RENDER Telefonica

919 views

Published on

Tutorial at the RENDER Kick-off Meeting, Telefonica

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
919
On SlideShare
0
From Embeds
0
Number of Embeds
86
Actions
Shares
0
Downloads
15
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

RENDER Telefonica

  1. 1. Kick-Off RENDER ProjectTelefónica I+DKalsruhe, October27st 2010Telefónica I+DUser Modeling Analytical Models
  2. 2. Index 01 Telefónica Case Study Overview Data Sources Results Data Key Points Data Considerations 02 Annex A: Twitter Analysis ExamplesÁrea: LoremI+DTelefónica ipsum 1Razón Social: Telefónica ModelsUser Modeling Analytical
  3. 3. 01Case StudyTelefónica I+DUser Modeling Analytical ModelsÁrea: LoremI+DTelefónica ipsum 2Razón Social: Telefónica ModelsUser Modeling Analytical
  4. 4. Overview RENDER will provide means to enable Telefónica to assess the incoming requests, complaints and concerns, identify opinions, viewpoints, trends and tendencies, and take feasible actions based thereupon.Área: LoremI+DTelefónica ipsum 3Razón Social: Telefónica ModelsUser Modeling Analytical
  5. 5. Data Sources Web Customer Portal Messages Surveys (Shops & Call Centers Market Research) Contacts Twitter Entries Corporate Forums Comments Public Forums CommentsÁrea: LoremI+DTelefónica ipsum 4Razón Social: Telefónica ModelsUser Modeling Analytical
  6. 6. Data Sources Amounts of Data • Data in corporate channels › Movistar España › O2 UK and O2 Ireland • Data in public channels › Open forums • Twitter data collection › 600.000 tweets per day (1% total) › By geolocation › 23.000 tweets/day in UK › 5.000 tweets/day in Spain › 900 tweets/day in Ireland › By topic › 3.300 tweets/day speaking about O2 › 3.200 tweets/day speaking about Movistar › 800 tweets/day speaking about TelefónicaÁrea: LoremI+DTelefónica ipsum 5Razón Social: Telefónica ModelsUser Modeling Analytical
  7. 7. Results What do we want to achieve in this project? • To apply of NLP, data mining, web mining, and machine learning techniques in order to discover and analyze in‐depth large streams of data from various sources, across multiple (natural) languages, and a comprehensive opinion model covering intensity, biases and fact coverage. Key aspects • Management of data source › Internal Data Vs. External Data • Processing of the data bias › Customer Vs. Potential customer › Non-experimented Vs. Advanced users • Vision of segmented opinion › Individual Opinion Vs. Global Opinion • Identification of the subjectivity in the opinions › Positive, Negative and Neutral Opinions • Knowledge of opinion geolocalization (Twitter entries)Área: LoremI+DTelefónica ipsum 6Razón Social: Telefónica ModelsUser Modeling Analytical
  8. 8. Data Key Points Call Center Web Customer Corporate Portal Forums Internal data Internal data Internal data Customers Customers Customers Offline users Online users Online users Objective / Objective / Objective / Subjective Subjective Subjective No possible Possible Possible segmentation segmentation segmentation Possible localization Possible localization Possible localization (with user account) (with user account) Language not Language not Language identified identified identifiedÁrea: LoremI+DTelefónica ipsum 7Razón Social: Telefónica ModelsUser Modeling Analytical
  9. 9. Data Key Points Surveys (shops & Public Forum Twitter Entries market research) External data Internal data External data Customers or Potential Customers or Potential Customers or Potential Customers Customers Customers Offline users Advanced online Online users users Objective / Objective / Objective / Subjective Subjective Subjective No possible Possible No possible segmentation segmentation segmentation Not possible Not always possible localization Possible localization localization Not identified Not identified language Identified language languageÁrea: LoremI+DTelefónica ipsum 8Razón Social: Telefónica ModelsUser Modeling Analytical
  10. 10. Data Considerations Call Center Formal language. Only interaction customer with the CRM. The transcriptions have not mistakes as unknown words Technical Limitations due to and symbols (only working with recordings: recognition errors). - Speech recognition - User/Operator in the same channel (User diarization) High difficulty data acquisition. Customers don’t speak freely, it’s a formal dialogue. The topics list is limited, the issues are defined. The most of calls don’t express opinion, are only questions and complaints.Área: LoremI+DTelefónica ipsum 9Razón Social: Telefónica ModelsUser Modeling Analytical
  11. 11. Data Considerations Web Customer PortalÁrea: LoremI+DTelefónica ipsum 10Razón Social: Telefónica ModelsUser Modeling Analytical
  12. 12. Data Considerations Web Customer Portal Formal language. Text sentences can have errors (grammar, The technical limitations will vocabulary…) only be the challenge of the Opinion Mining. Customers don’t write freely, it’s a formal message. Only interaction customer with the CRM. Medium difficulty data acquisition. The list of topics is limited, the issues are defined. The most of comments don’t express opinion, only questions and complaints.Área: LoremI+DTelefónica ipsum 11Razón Social: Telefónica ModelsUser Modeling Analytical
  13. 13. Data Considerations Forums Comments Corporate forumÁrea: LoremI+DTelefónica ipsum 12Razón Social: Telefónica ModelsUser Modeling Analytical
  14. 14. Data Considerations Forums Comments Public forumÁrea: LoremI+DTelefónica ipsum 13Razón Social: Telefónica ModelsUser Modeling Analytical
  15. 15. Data Considerations Forums Comments Customers write in complete Informal language. freedom. Transcriptions can have errors The comments can express (grammar, vocabulary…) opinion. Only Interaction between The list of topics is unlimited, customers (Public Forums) customers can open any new issue. Medium difficulty data acquisition. Interaction customer- enterprise and between customers (Corporate Forums) The technical limitations will only be the challenge of the Opinion Mining.Área: LoremI+DTelefónica ipsum 14Razón Social: Telefónica ModelsUser Modeling Analytical
  16. 16. Data Considerations Surveys (shops & market research)Área: LoremI+DTelefónica ipsum 15Razón Social: Telefónica ModelsUser Modeling Analytical
  17. 17. Data Considerations Surveys (shops & market research) Formal language. The list of topics is limited. Customers write in complete Only Interaction customer- freedom. enterprise The comments can express Medium difficulty data opinion. acquisition. Transcriptions without errors and natural language. The technical limitations will only be the challenge of the Opinion Mining.Área: LoremI+DTelefónica ipsum 16Razón Social: Telefónica ModelsUser Modeling Analytical
  18. 18. Data Considerations Twitter EntriesÁrea: LoremI+DTelefónica ipsum 17Razón Social: Telefónica ModelsUser Modeling Analytical
  19. 19. Data Considerations Twitter Entries Low difficulty data acquisition. Informal language. The comments can express Transcriptions can have errors opinion. (grammar, vocabulary…) Customers write in complete freedom. The list of topics is unlimited, customers can open any new issue. Interaction customer-enterprise and between customers. The technical limitations will only be the challenge of the Opinion Mining.Área: LoremI+DTelefónica ipsum 18Razón Social: Telefónica ModelsUser Modeling Analytical
  20. 20. 02Annex A:Twitter AnalysisExamplesTelefónica I+DUser Modeling Analytical ModelsÁrea: LoremI+DTelefónica ipsum 19Razón Social: Telefónica ModelsUser Modeling Analytical
  21. 21. Twitter Analysis Examples Current opinion mining projects in Twitter with no interesting results • Twitrratr O2 can’t be searched because it has only two characters. There’s only 4 results for ‘O2 Ireland’ The only 4 results are classified as neutral This comment is really negative!Área: LoremI+DTelefónica ipsum 20Razón Social: Telefónica ModelsUser Modeling Analytical
  22. 22. Twitter Analysis Examples Current opinion mining projects in Twitter with no interesting results • Tweetfeel It’s possible to search O2, but… …the results are bad! Sometimes it’s well classified Sometimes the word doesn’t exist And the rest it’s bad classified or identified!Área: LoremI+DTelefónica ipsum 21Razón Social: Telefónica ModelsUser Modeling Analytical
  23. 23. Twitter Analysis Examples Current projects with no interesting results • Tweetfeel In this case it’s possible to search O2 Ireland... …but it’s not possible as following words There are only 4 results, and 3 are RT (retweeting) There is still much work to do…Área: LoremI+DTelefónica ipsum 22Razón Social: Telefónica ModelsUser Modeling Analytical

×