Your SlideShare is downloading. ×
Research Inventy : International Journal of Engineering and Science is published by the group of young academic and industrial researchers with 12 Issues per year.
Research Inventy : International Journal of Engineering and Science is published by the group of young academic and industrial researchers with 12 Issues per year.
Research Inventy : International Journal of Engineering and Science is published by the group of young academic and industrial researchers with 12 Issues per year.
Research Inventy : International Journal of Engineering and Science is published by the group of young academic and industrial researchers with 12 Issues per year.
Research Inventy : International Journal of Engineering and Science is published by the group of young academic and industrial researchers with 12 Issues per year.
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Research Inventy : International Journal of Engineering and Science is published by the group of young academic and industrial researchers with 12 Issues per year.

114

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
114
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. RESEARCH INVENTY: International Journal of Engineering and Science ISSN: 2278-4721, Vol. 1, Issue 7 (November 2012), PP 01-05 www.researchinventy.com Operational Calculus of Canonical Cosine Transform 1, S. B. Chavhan, 2, V.C. Borkar Depart ment of Mathemat ics & Statistics, Yeshwant Mahavidyalaya, Nanded-431602 (India) Abstract: This paper studies different properties of canonical cosine transform. Modulation heorem is also proved. We have proved some important results about the Kernel of canonical cosine transform. Keywords: Generalized function, Canonical transform, Canonical Cosine transforms, Modulation theorem, Fourier transform. I. Introduction The Fourier transform is certainly one of the best known of integral transforms, since its introduction by Fourier in early 1800s. A much mo re general integral transform, namely, linear canonical transform was introduced in 1970 by Moshinsky and Quesne [5]. In 1980, Namias [6] introduced the fractional Fourier transform using eigen value and eigen functions. Almeida [1], [2] had introduced it and proved many of its properties. Zayed [9] had discussed about product and convolution concerning that transform. Bhosale and Choudhary [3] had studies it as a tempered distribution.Nu mber of applications of fractional Fourier transform in signal processing,image processing filtering optics, etc are studied. Pei and ding [7] ,[8] had studied linear canonical transforms. The defin ition canonical cosine transform is as follo ws, id  i a  s   s   t 2 2 CCT f t  s   1 e 2  b   cos  t  e 2  b  f  t  dt for b  0 2 ib  b  i cds 2  d .e 2 f (d .s) for b  0 Notation and terminology of this paper is as per Zemanian [10], [11].The paper is organized as follows . Section 2 gives the definit ion of canonical cosine transform on the space of generalized function and states the property of the kernel of the canonical cosine transform. In section 3 modulat ion theorem is proved. In section 4, t ime reverse property, linear p roperty, parity are proved. In section 5, operation transforms in terms of parameter are discussed and lastly the conclusion is stated. II. Generalized Canonical Cosine Transform2.1 Definiti on : The canonical cosine transform of generalized function is defined as CCT f t  s    f t  , K a ,b, c , d  t , s   id  i a s  2 2 1  s  t Where kernel K a ,b,c , d   t , s   e 2  b  e 2  b  cos  t  2 ib b  ……..(1) Clearly Kernel K a,b,c, d   t , s   E and K a ,b,c , d   t , s   E  R n  the kernel (1) Satisfies the follo wing properties. 2.2 Properties of Kernel : 2.3 K  a , b , c , d   t , s   K  a , b , c , d   s, t  if ad 2.4 K  a , b , c , d   t , s   K  a , b , c , d   s, t  if a = d 2.5 K a , b , c , d   t , s   K  a ,  b ,  c , d   t , s  2.6 K a,b,c ,d   t , s   K a ,b,c ,d   t , s  1
  • 2. Operational Calculus of Canonical Cosine Transform2.7 Definit ion of canonical sine transforms as , id  i a  s   s   t 2 2 CST f t   s   i 1 e 2  b   sin  t  e 2  b  f  t  dt for b  0 2 ib  b  ……(2) i cds 2  d .e 2 f (d .s) for b  0 As we have obtained few properties of canonical sine transform in [4], we establish similar propert ies ofcanonical cosine transform here. III. Modulation Theorem for Canonical Cosine TransformTheorem 3.1: If CCT f  t   s  is canonical cosine transform of f(t), f  t   E1 R1   then i  du b 2CCT cos ut  f t  s   CCT f  t   s  bu  eidus  CCT f  t   s  bu  eidus  e2 2   …….(3)Proof: Using definition of canonical cosine transform id  e   s2  i a  s  2  b t 2CCT f  t   s   1 f  t  dt 2 b     cos  t  e 2 ib  b  id  i a  s   s   t 2 2CCT cos ut  f t  s   1 e 2  b   cos  t  e 2  b  cos ut  f t  dt 2 ib  b  id  2 i a 1 s  2 1  s  t e2 b   2cos  t  cos  ut  e f  t  dt 2 b  2 ib 2  b  id  2 i a 1  s 1  s  s   2  b t 2 e 2 b    cos   u   cos   u   e   f  t  dt 2 ib 2   b  b  1 1 id 2  s    s  ub   2  b t 2 i a   1 id 2  s  i a 2  s  ub  2  b t   e 2  b   cos  t e   f  t  dt  e 2  b   cos   t e   f t  2  2 ib    b  2 ib   b    1  1  id  i a 2     s  ub   i  dus    du b    s  ub  2  b t 2 i 2  d 2 b  e e 2  cos  t e   f  t  dt  2   2 ib  b       1 id     s  ub  iuds   du b   2 i 2 i a 2  s  ub  2  b t  e2 b  e e 2  cos  t e   f  t  dt     2 ib   b    i  du b 2 CCT f  t   s  bu  eidus  CCT f  t   s  bu  eidus  e2   2Theorem 3.2: If CCT f  t   s  is canonical cosine transform of f  t  , f  t  E1 R1   i 2  du2b iThen CCT sin ut f  t   s   e CST f t   s  ub  eidsu  CST f t   s  ub  e idsu    2 ……(4)Proof : By using defin ition canonical cosine transform 2
  • 3. Operational Calculus of Canonical Cosine Transform id  i a  s   S   t 2 2CCT f  t   s   1 e 2  b   cos  t  e 2  b  f  t  dt 2 ib  b  id  i a  s   s   t 2 2CCT sin ut f t  s   1 e 2  b   cos  t  .e 2  b  .sin ut f  t  dt 2 ib  b  id  2 id 2  t 1  s 1  s   2 b  e 2 b    2cos  t  sin ut  e f  t  dt 2 ib 2   b   i a 2 id  2  t 1  s 1  s  s   2 b  e 2 b    sin  t  ut   sin  t  ut   e f  t  dt 2 ib 2    b  b   id 2 i a 2  t id 2 id 2  1 1  s   s  ub  2  b  1  s   s  ub  2  b t e 2 b   sin   te f  t  dt  e 2  b   sin   t e   f  t  dt  2  2 ib   b  2 ib   b      i du 2 b  ie CST f  t   s  bu  eidsu  CST f  t   s  ub  eidus  2    2Theorem 3.3: If CCT f  t   s  is canonical cosine transform o f f  t  , f  t   E1 R1  ThenCCT e f t   s  iut e2 2 e  i i  du 2b  idsu   idus   CCT f  t   s  ub   CST f  t   s  ub    e CCT f  t   s  ub   CST f  t   s  ub    ….. (5) IV. Some useful Properties:In this section we discuss some useful results.4.1 Ti me Reverse Property: If CCT f  t  is canonical cosine transforms of f  t  , f  t   E1 R1 then   CCT f  t  s   CCT f t  s  ……….. (6)Proof : Using definit ion of canonical cosine transforms of f  t  id  id   s   s   t 2 2CCT f  t   s   1 e 2  b   cos  t  e 2  b  f  t  dt 2 ib  b  id  id   s   s   t 2 2CCT f  t  s   1 e 2  b   cos  t  e 2  b  f  t  dt 2 ib  b Put t  x  t  xHence dt  dx, also t   to , x  ,    s     x  id  2 id   s  2 CCT f  t   s   1 e 2  b   cos   x  e 2  b  f  x  dx  2 ib   b  3
  • 4. Operational Calculus of Canonical Cosine Transform id  id    s   s   x 2 2CCT f  t   s    1 e 2  b   cos  x  e 2  b  f  x  .dx 2 ib  b Replacing x by t again id  id   s   s   t 2 2 1  e 2  b   cos  t  e 2  b  f  t  dt 2 ib  b CCT f  t   s   CCT f t   s 4.2 Parity: If CCT f  t   s  is canonical cosine transform of f  t   E1 R1 then   CCT f  t  s  CCT f t  s  …….. (7)4.3 Linearity Property: If C1 , C2 are constant and f1 , f 2 are functions of t then CCT C f t   C  1 1 2 2   f t   s   C1 CCT f1 t   s   C2 CCT f 2 t   s  …… (8) V. Operation Transform in Terms of Parameters This section presents the operational formu lae fo r canonical cosine transform with shifted parameter„s „ and differential of canonical cosine transform with respect to s.Theorem 5.1 : If CCT f  t   s  is canonical cosine transform o f f  t  in terms of parameter s, then id   2 s 2      1    CCT f t  s     e 2 b   CCT cos  t  f  t   s   CST sin  t  f t   s   b   i b    ………… (9) id  2 i a  S   s  2  b t 2 CCT f  t   s   1Proof: We know that‟ e2 b   cos  t  e   f  t  dt 2 ib  b  id     S    2 s   i a 2CCT f  t   s     1  t e2 b   cos t  e 2  b  f  t  dt 2 ib  b 1 id  2    s  2 s  2  s     s       t 2 id   e2 b   cos  t  cos  t   sin  t  sin  t   e 2  b  f  t  dt 2 ib   b  b   b   b  1 id 2    s  2 s  2   s  id 2     t   s      t i a 2   e2 b    cos  t  cos  t  e 2  b  f  t  dt   sin  t  sin  t  e 2  b  f  t  dt  2 ib    b  b   b   b    1 id 2  s id    2 s  2   s  i a 2    2  b t  i a 2  s     2  b t  e 2 b  e 2 b    cos  t  .cos  t  .e   f  t  dt   sin  t  sin  t  e   f  t  dt  2 ib    b  b   b   b    id    2 s  2      1     e2 b   CCT cos  t  f  t   s   CST sin  t  f  t  s   b   i b  Theorem 5.2: If CCT f  t   s  is canonical cosine transform of f(t ) in terms of parameter S 4
  • 5. Operational Calculus of Canonical Cosine Transform  ds   t  CCT f  t    s   i   CCT f  t   s   i CST   f  t   s  d  Then ds b   b  ……….. (10)  ds   t    ………… (11)  CCT f  t   s   CST   f  t    s  Or d CCT f  t    s   i  ds    b   b  Proof: Using definition of canonical cosine transform id  2 i a  s   s  2  b t 2CCT f t  s   1 e 2 b   cos  t  e   f  t  dt 2 ib  b  d  1  id  2 i a 2  s   s   t CCT f  t   s    d e 2  b   cos  t  e 2  b  f  t  dt  ds ds  2 ib   b    i a 2   1  2 b   d  t  2  d  s2 i    s   e  e b cos  t   f  t  dt  2 ib   ds     b     t   s   s  t  i a 2 id  2 i a 2 1   s  s   ds   e 2  b  e 2  b  cos  t  i    sin  t  e 2  b     f  t  dt 2 ib    b   b  b   b   id  id id i a  ds  1  s   s   t  s   s   t  t  2 2 2 2 i 1 i  e 2  b   cos  t  e 2  b  f  t  dt  e 2  b   sin  t  e 2  b  .  f t  dt  b  2 ib  b  i 2 ib  b  b  ds  1 t    i  .CCT f  t   s   CST   f  t    s   b  i b   t   CCT f  t   s  ds  CST   f  t    s    b  b 1  CCT f  t   s   i  b  .CCT f  t   s   i CST  b  f  t   s  d ds t     ds        t  CCT f  t   s   CST f  t  .  b   s    d  CCT f  t   s  d ds     ds      VI. Conclusion: The canonical cosine transform, which is the generalization of number of transforms is itself generalized to the spaces of generalized functions as per Zemanian. This transform is used to solve ordinary or partial differential equations. This transform is an important tool in signal processing and many other branches of engineering. In this paper we have discussed some of its properties. References:[1] Almeida L.B., “An introduction to the angular Fourier transform”, IEEE, 257-260 (1993).[2] Almeida L.B., “The fractional Fourier transform and time frequency representation IEEE trans on signal processing”,Vol. 42, No.11 (1994).[3] Bhosale B.N. and Choudhary M.S.,“Fractional fourier transform of distributions of compact support”, Bull. Cal. Math. Soc., Vol. 94, No.5, 349-358 (2002).[4] Chavhan S.B., Borkar V.C.,“ Canonical sine transform and their unitary representation”, International Journal of Contemporary Mathematical Sciences. (Accepted ).[5] Moshinky M. Quesne ., “Linear canonical transform and their unitary representation”, J. Math, Phy., Vol.12, (No.), 1772-1783 (1971).[6] Namias V., “The fractional order Fourier transform and its applications in quantum mechanics”, I. Inst. Maths. appli., 25, 241-265 (1980).[7] Peis, Ding J., “Eigen function of linear canonical transform”, IEEE, trans. sign. proc. Vol.50, No.1 (2002).[8] Peis, Ding J., “Fractional cosine, sine and Hartley transform, trans. on signal processing”, Vol.50, No.7, Pub. P.1661-1680 (2002).[9] Zayed A., “A convolution and product theorem for the fractional Fourier transform”, IEEE sign. proc. letters Vol.5, No.4, 101-103 (1998).[10] Zemanian A.H., “ Distribution theory and transform analysis”, McGraw Hill, New York, (1965).[11] Zemanian A.H., “Generalized Integral Transform”, Inter Science Publishers New York, (1968). 5

×