or by subtracting the same number from each side or by multiplying or dividing each side by the same number. Addition and Subtraction Properties of Equality For any real numbers a , b , and c , if a = b, then a = b + c + c a = b - c - c Solving Equations
• 23. Sometimes an equation can be solved by adding the same number to each side or by subtracting the same number from each side or by multiplying or dividing each side by the same number. Addition and Subtraction Properties of Equality For any real numbers a , b , and c , if a = b, then a = b + c + c a = b - c - c Example: If x – 4 = 5, then Solving Equations
• 24. Sometimes an equation can be solved by adding the same number to each side or by subtracting the same number from each side or by multiplying or dividing each side by the same number. Addition and Subtraction Properties of Equality For any real numbers a , b , and c , if a = b, then a = b + c + c a = b - c - c Example: If x – 4 = 5, then x – 4 = 5 + 4 + 4 Solving Equations
• 25. Sometimes an equation can be solved by adding the same number to each side or by subtracting the same number from each side or by multiplying or dividing each side by the same number. Addition and Subtraction Properties of Equality For any real numbers a , b , and c , if a = b, then a = b + c + c a = b - c - c Example: If x – 4 = 5, then x – 4 = 5 + 4 + 4 If n + 3 = –11, then Solving Equations
• 26. Sometimes an equation can be solved by adding the same number to each side or by subtracting the same number from each side or by multiplying or dividing each side by the same number. Addition and Subtraction Properties of Equality For any real numbers a , b , and c , if a = b, then a = b + c + c a = b - c - c Example: If x – 4 = 5, then x – 4 = 5 + 4 + 4 If n + 3 = –11, then n + 3 = –11 – 3 – 3 Solving Equations
• 27. Sometimes an equation can be solved by adding the same number to each side or by subtracting the same number from each side or by multiplying or dividing each side by the same number. Solving Equations
• 28. Sometimes an equation can be solved by adding the same number to each side or by subtracting the same number from each side or by multiplying or dividing each side by the same number. Multiplication and Division Properties of Equality For any real numbers a , b , and c , if a = b, then Solving Equations
• 29. Sometimes an equation can be solved by adding the same number to each side or by subtracting the same number from each side or by multiplying or dividing each side by the same number. Multiplication and Division Properties of Equality For any real numbers a , b , and c , if a = b, then a = b · c · c Solving Equations
• 30. Sometimes an equation can be solved by adding the same number to each side or by subtracting the same number from each side or by multiplying or dividing each side by the same number. Multiplication and Division Properties of Equality For any real numbers a , b , and c , if a = b, then a = b · c · c a = b Solving Equations c c
• 31. Sometimes an equation can be solved by adding the same number to each side or by subtracting the same number from each side or by multiplying or dividing each side by the same number. Multiplication and Division Properties of Equality For any real numbers a , b , and c , if a = b, then a = b · c · c a = b Example: Solving Equations c c
• 32. Sometimes an equation can be solved by adding the same number to each side or by subtracting the same number from each side or by multiplying or dividing each side by the same number. Multiplication and Division Properties of Equality For any real numbers a , b , and c , if a = b, then a = b · c · c a = b Example: 4 4 Solving Equations c c
• 33. Sometimes an equation can be solved by adding the same number to each side or by subtracting the same number from each side or by multiplying or dividing each side by the same number. Multiplication and Division Properties of Equality For any real numbers a , b , and c , if a = b, then a = b · c · c a = b Example: 4 4 Solving Equations c c
• 34. Sometimes an equation can be solved by adding the same number to each side or by subtracting the same number from each side or by multiplying or dividing each side by the same number. Multiplication and Division Properties of Equality For any real numbers a , b , and c , if a = b, then a = b · c · c a = b Example: 4 4 Solving Equations c c - 3 -3
• 35. Java Applet – Solving Functions End of Lesson
• 36. Credits PowerPoint created by Using Glencoe’s Algebra 2 text, © 2005 Robert Fant