Your SlideShare is downloading. ×
1 miug overview
1 miug overview
1 miug overview
1 miug overview
1 miug overview
1 miug overview
1 miug overview
1 miug overview
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

1 miug overview

133

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
133
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
2
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Overview of UWIG  Modeling & Interconnection User GroupWind Generation in Power Systems: A Short Course on the Integration and Interconnection of Wind Power Plants into Electric Power Systems September 21-24, 2010 Sheraton Austin at the Capitol Austin, TX Robert M. Zavadil Vice-President & Principal Consultant 620 Mabry Hood Road, Suite 300 Knoxville, Tennessee 37932 Tel: (865) 218-4600 ext. 6149 bobz@enernex.com www.enernex.comUWIG Evolution  Established in early 1990’s  Provided forum for exchange of information about wind  generation – utility focus  Explosive growth of wind industry in later 1990’s  necessitated some modification to focus and objectives  Users groups established to provide way for more specific  and detailed discussion of individual topics in industry UWIG Short Course on the  September 21‐24, 2010 Integration and Interconnection of Wind Power Plants into Electric Power Systems Slide 2
  • 2. Modeling and Interconnection Users Group ‐Focus and Objectives Identify most urgent needs related to wind plant modeling and  interconnection studies Determine where and how UWIG can make a contribution – Direct contributions by UG (volunteer) resources – Coordination with NREL technical resources – Develop draft work scopes for larger questions; suggest ideas for funding Initiate specific activities to address questions with reach of UG  resources Collect, assimilate, and disseminate information from sources  outside the group UWIG Short Course on the  September 21‐24, 2010 Integration and Interconnection of Wind Power Plants into Electric Power Systems Slide 3 Time from  Milestone or Task Completion Project Start UWIG Wind Turbine Model Development Initiative UWIG Project Kickoff Meeting and TRC #1; Cedar Rapids, IA 1 month Application Guide Draft Outline Recommended extensions to existing generic models Construct benchmark test system(s) Complete inventory of commercial wind turbine model documentation TRC #2 Teleconference:  4 months Perform parametric simulations for generic models on benchmark system(s) Inventory available field data, test stand data, or detailed transient simulations Devise program for collection of field data from archives, ongoing activities (e.g. NREL),  or new field measurements UWIG Project Review Meeting and TRC #3; Portland, OR 7 months Perform simulations on benchmark systems with commercial wind turbine models Adapt generic model parameters to best fit commercial model behavior TRC #4 Teleconference   10 months Develop material for application guide and workshops 2 Regional Workshops;  Dallas, TX and Minneapolis, MN   11 months 2 Regional Workshops;  Columbus, OH and Salt Lake City, UT  12 months UWIG Project Review Meeting and TRC #5; Boston, MA:   13 months Develop draft application and users guide TRC #6 Teleconference  16 months Perform comparative simulations of generic, vendor‐specific, and other available  models for events with available data UWIG Project Review Meeting and TRC #7; Bakersfield, CA   19 months TRC #8 Teleconference  22 months Test generic models in large system case studies  Complete assessment of wind plant modeling techniques Develop addendum for application guide Complete web site with project deliverables Project Completion 24 months
  • 3. This morning’s agenda Tools for “volts and vars” analysis Bulk system analysis – PSS/E – PSLF Transient Analysis – PSCAD – EMTP‐RV – PowerFactory/digSilent UWIG Short Course on the  September 21‐24, 2010 Integration and Interconnection of Wind Power Plants into Electric Power Systems Slide 5Model Hierarchy  Bulk System Analysis ‐ Generic Increasing fidelity and complexity Increasing availability, ease of use – Power flow – Short‐circuit – Positive sequence dynamic  Bulk System Analysis – vendor or  equipment specific  Transient Application Models, Generic  Transient Application Models, vendor  or equipment specific  Transient – Design Models UWIG Short Course on the  September 21‐24, 2010 Integration and Interconnection of Wind Power Plants into Electric Power Systems Slide 6
  • 4. Popular Transient Simulation Programs EMTP‐RV (www.emtp.com) PSCAD (http://pscad.com)  PowerFactory (www.digsilent.de) UWIG Short Course on the  September 21‐24, 2010 Integration and Interconnection of Wind Power Plants into Electric Power Systems Slide 7Example Applications for Wind Energy Studies Turbine modeling – Transient models often used as analytical “benchmarks” for  reduced order models (e.g. PSS/E, PSLF) – Design of challenging interconnections may require some  detailed simulation studies Harmonic studies General transient studies – Capacitor switching – Short‐circuit – TOV UWIG Short Course on the  September 21‐24, 2010 Integration and Interconnection of Wind Power Plants into Electric Power Systems Slide 8
  • 5. Type I Detailed Model Vsrms 3 Phase 3 Phase RMS RMS 1.01 0 W MAIN Te Wpu 1.0 [MVA] 1 [MVA] 34.5 [kV] / 0.600 [kV] 115 [kV] / 34.5 [kV]Multimass( IndM/c) IM #2 #1 COUPLED #2 #1 Te I1 RRL MAIN Vg V1 PI TL SECTION TL ABC->G Lf Lf + Lf + 0.29 [MVAR] 0.05 [MW] B A Power + N TL N/D Tw TL Q P 542057.0 D Timed 1.0e-010 Q1 P1 Lf Fault Logic Pref ABC 1000.0 Pitch Control * Pact Pin -1000. beta Timed & Fault wref theta Logic 1840.0 Actuator * wg wg 1800.0 V_turb Vterm z wrot Aerodynamic V_wind Twind Vsrms * Wind Source Torque x vw -1.0 Tw Mean wind_sp Vw Cp Calculation Lambda vw lambda y Cp turb_sp Calculation lambda y Rrot wrot x Rrot Rrot lamda valid range MWT1000A_Aero.txt Rrot UWIG Short Course on the  September 21‐24, 2010 Integration and Interconnection of Wind Power Plants into Electric Power Systems Slide 9 UWIG Short Course on the  September 21‐24, 2010 Integration and Interconnection of Wind Power Plants into Electric Power Systems Slide 10
  • 6. UWIG Short Course on the  September 21‐24, 2010Integration and Interconnection of Wind Power Plants into Electric Power Systems Slide 11 UWIG Short Course on the  September 21‐24, 2010Integration and Interconnection of Wind Power Plants into Electric Power Systems Slide 12
  • 7. Type III Detailed Model  (with simplification) Ir A System ain : Graphs ,M Ir Line Side Ira1 Vrca 0.7 Crow Ica Vr Ica Irb1 Vrcb B Compar- Vr Converter Irc1 Vrcc Vgrms ator Icb Ic Icb Pc Current Ic Icc Ir Vr Q P Power Vc Icc 0.01 [ohm] Command D D D Vg A B Rcrow 0.030 [mH] 0.0015 [H] vlcb vlcc 0.01 [ohm] V Rcrow 0.030 [mH] V Icc1 + Iastar Vgrms Vrms Rcrow Ica Controller Rcrow 0.030 [mH] 0.0015 [H] Vcab Line Side Iam vlca Ic Icb1 I 0.0015 [H] Ica1 Vcbc vlca 0.01 [ohm] Converter vlcb D D D V Ibstar Crow Ica1 Icb Vcca Control vlcc Icrow Ibm Icb1 wg Vgrms Rcrow Vcrow wg Vrms 0.0014 [H] Iqs Ira Iarcmd Rotor Ipcmd Irb Var Ira1 V Current Rotor Side Ids Irc Ibrcmd vrca vrca Iqcmd Controller Vbr Irb1 0.0014 [H] Converter Vterm Iar vrcb Ira1 Irb1 Irc1 I1 I2 Vg Ira1 Vcr Irc1 I1 0.0014 [H] V Controller V Ibr vrcc vrcc vrcb Vsrms 1 3 Phase 3 Phase 0 RMS Irb1 MAIN RMS RMS 90.588 Rq Gear ratio 2 1.0 W Te Wpu 2.5 [MVA] 100 [MVA] 34.5 [kV] / 0.690 [kV] 115 [kV] / 34.5 [kV] 3 Multimass ( IndM/c) IM #2 #1 COUPLED #2 #1 Te I1 I2 47.5 Rrot RRL Rotor Radius MAIN V1 PI SECTION TL ABC->G V1 Vg Lf Lf + Lf + 0.05 [MW] B A Power + N TL 1 N/D RMS N Tw TL Q P dw1 + + D N/D wrot 2 1802244.0 D Timed 1.0e-010 F Q1 P1 Lf D Fault wrated Rq Logic 3 Tw * theta ABC Pitch Control theta Vg TL Te wrot wg Ipcmd 1 & RMS wg Ipcmd Timed Vga Fault Iqcmd V_turb Logic 2 Actuator Iqcmd wrot Vgb * wg 1200.0 V_wind Aerodynamic 3 Twind Vterm vw * Vgc Vgrms Torque -1.0 Tw Ploss Wind Source x vw Calculation Mean z wind_sp Vw Lambda Ploss.txt Cp vw lambda y x y Cp Rrot turb_sp Calculation lambda Rrot Aero.txt wrot Rrot lamda valid range Ploss.txt P1 + - D Rrot F Pc Graphs N Q1 N/D ArcTan Cos pfm Aero.txt D P1 M : Graphs ain * Tm UWIG Short Course on the  September 21‐24, 2010 wg Integration and Interconnection of Wind Power Plants into Electric Power Systems Slide 13 Rotor Current - A Rotor Current - B Rotor Current - C 4.0 3.0 2.0 1.0 0.0y -1.0 -2.0 -3.0 -4.0 Turbine Line Current - RMS Turbine Line Current 4.0 3.0 2.0 1.0 0.0(kA) -1.0 -2.0 -3.0 -4.0 Turbine Term Voltage inal 1.00 0.75 0.50 0.25y (kV) 0.00 -0.25 -0.50 -0.75 -1.00 39.60 39.80 40.00 40.20 40.40 UWIG Short Course on the  September 21‐24, 2010 Integration and Interconnection of Wind Power Plants into Electric Power Systems Slide 14
  • 8. EnerNex Perspective All packages are used for wind energy consulting work Choice of program dependent on: – Nature of problem – Client preference – Resource availability Typical Applications – Wind plant collector studies:  EMTP‐RV or DigSilent – Turbine model prototyping, validation:  PSCAD – Vendor application model development:  PSCAD, EMTP‐RV » Unbalanced systems » Control interactions Comments on MatLab UWIG Short Course on the  September 21‐24, 2010 Integration and Interconnection of Wind Power Plants into Electric Power Systems Slide 15

×