Your SlideShare is downloading. ×
Geometri datar   dra. kusni- m.si
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Geometri datar dra. kusni- m.si

11,221
views

Published on


2 Comments
6 Likes
Statistics
Notes
No Downloads
Views
Total Views
11,221
On Slideshare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
463
Comments
2
Likes
6
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. BUKU AJAR GEOMETRI Penulis Dra. Kusni, M.Si JURUSAN MATEMATIKA FAKULTAS MIPAUNIVERSITAS NEGERI SEMARANG 2008
  • 2. KATA PENGANTAR Pada buku ajar ini dimulai dengan kongruensi,dilanjutkan dengan sifat-sifat segiempat, luas, teorema Pythagoras,Perbandingan sehargagaris,sebangun,teorema pda garis istimewa pada segitiga,dan lingkaran.Penulisan buku ajar ini dimulai dari hal yang paling dasar. Geometri sendiriadalah merupakan materi dasar yang digunakan pada materi yang lainnya.Contoh : kalkulus.. Kompetensi yang akan dicapai setelah mempelajari buku ajar ini pesertapelatihan diharapkan : 1. Memahami konsep Geometri 2. Mampu menggunakan dan menerapkan sifat-sifat Geometri 3. Mampu mandiri dalam menyelesaikan tugas-tugas Geometri 4. Mampu menyelesaikan masalah yang terkait dengan Geometri Dengan segala keterbatasannya, penulis tetap berharap buku ajar inidapat bermanfaat. Lebih dari itu, buku ajar ini diharapkan dapat digunakansebagai bahan diskusi. Semoga Allah melipat gandakan amal baik kita semua. 2
  • 3. DAFTAR ISI HalamanHALAMAN SAMPUL …... ………………………………………………………….. 1HALAMAN FRANCIS ………………………………………………………………. 2KATA PENGANTAR …………………………………………………………………. 3DAFTAR ISI …………………………………………………………………………. 4PETA KOMPETENSI ………………………………………………………………. 6BAB I PENDAHULUAN ……………………………………………………………. 7 A. Deskripsi B. Prasyarat C. Petunjuk Belajar D. Kompetensi dan IndikatorBAB II SAMA DAN SEBANGUN PADA SEGITIGA ……………………………… 9 A. Kompetensi dan Indikator B. Uraian Materi C. Latihan D. Lembar Kegiatan Mahsiswa E. Rangkuman F. Tes FormatifBAB III SEGI EMPAT ………………………………………………………………. 15 A. Kompetensi dan Indikator B. Uraian Materi C. Latihan D. Lembar kegiatan Mahsiswa E. Rangkuman F. Tes FormatifBAB IV PERBANDINGAN SEHARGA GARIS DAN SEBANGUN …………….. 29 A. Kompetensi dan Indikator B. Uraian Materi C. Latihan D. Lembar Kegiatan Mahsiswa E. Rangkuman F. Tes FormatifBAB V BEBERAPA TEOREMA PADA SEGITIGA ……………………………… 38 A. Kompetensi dan Indikator B. Uraian Materi C. Latihan D. Lembar Kegiatan Mahsiswa E. Rangkuman 3
  • 4. F. Tes FormatifBAB VI BEBERAPA TEOREMA PADA LINGKARAN …………………………… 41 A. Kompetensi dan Indikator B. Uraian Materi C. Latihan D. Lembar Kegiatan Mahsiswa E. Rangkuman F. Tes FormatifKUNCI JAWABAN TES FORMATIF ………………………………………………. 54GLOSARIUM …………………………………………………………………………56DAFTAR PUSTAKA …………………………………………………………………. 57 4
  • 5. PETA KOMPETENSI BUKU AJAR SAMA DAN SEBANGUN SEGI EMPAT KONGRUENSI * SIFAT * LUASTEOREMA PERBANDINGAN SEHARGA PYTHAGORASMENELAOS GARISCEVA KESEBANGUNAN TEOREMA PROYEKSI STEWART TEO. GARIS ISTIMEWA PADA SEGITIGA TEOREMA PADA LINGKARAN 5
  • 6. BAB I PENDAHULUAN Deskripsi Geometri adalah struktur matematika yang membicarakan unsure danrelasi yang ada diantara unsure tersebut. Titik, garis, bidang, dan ruangmerupakan benda abtra yang menjadi unsure dasar geometri. Berdasarkanunsur-unsur inilah,didefinisikan pengertian-pengertian baru atau berdasar padapengertian bru sebelumnya. Dalam geometri didapat juga sifat-sifat pokok, yaitu sifat-sifat pertamayang tidak berdasarkan sifat-sifat yang mendahuluinya yaitu aksioma danpostulat.Berdasarkan sifat pokok tersebut dapat diturunkan sifat-sifat yangdisebut teorema. Teorema tersebut dapat juga dibentuk berdasarkan teoremayang ada sebelumnya. Pada buku ajar ini dimulai dengan kongruensi,dilanjutkan dengan sifat-sifat segiempat, luas, teorema Pythagoras,Perbandingan sehargagaris,sebangun,teorema pda garis istimewa pada segitiga,dan lingkaran.Penulisan buku ajar ini dimulai dari hal yang paling dasar. Geometri sendiriadalah merupakan materi dasar yang digunakan pada materi yang lainnya.Contoh : kalkulus. Kompetensi yang akan dicapai setelah mempelajari buku ajar ini pesertapelatihan diharapkan : 1. Memahami konsep geometri 2. Mampu menggunakan dan menerapkan sifat-sifat geometri 3. Mampu mandiri dalam menyelesaikn tugas-tugas geometri 4. Mampu menyelesaikan masalah yang terkait dengan geometri. Prasyarat Pada buku ajar Geometri tidak diperlukan prasyarat, karena dapatdikatakan bahwa geometri adalah materi dasar, sehingga dibutuhkan padamateri lain. Petunjuk Belajar Mempelajari geometri berarti harus menggambar dan menyelesaikan soal.Pada saat menggambar yang harus diperhatikan adalah ; 1. Jika gambar itu tidak menolong penyelesaian, maka umumnya tidak perlu menggambar 2. Bila dijumpai banyak pertanyaan pada suatu soal, maka seringkali gambar itu penuh dengan banyak garis, sehingga tidak lagi mempermudah 6
  • 7. penyelesaan soal. Sebaiknya, apabila gambar itu sudah penuh, dibuat gambar lain, kalau perlu untuk setiap pertanyaan satu gambar saja.Pada saat menyelesaikan persoalan : 1. Soal geometri perlu diselesaikan secara pasti. Oleh karena itu perlu mengenal teorema-teorema yang dapat digunakan sebagai pijakan. Jangan ingin menyelesaikan geometri hanya dengan “mengarang”. 2. Geometri hanya dapat dipelajari secara intensif, jika bangun yang kita tinjau itu kita selidiki sendiri. Kompetensi dan IndikatorKompetensi : 1. Memahami konsep geometri 2. Mampu menggunakan dan menerapkan sifat-sifat geometri 3 .Mampu mandiri dalam menyelesaikan tugas-tugas geometri 4 .Mampu menyelesaikan masalah yang terkait dengan geometri.Indikator: 1. Memahami tentang kongruensi dan mengembangkannya 2. Memahami tentang segi empat, sifatnya,luas, dan teorema Pythagoras. 3. Memahami perbandingan seharga garis-garis dan kesebangunan 4. Memahami beberapa teorema pada garis-garis istimewa pada segitiga 5. Memahami tentang perbandingan seharga garis dalam lingkran,lingkaran luar dan dalam pada segitiga, segiempat talibusur dan segiempat garissinggung 7
  • 8. BAB II SAMA DAN SEBANGUN (KONGRUENSI)A. KOMPETENSI DAN INDIKATOR KOMPETENSI : 1. Memahami konsep dan prinsip tentang kongruensi 2. Trampil menyelesaikan persoalan yang berkaitan dengan kongruensi INDIKATOR : 1. Memahami tentang dua segitiga yang kongruen 2. Dapat menurunkan teorema kongruensi pada teorema dasar yang lainnya.B. URAIAN MATERI SAMA DAN SEBANGUN (KONGRUENSI) PADA SEGITIGA DEFINISI Dua segitiga dikatakan sama dan sebangun ( ) atau kongruen bila segitiga yang satu dapat menutupi segitiga yang lain dengan tepat atau sebaliknya. TEOREMA Dua segitiga kongruen bila dua sisi dan sudut yang diapitnya sama (s. sd. s) C Diketahui: x ABC dan PQR AC = PR C= R CB = PQ Buktikan ABC PQR Bukti: A B Letakkan A pada P dan C pada R. R Karena C= R maka kaki CB menutupi RQ x Dan karena CB = RQ maka B berada di Q. Jadi ABC menutupi PQR dengan tepat atau ABC PQR Akibatnya semua unsur yang seletak sama. P Q TEOREMA Dua segitiga kongruen bila satu sisi dan 2 sudut pada sisi iyu sama ( sd. s. sd ) 8
  • 9. Dua segitiga kongruen bila satu sisi sama, 1 sudut pada sisi itu sama dan sudut di depan sisi itu sama juga ( s. sd. sd ) Dua segitiga kongruen bila ketiga sisi sama ( s.s.s) Dua segitiga siku-siku kongruen bila hypotenusa dan 1 pasang sisi siku-siku sama. C TEOREMA Pada segitiga samakaki, kedua sudut alasnya sama besar. oo Diketahui : 12 ABC samakaki. CA = CB Buktikan : A= B Bukti: Tarik garis bagi CD dan tinjau ACD dan BCD AC = BC (diketahui) C1 = C2 (CD garis bagi) CD = CD (berimpit) Jadi ACD BCD (s.sd.s) ak: A= B Perhatikan semua unsur yang seletak akan sama yaitu AD = BD D1 = D2 AD garis berat 1 2 Juga didapat sifat bahwa pada segitiga samakaki A D B garis bagi itu juga menjadi garis berat (karena AD = BD ) Karena D1 = D2 dan D1 + D2 = 1800 maka D1= D2 = 900. Sehingga garis bagi itu juga menjadi garis tinggi (karena D1= D2 = 900 ) KESIMPULAN: Pada samakaki, garis tinggi, garis bagi dan garis berat yang ditarik dari puncak, dan sumbu alas berimpit. TEOREMA Jika dalam suatu segitiga, ketiga garis istimewa dari puncak dan sumbu alas berimpit maka segitiga itu sama kaki (buktikan sendiri).C. LATIHAN 1. Buktikan teorem berikut. Dalam segitiga siku-siku, garis berat ke sisi miring sama dengan setengan sisi miring (Buat dari titik B garis // AC dan memotong perpanjangan AD di E, jika diketahui ABC siku-siku ( A = 900) dan AD garis berat ke sisi miring). 2. Buktikan bahwa T.K. titik titik yang berjarak sama ke kaki-kaki sudut, merupakan garis bagi suatu sudut. 9
  • 10. 3. Diketahui ABC. AD garis berat. E pada perpanjangan AD sehingga BE AD. F pada AD sehingga CF AD. Buktikan CE = BF C DE F B A 4. Diketahui ABC samakaki. M sembarang pada alas AB garis g dan h adalah sumbu AM dan BM. Garis g memotong AC di K, garis k memotong BC di L. Buktikan AK=CL. 5. Diketahui ABC, A = 600, AD garis bagi, E dan F pada garis bagiini, sehingga CE dan BF garis bagi ini. 1 Buktikan : CE + BF = (AB + AC). 2 6. Diketahui ABC samakaki. AC = BC, D pada perpanjangan AB, E pada CD sehingga BE = DE, F pada CD sehingga AF//BE. Buktikan ACF CBE! C F E A B DD. LEMBAR KEGIATAN 1.Alat dan Bahan Peserta pelatihan membawa dengan lengkap alat-alat yang dibutuhkan yaitu : pinsil, bolpoint, jangka, penghapus, penggaris, penggaris siku-siku, kertas garis ,kertas gambar, buku sumber, diktat Geometri 10
  • 11. 2.Keselamatan dan Kesehatan Kerja Peserta pelatihan membawa sendiri alat dan bahan dengan lengkap, tidak boleh meminjam alat dan bahan dengan peserta pelatihan yang lain, sehingga tidak mengganggu konsentrasi dan kenyamanan peserta pelatihan yang lain. 3.Prasyarat Peserta pelatihan telah menguasai tentang garis dan sudut 4.Langkah Kegiatan Kegiatan Awal Menggali pengetahuan prasyarat peserta pelatihan yang berhubungan dengan garis dan sudut. Berdiskusi dengan peserta pelatihan tentang penjelasan garis,melukis garis,macam-macam sudut, dan klasifikasi segitiga ditinjau dari sisi dan sudutnya(dengan menggunakan alat peraga). Kegiatan Inti Menjelaskan definisi kongruensi dan teorema kongruensi dari dua segitiga,dan memberikan contohnya. Menjelaskan teorema yang lain dengan menggunakan kongruensi Diskusi kelas. Kegiatan Akhir Kesimpulan Penilaian Penguatan dalam bentuk pemberian tugas secara individu. 5.Hasil Peserta pelatihan memahami tentang kongruensi dua segitiga dan teorema dasar tentang segitiga samakaki.E. Rangkuman 1. Dua buah segitiga disebut kongruen jika salah satu segitiga dapatditranformasikan dengan tranlasi,releksi, atau rotasi atau ketiganya sehingga mereka dapat disusun tepat sama. 2. Untuk melihat dua segitiga kongruen cukup diselidiki salah satu dari syarat berikut : a. Kedua segitiga mempunyai tiga pasang sisi yang sama panjang (s,s,s). b. Kedua segitiga mempunyai dua pasang sisi sama panjang dan sudut yang diapitnya sama besar (s,sd,s) c. Kedua segitiga mempunyai dua sudut sama besar dan sisi yang diapitnya sama panjang (sd,s,sd) d. Kedua segitiga mempunyai satu sisi sama, sudut pada sisi itu dan sudut dihadapan sisi itu sama juga. 3. Pada segitiga sama kaki mempunya sudut alas sama besar. 4. Pada segitiga samakaki ketiga garis istimewa dari puncak dan sumbu alas 11
  • 12. berimpit.F. Tes Formatif 1I. Pilih satu jawaban yang paling tepat 1. Pada ABC yang sama kaki dan alasnya AB, ditarik garis bagi AD dan BE. Maka: a. AD = BE b. CD = CE c. CED = CDE d. Semua jawaban salah. 2. Pada ABC sama kaki dan alasnya AB, ditarik garis bagi AD dan BE yangberpotongan di T. Maka : a. TD TE b. AT = TB c. AT = TC d. BT = CT 3. Pada ABC samakaki. Pernyataan yang benar adalah : a. Sudut alasnya sama besar b. Hanya garis bagi dan garis berat dari puncak yang berimpit c. Hanya garis tinggi dan garis bagi dari puncak yang berimpit d. Ketiga garis istimewa dari puncak yang berimpit. 4. Pada ABC siku-siku ( A = 900) ,jika panjang BC = 8 cm, maka panjang garis berat dari A adalah : a. 8 cm b. 6 cm c. 4 cm d. 3 cm 5. Diketahui trapezium ABCD dengan AB // CD dan AD = BC. Pernyataan yang salah adalah : a. AC = BD b. A = B c. ABC ABD d. ABP CDP ( P perpotongan AC dengan BD) 6. Segitiga ABC dan PQR adalah segitiga siku-siku, A = P = 900. Jika AB= PQ dan BC = PR, maka ABC PQR sebab komponen yang sama adalah : 12
  • 13. a. (s,s,sd) b. (sd,s,s) c. (s,sd,s) d. (s,s,s) 7.Segitiga ABC siku-siku ( A= 900), Jika AC = 8 cm dan C = 300, maka AB = a. 3V3 cm b. 5V3 cm c. 6V3 cm d. 7V3 cm 8.Segitiga ABC siku-siku ( A= 900), Jika AC = 8 cm dan C = 300, maka BC = a. 8/3V3 cm b. 5V3 cm c. 6V3 cm d. 7V3 cmII. Kerjakan semua soal dibawah ini : 1. Segitiga ABC siku-siku ( A= 900), Jika C = 300, buktikan bahwa BC = 2AB. 2. Diketahui ABC samakaki, AC = BC. Ttitik P sembarang pada alas AB. Q dan R pada BC dan AC sehingga PQ BC dan PR AC. Buktikan : PQ + PR = AS(garis tinggi ke salah satu kaki segitiga). 3. Melalui C dan B pada persegi ABCD dibuat garis yang membentuk sudut 150 dengan sisi BC sehingga berpotongan dititik P. Buktikan bahwa APD adalah segitiga samasisi. 13
  • 14. BAB III SEGIEMPATA. KOMPETENSI DAN INDIKATOR KOMPETENSI : 1. Memahami konsep dan prinsip tentang segi empat,luas, dan teorema Pythagoras 2. Trampil menyelesaikan persoalan yang berkaitan dengan segi empat,luas, dan teorema Pythagoras INDIKATOR : 1. Memahami tentang jajar genjang, persegi panjang, persegi, belah ketupat, layang-layang, dan trapezium. 2. Memahami tentang luas jajar genjang, persegi panjang, persegi, belah ketupat, layang-layang, dan trapezium. 3. Memahami tentang teorema PythagorasB. URAIAN MATERI Bila pada bidang datar terdapat 4 titik sembarang yang tidak segaris dan keempatnya dihubungkan dengan garis lurus, maka terjadilah segi empat. Ada beberapa segi empat yang akan dibicarakan, yaitu segi empat sembarang, jajar genjang, persegi panjang belah ketupat, persegi, trapesium, dan segi empat layang-layang. Beberapa batasan: 1. Segi empat sembarang adalah segi empat yang keempat sisinya tidak sama panjang dan keempat sudutnya tidak sama besar. 2. Jajaran genjang (paralellogram), adalah segi empat yang sepasang- sepasang sisinya yang berhadapan sejajar. 3. Persegi panjang (rectangle), adalah jajar genjang yang salah satu sudutnya 900. 4. Belah ketupat (rhombus), adalah jajar genjang yang dua sisinya yang berurutan sama panjang. 5. Persegi (square), adalah belah ketupat yang salah satu sudutnya 90 0. 6. Trapesium (trapezoid), adalah segi empat yang memiliki tepat sepasang sisi berhadapan yang sejajar. 7. Segi empat layang-layang (kite), adalah segi empat yang diagonalnya saling tegak lurus dan salah satu diagonalnya terbagi dua sama panjang oleh yang lain. TEOREMA 14
  • 15. Dalam jajar genjang, sudut-sudut yang berhadapan sama besar dansebaliknya bila dalam segi empat yang berhadapan sama, segi empat ituadalah jajar genjang.Diketahui : ABCD jajar genjang.Buktikan : A= CBukti : Tarik diagonal BD D C 2 1 ABD CDB, sebab: B1 D1 D2 B2 BD BD 2 A C 1 A BSebaliknya: A= C B= D A+ B= C+ D = 1800 atau AD // BC dan AB // DC atau ABCD jajaran genjang.TEOREMADalam jajaran genjang, sisi yang berhadapan sama panjang dansebaliknya bila sisi-sisi yang berhadapan dalam segi empat samapanjang, maka segi empat itu adalah jajaran genjang.Diketahui : ABCD jajaran genjang.Buktikan : AB = DC dan AD = BC.Bukti : tarik diagonal BD, maka : D C 2 1 ABD CDB, sebab: BD BD B1 D1 D2 B2 2 AB = DC dan AD = BC 1A BSebaliknya tetap berlaku, yaitu: ABD CDB, sebab: 15
  • 16. AB CD AD BC BD BD B1 = D1 AB // DC ABCD jajaran genjang. B2 = D2 AD // BCTEOREMAKedua diagonal dalam jajaran genjang potong memotong di tengah-tengah dan sebaliknya bila dalam segi empat, kedua diagonalnyapotong memotong di tengah-tengah maka segi empat itu adlah jajarangenjang.Diketahui : ABCD jajaran genjang. AC dan Bd berpotongan di S.Buktikan : AS = CS dan BS = DS.Buktikan : ABS CDS, sebab: D C 2 1 1 2 AB DC S A1 C1 3 1 4 2 B1 D1 AS = SC dan BS = SD 2 2 1 1A BSebaliknya: ABS dan CDS tetap sama dan sebangun, sebab: AS SC BS DS S4 S3 A1 C1 AB // DC .....................(1) ASD CSB , sebab: SD SB SA SC S1 S2 D2 B 2 atau AD // BC ........................(2) Dari (1) dan (2) ABCD jajaran genjangTEOREMA 16
  • 17. Bila dalam segi empat sepasang sisi yang berhadapan sama dan sejajar, maka segi empat itu adlah jajaran genjang. Diketahui : AB // DC Buktikan : ABCD jajaran genjang. Bukti : Tarik diagonal BD D C ABD CDB, sebab: 2 1 AB DC B1 D1 BD BD B2 D2 AD // BC Karena sudah diketahui AB // 2 DC, maka ABCD jajaran 1A B genjang. Persegi panajng, adalah jajaran genajng yang salah satu sudutnya 90 0. TEOREMA Dalam persegi panjang kedua diagonalnya sama panjang dan sebaliknya bila dalam jajaran genjang kedua diagonalnya sama panjang, maka jajaran genjang itu adalah persegi panjang. Diketahui : ABCD persegi panjang. Buktikan : AC = BD Bukti : ABC BAD, sebab: D C AB = AB 2 A= B = 900 S AD = BC AC = BD 2 1 1 A B Sebaliknya : AC = BD maka AS = SB = SD. ABS dan ADS samakaki. A1 = B1, A2 = D2 2 ( A1 + A2 ) = 1800. 0 A1,2 = 90 ABCD persegi panjang. Belah ketupat, adalah jajaran genjang yang 2 sisi berdekatan sama panjang. 17
  • 18. TEOREMADalam belah ketupat, diagonal-diagonalnya membagi sudut-sudutnyamenjadi 2 bagian yang sama dan kedua diagonalnya itu saling tegaklurus.Diketahui : ABCD belah ketupat.Buktikan : a. A1 = A2 b. B1 = B2 c. AC BDBukti : ABS ADS, sebab : AB = AD AS = AS D BS = DS C A1 = A2 dan S1 = S2 Karena S1,2 = 1800, maka S1 = S2 S = 900 1 2 AC BD ABS CBS, sebab : 1 2 AB = CB 2 1A B SB = SB AS = SC B1 = B2TEOREMABila dalam jajaran genjang diagonalnya membagi sudut menjadi 2bagian yang sama, maka jajaran genjang itu adalah belah ketupat.Diketahui : ABCD jajaran genjang dan A1 = A2Buktikan : ABCD belah ketupat.Bukti : ABC ADC, sebab : D C 1 2 A1 = A2 AC = AC C1 = C2 1 2A B 18
  • 19. AB AD ABCD belah ketupat. TEOREMA Bila dalam jajaran genjang, kedua diagonalnya saling tegak lurus, maka jajaran genjang itu adalah belah ketupat. Diketahui : ABCD jajaran genjang dan AC BD. Buktikan : ABCD belah ketupat. Bukti : ABS CBS, sebab: D C AS = CS S S1 = S2 = 900 2 1 BS = BS AB = CB ABCD belah ketupatA B Persegi (bujur sangkar), adalah belah ketupat yang salah satu sudutnya 90 0. Jadi, persegi adalah segi empat beraturan. TEOREMA Garis yang menghubungkan titik-titik tengah dua sisi segitiga akan sejajar dengan sisi yang ketiga dan panjangnya setengah sisi yang ketiga itu. Diketahui : ABC. Titik D dan titik E tengah-tengah AC dan BC. 1 Buktikan : DE // AB dan DE = AB. 2 Bukti : Sambung DE dengan EF = ED. Hubungkan BD dan CF dan BF. 19
  • 20. DBFC jajaran genjang, sebab: DE = EF; CE = EB. Jadi BF // AC atau BF # AD atau ABFD jajaran genjang sehingga AB // DE. 1 AB = DF AB = 2 DE. Jadi, DE // AB dan DE = AB. 2 DE disebut paralel tengah segitiga ABC. B D E F A BTEOREMAGaris berat ke sisi miring suatu segitiga siku-siku setengah sisi miringitu.Diketahui : ABC siku-siku. C N A = 900, AM garis berat. 1Buktikan : AM = BC. 2 MBukti : Sambung AM dengan MN = MA, maka ABNC jajaran genjang, tetapi A = 900 1 ABNC persegi panjang. 2 1 A B AN = BC atau AM = BC. 2Trapesium, adalah segi empat yang sepasang sisinya yang berhadapansejajar. Ada tiga macam trapesium, yaitu trapesium sembarang, trapesiumsiku-siku, dan trapesium sama kaki.TEOREMADalam trapesium samakaki, kedua diagonal sama panjang dan sudut-sudut alas sama besar.Diketahui : ABCD trapesium samakaki. D CBuktikan : A= B dan AC = BD.Bukti : Tarik CE // DA, maka AECD jajaranGenjang, AD = CE, AD = BC 20
  • 21. Jadi CE = BC atau BCE samakaki E = B; E= A (sehadap) A= B. ABC BAD, sebabAB = AB ; BC = AD; A= B. AC = BD.TEOREMAGaris yang menghubungkan pertengahan-pertengahan kaki suatutrapesium sejajar deagan sisi-sisi sejajarnya dan panjangnya setengahjumlah sisi yang sejajar.Diketahui : Trapesium ABCD. AE = ED ; BF = FC.Buktikan : a. EF // AB // DC. 1 b. EF = (AB + DC). 2Bukti : sambung DF dan AB hingga berpotongan di G. BGF CDF, sebab:BF = CF; F1 = F2; D1 = G1 D C 1 DC = BG dan DF = FGAtau EF paralel tengah AGD sehingga E 1 F 1 2EF // AG dan EF = AG 2 1 G 1 A BAtau EF // AB // DC dan EF = (AB + DC). 2LUASD C TEOREMAp Luas persegi panjang sama dengan panjang dikali lebarA l B D C TEOREMA Luas jajaran genjang sama dengan alas dikali tingginya.A E B F C D TEOREMA t 21
  • 22. Luas segitiga sama dengan setengah dari alas dikali tingginya. G D C TEOREMA Luas trapesium sama dengan jumlah sisi- sisi sejajar dikali tingginya dibagi dua. t t A F B D TEOREMA Luas segiempat yang diagonal- A C E diagonalnya saling tegak lurus, sama dengan setengah perkalian diagonal- diagonalnya. Bc3 c2 c c1 Melalui C ditarik garis // AB. Tentukan c1, c2, dan c3 pada garis tersebut. Maka luas ABC1 = luas ABC2 = luas ABC3 karena mempunyai garis tinggi yang sam dan satu sisi persekutuan. D TEOREMA PYTAGHORAS H C E M K A I B 22
  • 23. IV III V I IV I III II II V Dengan menggunkan gambar diatas buktikan teorema pytaghoras.C. LATIHAN 1. Gambar dibawah adalah persegi panjang ABCD dan DEFG diketahui AB = 10 cm, AD = 24 cm, EF = 12 cm, dan ED = 18 cm. Berapakah selisih luas bangun yang diarsir. A D E C B G 23
  • 24. 2. Dalam ABC, AB diperpanjang dengan BF = c BC dengan CD = a dan CA dengan AE = b. Buktikan luas DEF = 7 x luas ABC. 3. Lukis sebuah segitiga yang sama dengan sebuah segiempat ABCD yang diketahui C D A B 4. Dalam jajaran genjang ABCD ditentukan sembarang titik P dan titik ini dihubungkan dengan titik sudut. Buktikan : Luas PAB – luas PCB = luas PAD – luas PCD. 5. AB adalah alas ABC Pada sisi AC dan BC dilukiskan kesebelah luar sembarang jajar genjang ACDE dan BCFG. ED dan GF setelah diperpanjang berpotongan di P. Ditarik PC seterusnya di sebelah bawah AB ditarik garis AH # PC dan disudahkan dengan jajar genjang BAHK. Buktikan : Luas BAHK = luas ACDE + luas BCFG 6. Kubus ABCD. EFGH. CB diperpanjang dengan BP = CB, buktikan PFD adalah siku-siku.D. LEMBAR KEGIATAN 1.Alat dan Bahan Peserta pelatihan membawa dengan lengkap alat-alat yang dibutuhkan yaitu : pinsil, bolpoint, jangka, penghapus, penggaris, penggaris siku-siku, kertas garis ,kertas gambar, buku sumber, diktat Geometri 2.Keselamatan dan Kesehatan Kerja Peserta pelatihan membawa sendiri alat dan bahan dengan lengkap, tidak boleh meminjam alat dan bahan dengan peserta pelatihan yang lain, sehingga tidak mengganggu konsentrasi dan kenyamanan peserta pelatihan yang lain. 24
  • 25. 3.Prasyarat Peserta pelatihan telah menguasai tentang kongruensi 4.Langkah Kegiatan Kegiatan Awal Menggali pengetahuan prasyarat peserta pelatihan yang berhubungan dengan kongruensi. Berdiskusi dengan peserta pelatihan tentang penjelasan kongruensi Kegiatan Inti Menjelaskan definisi jajar genjang, persegi panjang, persegi, belahketupat, layang-layang, trapezium, dan luas jajar genjang, persegi panjang, persegi, belahketupat, layang-layang, dan trapezium ,serta memberikan contoh dan bukan contoh. Menjelaskan teorema Pythagoras, triple Pythagoras, dan aplikasinya. Diskusi kelas. Kegiatan Akhir Kesimpulan Penilaian Penguatan dalam bentuk pemberian tugas secara individu. 5.Hasil Peserta pelatihan memahami tentang jajar genjang, persegi panjang, persegi, belahketupat, layang-layang, trapezium. Luas jajar genjang, persegi panjang, persegi, belahketupat, layang-layang, trapezium,serta dapat memberikan contoh dan bukan contoh. Dapat menjelaskan teorema Pythagoras, triple Pythagoras, dan aplikasinyaE. Rangkuman 1. Segi empat sembarang adalah segi empat yang keempat sisinya tidak sama panjang dan keempat sudutnya tidak sama besar. 2. Jajaran genjang (paralellogram), adalah segi empat yang sepasang- sepasang sisinya yang berhadapan sejajar. 3. Persegi panjang (rectangle), adalah jajar genjang yang salah satu sudutnya 900. 4. Belah ketupat (rhombus), adalah jajar genjang yang dua sisinya yang berurutan sama panjang. 5. Persegi (square), adalah belah ketupat yang salah satu sudutnya 90 0. 6. Trapesium (trapezoid), adalah segi empat yang memiliki tepat sepasang sisi berhadapan yang sejajar. 7. Segi empat layang-layang (kite), adalah segi empat yang diagonalnya saling tegak lurus dan salah satu diagonalnya terbagi dua sama panjang oleh yang lain.F. Tes Formatif 25
  • 26. I. Pilih satu jawaban yang paling tepat 1. Bangun datar dibawah ini adalah segiempat yang mempunyai dua pasang sisi yang sejajar, kecuali a. jajargenjang b. persegipanjang c. belahketupat d. layang-layang 2. Dalam suatu belah ketupat ABCD garis tegaklurus dari B pada sisi AD membagi dua sama panjang. Maka besar A : a. 1200 b. 900 c. 600 d. 450 3. Trapesium ABCD, dengan AB = 10 cm, CD = 7 cm, sedangkan AD = BC= 3 cm. Maka besar A : a. 1200 b. 900 c. 600 d. 450 4.Pertengahan-pertengahan sisi-sisi trapezium sama kaki merupakan titik- titik sudut suatu : a. jajargenjang b. persegi c. persegipanjang d. belahketupat. 5.Diagonal laying-layang ABCD berpotongan di P. AP = PD dan ABD = 300.Jika AD = 10V2, maka luas ABCD = a. 100 b. 100(1 + V3) c. 100V3 d. 300 6. Pada jajargenjang ABCD, AB = 10 cm, BD = 6 cm. Jika BD BC,maka luas jajargenjang ABCD adalah : a. 48 cm2 b. 60 cm2 c. 80 cm2 d. 86 cm2 7.Pada jajargenjang ABCD, AB = 10 cm, BD = 6 cm. Jika BD BC, maka panjang jarak AB dan CD adalah : a. 4,8 cm 26
  • 27. b. 6 cm c. 8 cm d. 8,6 cm 8.Diketahui belahketupat ABCD dan BFDE dengan E, F terletak pada AC.Jika BD = 50 cm dan AE = 24 cm . Maka luas daerah BCDF + ABED adalah : a. 50 cm2 b. 100 cm2 c. 600 cm2 d. 1200 cm2II. Kerjakan semua soal dibawah ini 1. Dalam persegi panjang ABCD terdapat titik P. Buktikan bahwa : PA 2 + PC2 = PB2 + PD2 2.Diketahui jajar genjang ABCD. AB = 20. Garis bagi dalam A dan D berpotongan di E. AE = 16, DE = 12.Hitung luas ABCD. 3. Diketahui jajar genjang ABCD. Garis l memotong AB dan AD sehingga E,F,G dan H pada l. AE,BF, CG, DH l. Buktikan : BF + DH = CG - AE 27
  • 28. BAB IV PERBANDINGAN SEHARGA GARIS DAN SEBANGUNA. Kompetensi dan Indikator Kompetensi 1. Memahami tentang perbandingan seharga garis dan sebangun 2. Trampil menyelesaikan persoalan yang berkaitan dengan perbandingan seharga garis dan kesebangunan Indikator 1. Memahami perbandingan seharga garis. 2. Memahami tentang bangun-bangun yang sebangun.B. URAIAN MATERI TEOREMA Bila beberapa garis sejajar dipotong oleh sebuah garis atas potongan- potongan yang sama, maka garis-garis sejajar itu dipotong oleh garis potong yang lain atas potongan-potongan yang sama juga. Diketahui : garis-garis a // b // c dipotong di A, B, dan C sehingga AB = BC Buktikan : garis m memotong a, b, c di D, E, dan F sehingga DE = EF. Bukti : Tarik dari D (lihat gambar) garis // l, memotong garis b di G dan tarik dari E garis EH sejajar l, maka ABGD dan BCHE jajaran genjang hingga AB = BC = DG = EH. DGE EHF sebab DG = EH; G1 = H1 = B1 = C1, dan E1 = F1 jadi DE = EF. l m a A D 1 1 1 b B G E 1 1 1 c C H F 28
  • 29. TEOREMABila beberapa garis sejajar dipotong oleh sebuah garis atasperbandingan tertentu, maka garis-garis sejajar itu dipotong oleh garispotong yang lain atas perbandingan yang tertentu juga.Diketahui : garis-garis a // b // c dipotong oleh garis l atas perbandingan 2 : 3,maka garis potong m akan memotong a, b, c atas perbandingan 2 : 3 juga.Bukti :Tarik dari titik-titik bagi G, H, K garis-garis // a // b // c didapat L, M, N padagaris m maka : AG = GB= BH = HK = KC,Menurut dalil 44 maka DL = LE = EM = MN = NE, maka DE : EF = 2 : 3 juga. l ma A D G L B Eb H M K N C FcBEBERAPA BATASAN : bila satu titik dikalikan terhadap satu titik lain dengan satu faktor k, maka hasilnya sebuah titik yang jaraknya k kali jarak titik itu kepusat perkalian (pusat dilatasi). bila sepotong garis dikali dengan faktor k terhadap satu titik, hasilnya sebuah garis sejajar garis semula dan panjangnya k kali panjang garis semula. Bila faktor perkalian positif, hasilnya sejajar dan searah, bila negatif hasilnya sejajar berlawanan arah. dua segitiga disebut sebangun jika segitiga yang satu dapat didilatasikan sedemikian sehingga hasilnya sama dan sebangun dengan bangun yang lain.TEOREMADua segitiga sebangun bila sisi-sisi segitiga yang satu sebandingdengan sisi-sisi segitiga yang lain. 29
  • 30. C1 R C B B1 QO A A1 P Diketahui : ABC dan PQR dengan AB : BC : CA = PQ : QR : RP Buktikan : ABC PQR PQ Bukti : Kalikan ABC terhadap O dengan faktor k maka didapat AB A1B1C1 PQ A1B1 . AB PQ , begitu juga B1C1 =QR dan C1A1=RP AB A1B1C1 PQR atau ABC PQR TEOREMA Dua segitiga sebangun bila dua sudut-sudutnya sama besar. Diketahui : ABC dan PQR dengan A P; B Q Buktikan : ABC PQR Bukti : PQ PQ Kalikan ABC dengan k maka A1B1 . AB PQ AB AB A A1 ; B B1 A1 P dan B1 Q A1B1C1 PQR atau ABC PQR C1 R C B B1 O Q A A1 P 30
  • 31. TEOREMA Dua segitiga sebangun bila sepasang sudut sama besar dan sisi-sisi yang mengapit sebanding. Diketahui : ABC dan PQR dengan A P dan AB : AC = PQ : PR Buktikan : ABC PQR C1 R C B B1O Q A A1 P Bukti : PQ PQ Kalikan ABC dengan k maka A1B1 . AB PQ dan AB AB PR PQ PR A1C1 . AC PR sebab AC AB AC A1B1C1 PQR atau ABC PQR Dalil-dalil mengenai sebangun ini dapat dipergunakan untuk membuktikan sudut-sudut sama besar atau sisi-sisi sebanding. TEOREMA Luas segitiga yang sama alasnya berbanding seperti tingginya dan sebaliknya bila tingginya sama, luasnya berbanding seperti alasnya. Diketahui : ABC dan PQR dan AB = PQ Luas ABC t1 Buktikan : Luas PQR t2 R C t1 t2 A D B P S Q 31
  • 32. Bukti : 1 1Luas ABC = . AB.CD .a..t1 ………………………………….(1) 2 2 1 1Luas PQR = .PQ.RS .a..t 2 ………………………………….(2) 2 2 1 .a.tLuas ABC 2 1 t1Luas PQR 1 t2 .a.t 2 2 1 .a1 .t Luas ABC 2 a1Sebaliknya jika t1=t2 maka Luas PQR 1 a2 .a 2 .t 2TEOREMALuas dua segitiga yang mempunyai sepasang sudut yang sama,berbanding seperti perkalian sisi-sisi yang mengapitnya.Diketahui : ABC dan PQR dengan A P Luas ABC AB. ACBuktikan : Luas PQR PQ.PR C R t1 t2 A D B P S QBukti :Tarik CD AB dan RS PQ, maka ACD PRS, jadi AC : PR = t 1 : t2 1 . AB.t1Luas ABC 2 AB.t1 AB. ACLuas PQR 1 PQ.t 2 PQ.PR .PQ.t 2 2Berlaku juga bila 2 sudut itu berpelurus sesamanya 32
  • 33. TEOREMA Perbandingan luas 2 segitiga yang sebangun adalah sama dengan kuadrat dari perbandingan sepasang sisi seletak. Diketahui : ABC PQR Luas ABC AB 2 AC 2 BC 2 Buktikan : Luas PQR PQ 2 PR 2 QR 2 Bukti : ABC PQR maka A P AB AC PQ PR Luas ABC AB. AC AB. AB AB 2 Luas PQR PQ.PR PQ.PQ PQ 2 R C B P Q A Dengan cara yang sama dapat dibuktikan bahwa perbandingan luas kedua AC 2 BC 2 segitiga akan sama dengan juga. PR 2 QR 2C. LATIHAN 1. Titik M pada pertengahan hipotema BC suatu segitiga siku-siku ABC. Melalui M dibuat garis tegak lurus BC yang memotong AB dan AC di P dan Q. Buktikan MA2 = MP xMQ 2. Diketahui trapesium ABCD. AB//DC, AB=a, DC=b. E pada BC sehingga EF//AB, AE : ED = p : q. Nyatakan EF dengan a, b, p, dan q! 3. Diketahui ABC, AB=c; CD = t. sebuah persegi PQRS ada di dalam segitiga itu dengan P dan Q pada AB, R pada BC dan S pada AC. Nyatakan sisi bujursangkar itu dengan c dan t! 4. Diketahui jajargenjang ABCD. Titik T pada DC (DT<TC). Tariklah melalui T sebuah garis yang membagi jajargenjang itu menjadi 2 bagian yang sama luas! 33
  • 34. 5. Pada sebuah dengan sudut 900 dan 600 ditarik garis tinggi pada sisi miring dan garis bagi sudut lancip yang besar. Buktikan garis yang menghubungkan titik ujung garis-garis itu membagi segitiga itu menjadi dua bagian sama besar.D. LEMBAR KEGIATAN 1.Alat dan Bahan Peserta pelatihan membawa dengan lengkap alat-alat yang dibutuhkan yaitu : pinsil, bolpoint, jangka, penghapus, penggaris, penggaris siku-siku, kertas garis ,kertas gambar, buku sumber, diktat Geometri 2.Keselamatan dan Kesehatan Kerja Peserta pelatihan membawa sendiri alat dan bahan dengan lengkap, tidak boleh meminjam alat dan bahan dengan peserta pelatihan yang lain, sehingga tidak mengganggu konsentrasi dan kenyamanan peserta pelatihan yang lain. 3.Prasyarat Peserta pelatihan telah menguasai tentang kesejajaran 4.Langkah Kegiatan Kegiatan Awal Menggali pengetahuan prasyarat peserta pelatihan yang berhubungan dengan kesejajaran. Berdiskusi dengan peserta pelatihan tentang penjelasan kesejajaran Kegiatan Inti Menjelaskan tentang perbandingan seharga garis-garis Menjelaskan tentang kesebangunan dan aplikasinya. Diskusi kelas. Kegiatan Akhir Kesimpulan Penilaian Penguatan dalam bentuk pemberian tugas secara individu. 5. Hasil * Peserta pelatihan memahami tentang perbandingan seharga garis. * Peserta pelatihan memahami tentang bangun yang sebangun.E. Rangkuman Dua bangun disebut sebangun jika segitiga yang satu dapat didilatasikan sedemikian sehingga hasilnya sama dan sebangun dengan bangun yang lain. * Luas dua segitiga yang mempunyai sepasang sudut yang sama, berbanding seperti perkalian sisi-sisi yang mengapitnya. 34
  • 35. * Perbandingan luas 2 segitiga yang sebangun adalah sama dengan kuadrat dari perbandingan sepasang sisi seletak.F. Tes Formatif I Pilih satu jawaban yang paling tepat 1. Diketahui jajar genjang ABCD. E pada AC, sehingga AE : EC = 1 :3 ditarikdari E garis sejajar AB memotong BD di F. Jika AB = 24 , maka EF = a. 12 b. 10 c. 8 d. 6 2. Persegi ABCD diketahui panjang sisinya =8. P pada AD dan Q pada AB sehingga DP = AQ = 6. CP dan DQ berpotongan di R. Maka panjang DR = a. 6 b. 4,8 c. 4 d. 3,8 3. Diketahui ABC . AB = 24. Pada AB terletak titik P sehingga AP = 2/3 AB. Q pada CP hingga CQ : QP = 3 : 1.Perpanjangan AQ memotong BC di R. Diarik dari R garis sejajar AB dan memotong CP di S. Panjang RS = a. 8 b. 6 c. 5 1/3 d. 5 4. Pada jajargenjang ABCD diketahui P pada DC. Garis yang melalui A dan P memotong BD dan perpanjangan BC di Q dan R. Jika AQ = 12 dan PR = 10. Maka PQ = a. 12 b. 10 c. 8 d. 6 5. Diketahui ABC. AB = 28, P pada AB sehingga AP = 12. Q pada BC dan PQ//AC. R pada AC dan PR//BC. S pada BC dan RS//AB. PQ dan RS berpotongan di T. Bila QS = 4, maka PR = a. 12 b. 10 c. 8 d. 6 35
  • 36. 6. Diketahui ABC. D dan E di tengah-tengah AB dan AC. Sebuah garis melalui E memotong CD dan CB di F dan G. Jika BG = 16 dan EF : FG = 3 : 2, maka CG = a. 12 b. 10 c. 8 d. 6 7. Diketahui ABC. Pada BC terletak titik D, sehingga CD = 2/5 BC dan pada AB titik E, sehingga AE = 1/3 AB. AD dan CE berpotongan di S. Maka : AS : SD = a. 2 : 3 b. 3 : 4 c. 4 : 5 d. semua jawaban salah 8. Diketahui ABC. Pada BC terletak titik D, sehingga CD = 2/5 BC dan pada AB titik E, sehingga AE = 1/3 AB. AD dan CE berpotongan di S. Maka : CS : SE = a. 2 : 3 b. 3 : 4 c. 4 : 5 d. semua jawaban salahII. Kerjakan semua soal dibawah ini : 1. Diketahui panjang ruas garis a ,b,dan c. Lukiskanlah ruas garis x dan y, jika x b x + y = a dan = y c 2. Diketahui ABC siku-siku ( A = 900), B = 600 Buktikanlh bahwa garis tinggi ke hypotenuse memotong garis bagi B di tengah-tengah. 3. Lukislah sebuah segitiga, jika diketahui dua sudut dan kelilingnya. 36
  • 37. BAB V BEBERAPA TEOREMA PADA SEGITIGAA. Kompetensi dan Indikator Kompetensi 1. Memahami tentang beberapa teorema pada garis-garis istimewa segitiga 2.Trampil menyelesaikan persoalan yang berkaitan dengan teorema - teorema pada garis-garis istimewa segitiga Indikator 1. Memahami teorema proyeksi pada segitiga siku-siku. 2. Memahami tentang teorema proyeksi pada segitig lancip dan tumpul 3. Memahami tentang teorema Stewart 4. Memahami tentang teorema garis bagi pqda segitiga 5. Memahami tentang teorema garis berat pqda segitiga. 6. Memahami tentang teorema garis tinggi pqda segitiga 7. Memahami tentang teorema Menelaos dan CevaB. URAIAN MATERI Beberapa teorema dan Garis Istimewa Pada Segitiga 1. Teorema Proyeksi pada Segitiga Siku-siku C q D Lihat Gambar a P disebut proyeksi sisi siku-siku c pada sisi a. b q disebut proyeksi sisi siku-siku b pada sisi a. t p A B c TEOREMA Kuadrat sisi siku-siku sama dengan hasil kali proyeksinya ke sisi miring dan sisi miring sendiri. Kuadrat garis tinggi ke sisi miring sama dengan hasil kali bagian sisi miring. Hasil kali sisi siku-siku sama dengan hasil kali sisi miring dan garis tinggi ke sisi miring itu. Kuadrat sisi miring sama dengan jumlah kuadrat kedua sisi yang lain. 37
  • 38. Buktinya sebagai berikut. C Diketahui : ABC, A= , AD BC q D a Buktikan : 1 2b 1. t p 1 2 2. B 3. A c 4. Buktinya adalah sebagai berikut.1. Lihat Lihat maka maka2. Lihat maka3. Karena Maka4. Dari hasil No. 1 : +2. Teorema Proyeksi pada Segitiga Lancip / Tumpul C b a t Buktinya sebagai berikut. p q Diketahui : A D c B q proyeksi a pada c Buktikan : 38
  • 39. Bukti : Pada ; dan pada C Jika tumpul maka buktikan bahwa . Bukti : a ; t b p c B D ATEOREMA Kuadrat sisi di hadapan sudut lancip (tumpul) sama dengan jumlah kuadrat kedua sisi yang lain dikurangi (ditambah) dua kali sisi yang satu dan proyeksi sisi yang kedua ke sisi yang pertamaTEOREMA STEWARTTeorema Stewart Jika garis x yang ditarik dari titik C dan membagi sisi c dalam dan maka C Diketahui : dengan dan b a Buktikan : x A Bukti : c1 E m D c2 B Tarik garis CE AB, misal DE = m maka1. Pada (lancip) 2. Pada ( Dari (1) dan (2) didapat : 39
  • 40. GARIS ISTIMEWA DALAM SEGITIGA TEOREMA Garis-garis berat dalam segitiga berpotongan atas bagian yang perbandingannya 2 : 1. C Diketahui : E D Berpotongan di Z Z Buktikan : AZ = ZD = BZ : ZE = 2 : 1A Bukti : B Hubungkan D dengan E maka DE // AB. Karena E dan D berturut-turut 1 tengah-tengah AC dan BC maka ED = AB (AB : DE = 2 : 1). 2 Lihat dan : ZED (dalam bersebrangan) DZE (bertolak belakang) Jadi AZ : ZD = BZ : ZE = AB : DE = 2 : 1 Dengan cara yang sama dapat dibuktikan untuk garis berat melalui titik C. TEOREMA Jika , dan berturut-turut garis berat ke sisi a, b, dan c maka A Diketahui : garis berat (AD = ) Buktikan : c Bukti : Menurut Teorema Stewart b xa CB D Dengan cara yang sama untuk dan . TEOREMA Garis yang membagi sisi di depannya menjadi dua bagian yang berbanding seperti sisi-sisi yang berdekatan. 40
  • 41. C Diketahui : garis bagi F dan D Buktikan : : =c:b b Bukti : Tarik garis DE AB den DF AC, maka B A c E DE = DF ( Lihat i. Luas ii. Jika garis tinggi dari A adalah maka : Luas Dari (i) dan (ii) dapat disimpulkan Rumus itu juga berlaku untuk garis bagi luar, buktinya sbb : Diketahui : garis bagi luar DA = p dan E C DB = q Buktikan : p : q = b : a b a Bukti : D p A c Tarik garis DE BC dan DF AC, maka DE = q B DF ( ) Lihat i. Luas ii. Luas Dari (i) dan (ii) dapat disimpulkanTEOREMA Kuadrat garis bagi dalam sama dengan hasil kali sisi sebelah dikurangi hasil kali bagian sisi di hadapannya. C Diketahui : garis bagi dalam AD = p dan DB = q b a Buktikan : Bukti : A p q B D CD garis bagi maka a : b = q : p atau ap = bqMenurut teorema Stewart : 41
  • 42. Untuk garis bagi luar, . Buktinya sebagai berikut. Diketahui : garis bagi luar AD = p C dan BD = q b a Buktikan : D p c Bukti : qA BMenurut teorema Stewart :TEOREMA Dua garis tinggi dalam segitiga berbanding terbalik terbalik dengan sisinya C Diketahui : garis tinggi pada sisi a b a garis tinggi pada sisi b tb ta Buktikan : t a : t b b : a A B Bukti : Luas ABC 1 t a a; luas ABC 1 t b 2 2 b Sehingga didapat : 1 t a 1 t b 2 a 2 b t a a tb b t a tb b a 42
  • 43. TEOREMA Jika diketahui ABC , 2 s a b c dan t a , tb , tc berturut-turut garis tinggi pada a, b, dan c maka : 2 ta s ( s a ) ( s b) ( s c ) a 2 tb s ( s a ) ( s b) ( s c ) b 2 tc s ( s a ) ( s b) ( s c ) cBukti : a b c 2s a b c a b c 2c 2 s 2c 2( s c ) a b c a b c 2b 2 s 2b 2( s b) a b c a b c 2 a 2 s 2 a 2( s a ) 2 ta c2 p2 c2 a2 b2 p 2a 2 2 2 c2 a2 b2 ta c 2a 2 c2 a2 b2 c2 a2 b2 ta c c 2a 2a 2 2ac c 2 a 2 b 2 2ac c 2 a 2 b 2 ta 2a 2a 2 (a c) 2 b 2 b2 (a c) 2 ta 2a 2a (a c b) (a c b) (b a c) (b a c) 2 ta 4a 2 2 2 s 2( s b ) 2( s c ) 2( s a ) ta 4a 2 2 4 ta s ( s a ) ( s b) ( s c ) a2 2 ta s ( s a ) ( s b) ( s c ) a Demikian pula untuk tb dan tc . 43
  • 44. 2 Luas ABC 1 s ( s a ) ( s b) ( s c ) s ( s a ) ( s b) ( s c ) 2 a Jadi Luas ABC s ( s a ) ( s b) ( s c )TEOREMA MENELAOSTEOREMA Jika sebuah transversal ABC memotong sisi-sisi Ab, BC, dan CA berturut-turut di titik-titik P, Q, dan R maka (ABP)(BCQ)(CAR) =1 C Bukti : a c R Q PA QB RC b ( ABP) ( BCQ ) (CAR ) A B P PB QC RA c b a 1 b a cTEOREMA CEVATEOREMA Dalam ABC dibuat tiga transversal sudut yang memotong Ab, BC, CA berturut-turut di P, Q, dan R, jika ketiga transversal sudut tadi melalui satu titik (konruen) maka (ABP)(BCQ)CAR) =1 Bukti : S C l Dibuat garis l melalui C dan sejajar AB. a1 : a 2 q : c b1 a1 b1 : b 2 p : c R Q c1 : c 2 q : p PA QB RC b2 a2 (ABP)(BCQ)(CAR) PB QC RA q c p 1 p q c A c1 P c2 B 44
  • 45. C. LATIHAN 1. Diketahui jajar genjang ABCD. AD = 14, E pada AD sehingga AE = 2 ED. BE dan AC berpotongan di F. g titik tengah FC atau FG : GC = 1 : 1. EG memotong BC di H. Hitung CH. 2. Diketahui : ABC 1 Pada AB terletak titik D sehingga AD = DB dan pada AC terletak titik E 2 sehingga AE = 3 EC. BE dan CD berpotongan di F. Hitung CF : FD dan BF : FE. 3. Pada ABC , D dan E ditengah BC dan AB. g pada AC dan Dg memotong CE di F sehingga DF : FG = 2 : 3. Luas CgF = 56. Hitung luas ABC . 4. Pada ABC , AC = 4 dan BC = 5 CD garis bagi, AE garis berat dan luas 1 ADEC = 6 . Hitung luas BDE . 2 5. Pada ABC ( A = tumpul ) ditarik garis tinggi AD dan BE. Buktikan DC BC AC dan DEC B. EC 6. Garis-garis tinggi AD dan BE sebuah ABC berpotongan di titik T. Buktikanlah AD AT BT BE AB 2 . (Gunakan teorema Stewart).D. LEMBAR KEGIATAN 1.Alat dan Bahan Peserta pelatihan membawa dengan lengkap alat-alat yang dibutuhkan yaitu : pinsil, bolpoint, jangka, penghapus, penggaris, penggaris siku-siku, kertas garis ,kertas gambar, buku sumber, diktat Geometri 2.Keselamatan dan Kesehatan Kerja Peserta pelatihan membawa sendiri alat dan bahan dengan lengkap, tidak boleh meminjam alat dan bahan dengan peserta pelatihan yang lain, sehingga tidak mengganggu konsentrasi dan kenyamanan peserta pelatihan yang lain. 3.Prasyarat Peserta pelatihan telah menguasai tentang kesejajaran dan kesebangunan 4.Langkah Kegiatan Kegiatan Awal Menggali pengetahuan prasyarat peserta pelatihan yang berhubungan dengan kesejajaran dan kesebangunan Berdiskusi dengan peserta pelatihan tentang penjelasan kesejajaran dan kesebangunan Kegiatan Inti Menjelaskan tentang teorema proyeksi pada segitiga siku-siku 45
  • 46. Menjelaskan tentang teorema proyeksi pada segitig lancip dan tumpul Menjelaskan tentang teorema Stewart Menjelaskan tentang teorema garis bagi pqda segitiga Menjelaskan tentang teorema garis berat pqda segitiga Menjelaskan tentang teorema garis tinggi pqda segitiga Menjelaskan tentang teorema Menelalos dan Ceva Diskusi kelas. Kegiatan Akhir Kesimpulan Penilaian Penguatan dalam bentuk pemberian tugas secara individu. 5. Hasil * Peserta pelatihan memahami teorema proyeksi pada segitiga siku-siku. * Peserta pelatihan memahami tentang teorema proyeksi pada segitiga lancip dan tumpul * Peserta pelatihan memahami tentang teorema Stewart * Peserta pelatihan memahami tentang teorema garis bagi pada segitiga * Peserta pelatihan memahami tentang teorema garis berat pada segitiga. * Peserta pelatihan memahami tentang teorema garis tinggi pada segitiga * Peserta pelatihan memahami tentang teorema Menelaos dan Ceva .E. Rangkuman * Teorema Proyeksi pada segitiga lancip/tumpul Kuadrat sisi di hadapan sudut lancip (tumpul) sama dengan jumlah kuadrat kedua sisi yang lain dikurangi (ditambah) dua kali sisi yang satu dan proyeksi sisi yang kedua ke sisi yang pertama * Teoreme Stewart: Jika garis x yang ditarik dari titik C dan membagi sisi c dalam dan makaF. Tes FormatifI Pilih satu jawaban yang paling tepat 1.Diketahui ABC siku-siku. A = 900. P pada AC dan Q pada BC sehingga PQ //AB. PQ = PA = 8. PQB = 1350. R pada BC sehingga QR = 4 (R diantra B dan Q). Perpanjangan AR memotongperpanjangan PQ di S. AR = a. 12 b. 10 c. 8 d. 6 2. Dengan menggunakan soal no 1, maka panjang QS = 46
  • 47. a. 2 b. 2 2 c. 2 2+1 d. 16/7(2 2 + 1)3.Diketahui ABC CF garis berat. BZ CF( Z titik berat) D pada BZ sehingga BD = DZ. Panjang FD = 6 2. Maka panjang BC = a. 2 b. 12 2 c. 14 2 d. 24 24. Diketahui ABC. AB = 46 dan BC = 26. Jika B= 2 A,maka panjang AC = a. 12 3 b. 10 3 c. 8 3 d. 85. Diketahui ABC. AD, BE, dan CF adalah garis berat. AD= 6; BE = 9 dan AB = 8. Panjang CF = a. 6 b. 8 c. 9 d. 3 106.Dari trapezium ABCD (AB//DC),AB = 30, CD = 18, BC = 10, dan AD = 8. Panjang garis tegaklurus dri pertengahan BC ke AD = a. 71/2 7 b. 7 c. 8 d. 67.Diketahui ABC siku-siku di C. Z adalah titik berat. CZ = 12dan BZ CD.Panjang AB, BC dan AC adalah : a. 36,12 3, dan 2 91 b. 36, 12, dan 91 c. 12, 12 3, dan 91 2 d. 12 3,36, dan 2 918. Dari trapezium ABCD (AB//DC), AC BD.AB = 2CD; AD = 8 dan BC = 11.Panjang AB = a. 8 b. 11 c. 37 47
  • 48. d. 2 37II. Kerjakan semua soal dibawah ini : 1. Lukis ABC jika diketahui panjang ketiga garis berat AD = 6 cm; BE = 9 cm dan CF = 3 10cm. 2. Buktikanlah, bahwa jumlah kuadrat kedua diagonal sebuah jajar genjang = jumlah kuadrat keempat sisinya. 3. Diketahui ABC, AB = 14, BC =, dan CA = 13 cm. Dibuat garis tinggi BE dan CF. Tentukan luas AEF. 48
  • 49. BAB VI BEBERAPA TEOREMA PADA LINGKARANA. Kompetensi dan Indikator Kompetensi 1. Memahami tentang beberapa teorema pada lingkaran 2.Trampil menyelesaikan persoalan yang berkaitan dengan teorema - teorema pada lingkaran Indikator 1. Memahami teorema tentang perbandingan seharga garis-garis dalam lingkaran. 2. Memahami teorema tentang segitiga dan lingkaran luarnya. 3. Memahami teorema tentang segitiga dan lingkaran dalamnya 4. Memahami tentang teorema lingkaran singgung 5. Memahami tentang teorema segiempat talibusur. 6. Memahami tentang teorema segiempat garis singgungB. URAIAN MATERI PERBANDINGAN SEHARGA GARIS-GARIS DALAM LINGKARAN TEOREMA Garis tegak lurus dari sebuah titik lingkaran ke garis tengahnya ialah pembanding tengah antara bagian-bagian garis tengah itu. Diketahui : (M, R) C . garis tengah AB CD AB 2 Buktikanlah CD AD AB Bukti : Pada ABC C 90 A B Maka AD : CD = CD : BD (teorema) D M atau CD 2 AD AB TEOREMA Jika dari sebuah titik lingkaran ditarik sebuah tali busur dan sebuah garis tengah, maka tali busur ini pembanding tengah antara garis tengah dan proyeksinya pada garis ini. 49
  • 50. C Diketahui : (M, R) . AB garis tengah CD AB 2 Buktikanlah CD AD AB (Buktikan sendiri) A B D MTEOREMA Jika dua buah tali busur berpotongan di dalamlingkaran, maka perkalian kedua bagian pada tali busur yang pertama sama dengan perkalian bagian-bagian pada tali busur yang kedua. C Diketahui : (M, R) B . P AB dan CD berpotongan di PA Buktikan : PA X PB = PC X PD M (Buktikan Sendiri!) DTEOREMA Jika dari sebuah titik di luar lingkaran ditarik 2 garis potong maka perkalian bagian-bagian garis potong yang pertama = perkalian bagian-bagian garis potong yang kedua. Diketahui : (M, R) B . P di luar lingkaran A Buktikan : PA X PB = PC X PD. M P C (Buktikan Sendiri!) DTEOREMA Jika dari sebuah titik di luar sebuah lingkaran ditarik sebuah garis potong, maka garsi singgung ini menjadi pembanding tengah antara bagian-bagian tengah garis potong. 50
  • 51. C Diketahui : (M, R) . B P di luar lingkaran Buktikan : PA 2 PB PC P (Buktikan sendiri!) ACATATAN :1. Ketiga teorema terakhir di atas dapat juga dikatakan sebagai berikut : hasil perbanyakan jarak-jarak P ke titik potong-titik potong A dan B dari suatu garis yang berputar pada P dengan sebuah lingkaran, mempunyai harga konstan.2. Jika hasil perbanyakan PA x PB diberi tanda positif atau negative, maka hasil perbanyakan dianggap positif jika P di luar lingkaran, dan negative jika P di dalam lingkaran. Hasil perbanyakan tadi ditulis PA PB . Yang disebut Kuasa ( P, L) dari suatu titik P terhadap lingkaran L ialah hasil perbanyakan PA PB . A dan B adalah titik potong lingkaran itu dengan sebuah garis yang melalui P. Kuasa ini positif, jika P di luar lingkaran, nol jika P pada lingkaran dan negatif jika P terletak di dalam lingkaran.TEOREMA Kuasa sebuah titik P terhadap lingkaran (M,r) = PM 2 - r 2 . Bukti : Kuasa P terhadap (M,r) = PA PB . ( PA AC )( PC CB ) M r ( PA AC ) ( PC AC ) P 2 2 B C A PC AC PM 2 MC 2 AC 2 PM 2 ( MC 2 AC 2 ) PM 2 AM 2 PM 2 r 2 51
  • 52. LINGKARAN LUARTEOREMA Jari-jari R lingkaran luar sebuah segitiga sama dengan perkalian sisi-sisinya dibagi oleh 4 kali luas segitiga itu, abc atau R 4L B Diketahui : ABC dengan lingkaran luar O. a AB = c, AC = b, BC = a. c abc tb O Buktikan : R . 4LA D b C Bukti : Dari titik B telah kita tarik garis tinggi BD = tb dan garis tengah BE = 2R. E dihubungkan dengan E C.Maka ABD ~ EBC , karena A E 1 BC dan D BCE 90 . 2Dari kesebangunan ini diperoleh : ac abc abcc : tb 2 R : a atau 2 Rtb ac , jadi 2 R atau 2 R atau R . tb btb 2btbb tb 2 luas ABC . Jadi . abc R 4LLINGKARAN DALAMTitik pusat lingkaran dalam sebuah kita namakan I dan jari-jari lingkarandalam = r.TEOREMA Jari-jari R lingkaran dalam sebuah = Luas dibagi 1 2 L keliling, atau R S Diketahui : ABC L Buktikan : R . S C Bukti : Luas AIB = 1 c x r 2 E c Luas BIC = 1 a x r a 2 D r I Luas CIA = 1 b x r + 2 B A F b Luas ABC = 1 (a + b +c) r 2 52
  • 53. Luas ABC = 1 s x r 2 luas ABC L Atau r = s s Lihat gambar AF = AD (mengapa?) BF = BE (mengapa?) CD = CE (mengapa?) + AF + BF + CD = AD + BE + CE AF + BF + CD = s atau AB + CD = s, jadi CD = s – c. (buktikan : AF = s – a dan BF = s – b. CATATAN : AIB 180 1 ( A B) A B C 1 A 1 B 1 A 1 B 1 C 2 2 2 2 2 2 atauAIB ( 1 A 1 B 1 C) 1 C 90 1 C 2 2 2 2 2 Jika dari sebuah ABC diketahui alas c, sudut puncak C, dan jari-jari lingkaran dalam R, maka dapat kita lukiskan AIB, karena dari segitiga ini diketahui; alas sudut puncak dan tingginya (mengapa?). Setelah AIB dilukiskan, maka lukisan ABC mudah sekali. (Bagaimana?). LINGKARAN SINGGUNG Lingkaran singgung suatu segitiga ialah lingkaran yang menyinggung pada sisi segitiga itu dan pada kepanjangan-kepanjangan kedua sisi yang lain. C Sudah jelas bahwa sebuah segi tiga mempunyai tiga buah lingkaran singgung. 1. Lingkaran I a yang menyinggung pada BC dan mempunyai jari-jari ra . 2. Lingkaran I b yang menyinggung pada AC dan A D mempunyai jari-jari rb . B 3. Lingkaran I c yang menyinggung pada AB dan rc F mempunyai jari-jari rc .E rc rc Ic QP I c ialah titik potong garis bagi luar A dan garis bagi C. Garis bagi luar B juga harus melalui I c . Telah kita buktikan bahwa I c D = I c F. Jadi I c 53
  • 54. terletak pada tk sekalian titik yang sama jauh letaknya dari kaki-kaki ABQ dan itu ialah garis bagi luar B.TEOREMA Dalam ABC jari-jari lingkaran-lingkaran singgungnya ialah : L L L ra , rb , rc s a s b s c L Buktikan : rc s c C Bukti : Ib Ia AC I c = 1 b x rc Luas 2 G Luas CB I c = 1 a x rc 2 + L H A B Luas segi 4 CA I c B = 1 (a + b) rc 2 E 1 cx r D Luas segi 3 AB I c = - rc rc 2 c Ic Luas ABC = 1 (a + b - c ) rc 2 Telah kita buktikan,bahwa 1 (a + b - c ) = s – c 2 L Jadi ABC =(s-c) x rc atau rc s c L L(buktikan : ra , rb ) s a s bLihat gambar, kemudian jawablah pertanyaan berikutMengapa CD = CE ?Mengapa CD + CE = AC + BC + AB ?Mengapa CD = s dan AD = s –b ?Berapakah panjang AF, BF, dan BE ?Nyatakanlah AK, AL, CK, CG, BG, dan BH dengan sisi-sisi ABC. A I c B = 18 0 - I c AB - AB I c = 18 0 - ( 1 B+ 1 C) – ( 1A+ 1 C). 2 2 2 2 =18 0 - 1 B- 1 C- 1 A- 1 C. 2 2 2 2 =9 0 - 1C. 2 A I c B dapat dilukiskan jika diketahui rc , c dan C.Karena dari segi tiga itu sekarang diketahui alas, sudut puncak dantingginya.Jika A I c B telah dilukiskan maka mudah kita memperoleh ABC. 54
  • 55. abc r L r L , r L , r L R KESIMPULAN : 4L , s , a s a b s b c s c Jika O pusat lingkaran luar ABC, I pusat lingkaran dalam dan I a , I b , I c pusat lingkaran singgung, maka : AOB = 2 C, BOC = 2 A, AOC = 2 B AIB = 9 0 + 1 C, AIC = 9 0 + 1 B, 2 2 BIC = 9 0 + 1 A 2 A Ic B = 9 0 - 1 C, A I b C = 9 0 - 1 B, 2 2 B Ia C = 9 0 - 1 A 2 SEGIEMPAT TALI BUSUR DEFINISI Segiempat tali busur ialah sebuah segiempat yang keempat titik sudutnya terletak pada lingkaran. TEOREMA Dalam segiempat tali busur sudut-sudut yang berhadapan berpelurus sesamanya. Diketahui : ABCD segiempat tali busur. Buktikan : A + C =18 0 B C Bukti : A = 1 BCD 2 C= 1 BAD 2 + A A+ C= 1 ( BCD + BAD) 2 D Atau A + C = 1 keliling linkaran = 18 0 2 AKIBAT : Sudut luar sebuah sudut pada segiempat tali busur = sudut dalam berhadapan (mengapa?) . A = C1 . TEOREMA Jika dua buah sudut yang berhadapan dalam sebuah segiempat berpelurus sesamanya maka segiempat itu ialah sebuah segiempat tali busur. B C Diketahui : B + D = 18 0 Buktikan : A, B, C, dan D terletak pada satu lingkaran. Bukti :A Melalui A, B, dan C senantiasa dapat digambarkan D sebuah lingkaran. 55
  • 56. Kita umpamakan bahwa titik D tidak terletak pada lingkaran ini, maka lingkaran ini memotong garis AD di P. Akan tetapi tentu B + P = 18 0 . Sedangkan diketahui bahwa B + D = 18 0 Jadi ini akan mengakibatkan, bahwa P = D. Akan tetapi P = C1 + D (mengapa?) Perandaian bahwa D tidak terletak pada lingkaran itu, terbukti salah, jadi D harus terletak pada lingkaran; dengan perkataan lain ABCD ialah segiempat tali busur. TEOREMA PTOLEMEUS Dalam segiempat tali busur perkalian diagonal-diagonalnya sama dengan junlah perkalian sisi-sisi yang berhadapan D Diketahui : ABCD segiempat tali busur. 3 1 Buktikan : AC x BD = AB x DC + BC x ADA 2 Bukti : Kita lukiskan CDE = ADB. E C Maka DEC ~ DAB, Karena ABD = ACD = 1 AD dan ADB = 2 EDC B Akibat : EC : AB = DC : DB EC x DB = AB x DC .......................(i) ADE ~ BDC, karena ADE = BDC (mengapa?) dan DAE = DBC = 1 DC. Dari kesebangunan ini diperoleh : AE : BC = AD :BD 2 atau AE x BD = BC x AD..................(ii) Jika (i) dan (ii) dijumlahkan maka diperoleh : EC x BD = AB x DC AE x BD = BC x AD + (AE + EC) x BD = AB x DC + BC x AD atau AC x BD = AB x DC + BC x AD. PENGGUNAAN SEGIEMPAT TALI BUSURa. menentukan kepanjangan dua sisi yang berhadapan dengan sisi segiempat tali busur adalah a, b, c, dan d. D Pada gambar BCE = A (mengapa?). E c = E. Jadi ADE ~ CBE. Akibat : d x : (a + y) = b : d atau dx = ab + by (1) C b x juga y : (c+ x) = b : d atau dy = bc + by (2) A a B y E 56
  • 57. Ini adalah dua persamaan dengan dua variabel dx by ab atau dbx b 2 y ab 2 (1) bx dy bc atau dbx d 2 y dbc (2) + 2 2 (d b ) y b( ab dc ) b ( ab dc ) atau y d 2 b2 b ( ad bc ) Dengan cara yang sama y d 2 b2 Soal : Dari sebuah segiempat tali busur sisi-sisinya ialah AB = 52, BC = 25, CD = 39 dan AD = 60. Hitunglah BE dan CE.b. Juga dapat kita hitung perbandingan diagonal-diagonal. Dari gambar mudah dapat dibuktikan, bahwa DBE ~ ACE (mengapa?) Jadi : AC : DB = CE : BE atau AC : DB = x : y = (ad + bc) : (ab + dc) (lihat pada a)c. Perhitungan diagonal-diagonal. Sekarang kita ketahui perbandingan diagonal-diagonal dan dengan pertolongan dalil (pendirian) Ptolemeus juga kita ketahui, perkaliannya. Jadi dapat kita hitung diagonal-diagonal itu. AC : DB = (ad + bc) : (ab + dc) (lihat di atas) .......................(1) AC x DB = (ac +bd) (Ptolemeus) .................................................(2) ( ac bd ) ( ad bc ) ( ac bd ) ( ad bc ) AC 2 atau AC ab dc ( ab dc ) Soal : Hitunglah diagonal-diagonal sebuah segiempat tali busur ABCD jika AB = 16, BC = 25, CD = 33, dan AD = 60.d. Untuk menghitung jari-jari lingkaran luar sebuah segiempat tali busur, kita bekerja sebagai berikut. Hitunglah sebuah diagonal ump. AC. Hitunglah sekarang jari-jari lingkaran luar ADC dengan pertolongan rumus abc R . Ini juga jari-jari lingkaran luar segiempat tali busur itu. 4Le. Bila kita harus membuktikan suatu segiempat adalah segiempat tali busur, perhatikan gambar-gambar di bawah ini; segiempat ABCD adalah segiempat tali busur, jika memenuhi salah satu : B C B . C C 1 . B . A . D D A D A A+ C = 18 0 A = C1 A= C 57
  • 58. B B C B q A r qA C p s p r C A D D s D B= D = 90 pxq=rxs pq = rs SEGIEMPAT GARIS SINGGUNG DEFINISI Sebuah segiempat, yang sisi-sisinya menyinggung sebuah lingkaran yang dapat dilukiskan dalam segiempat itu, namanya segiempat garis singgung TEOREMA Jumlah dua buah sisi yang berhadapan sebuah segiempat garis singgung sama dengan kedua sisi yang lain. B Diketahui : ABCD segiempat garis singgung. Buktikan : AB + CD = AD + BC. Bukti : Untuk membuktikan ini kita pergunakan teorema yang menyatakan, bahwa garis-garis F singgung yang ditarik dari sebuah titik pada sebuah lingkaran, sama panjangnya. C Jadi : AE = AH BE = BF E CG = CF G DG = HD + D ( AE + BE ) + (CG + DG ) = ( AH + HD ) + A H (BF+CF) atau AB + CD = AD + BC TEOREMA Jika pada segiempat jumlah sisi yang berhadapan sepasang- sepasang sama, maka segiempat itu ialah sebuah segiempat garis singgung. 58
  • 59. C. LATIHAN 1. Jika p dan q ruas garis yang diketahui dan x+y=p xy = q2 Lukislah x dan y. 2. Jika p dan q ruas garis yang diketahui dan x–y=p xy = q2 lukislah x dan y. 3. Lukis x 4 p 4 q 4 p dan q ruas garis yang diketahui 4. Lukis ABC jika diketahui: C, c, dan r (jari-jari lingkaran dalam 5. D A 10 cm AD = 7 cm C B 12 cm 6. Dalam trapesium ABCD (AB = alas) ditarik garis AE BC dan BF AD buktikan F, D, C, dan E terletak pada sebuah lingkaran. 7. Pada trapesium ABCD mempunyai lingkaran singgung dan lingkaran luar. Jika AB = 28, CD = 8. tentukan diagonal trapesium tersebutD. LEMBAR KEGIATAN 1.Alat dan Bahan Peserta pelatihan membawa dengan lengkap alat-alat yang dibutuhkan yaitu : pinsil, bolpoint, jangka, penghapus, penggaris, penggaris siku-siku, kertas garis ,kertas gambar, buku sumber, diktat Geometri 2.Keselamatan dan Kesehatan Kerja Peserta pelatihan membawa sendiri alat dan bahan dengan lengkap, tidak boleh meminjam alat dan bahan dengan peserta pelatihan yang lain, sehingga tidak mengganggu konsentrasi dan kenyamanan peserta pelatihan yang lain. 3.Prasyarat Peserta pelatihan telah menguasai tentang sifat sederhana pada lingkaran,garis singgung pada lingkaran, sudut pusat, sudut keliling. 4.Langkah Kegiatan Kegiatan Awal 59
  • 60. Menggali pengetahuan prasyarat peserta pelatihan yang berhubungan dengan sifat sederhana pada lingkaran,garis singgung pada lingkaran, sudut pusat, sudut keliling. Berdiskusi dengan peserta pelatihan tentang penjelasan sifat sederhana pada lingkaran,garis singgung pada lingkaran, sudut pusat, sudut keliling. Kegiatan Inti Menjelaskan tentang teorema perbandingan seharga garis-garis dalam lingkaran. Menjelaskan tentang teorema segitiga dan lingkaran luarnya. Menjelaskan tentang teorema lingkaran dalam segitiga. Menjelaskan tentang teorema lingkaran singgung Menjelaskan tentang teorema segiempat talibusur Menjelaskan tentang teorema segiempat garissinggung Diskusi kelas. Kegiatan Akhir Kesimpulan Penilaian Penguatan dalam bentuk pemberian tugas secara individu. 5. Hasil Peserta pelatihan memahami teorema. perbandingan seharga garis- garis dalam lingkaran. Peserta pelatihan memahami tentang teorema segitiga dan lingkaran Luarnya. Peserta pelatihan memahami tentang teorema lingkaran dalam segitiga Peserta pelatihan memahami tentang teorema lingkaran singgung Peserta pelatihan memahami tentang teorema segiempat talibusur. Peserta pelatihan memahami tentang teorema segiempat garissinggung .E. Rangkuman * Yang disebut Kuasa ( P, L) dari suatu titik P terhadap lingkaran L ialah hasil perbanyakan PA PB . * Teorema Ptelemeus : Dalam segiempat tali busur perkalian diagonal-diagonalnya sama dengan junlah perkalian sisi-sisi yang berhadapan * Teorema pada segi empat garis singgung: Jumlah dua buah sisi yang berhadapan sebuah segiempat garis singgung sama dengan kedua sisi yang lain.F. Tes Formatif 60
  • 61. I Pilih satu jawaban yang paling tepat 1. Dari P di luar lingkaran M ditarik sebuah garis singgung PA = 6,garis potong PC memotong lingkran itu menurut talibusur BC yang 12 cm panjangnya. Panjang PB = a. 10 b. 8 c. 6 d. 4 2. Dari P diluar lingkaran M ditarik dua garis potong PAB dan PCD. PA = 3,AB = 29. PC dan CD berbanding sebagai 1 dan 5.Panjang PC dan PD = a. 4 dan 24 b. 8 dan 24 c. 4 dan 20 d. Semua jawaban salah 3.Dalam sebuah segitiga yang mempunyai besar dua sudutnya adalah 75 0 dan 400, digambarkan lingkaran yng menyinggung sisi segitiga tsb., di D,E,dan F. Besar sudut-sudut DEF adalah : a. 50,50, 770, dan 52,50 b. 57,50, 700, dan 52,50 c. 57,50, 710, dan 51,50 d. Semua jawaban salah 4. Dari siku-siku ABC ssi miringnya AB = c. I adalah pusat lingkaran dalam dan IC pusat lingkaran singgung pada sisi miring. Panjang II C = a. c b. c 3 c. c 2 d. c 5 5.Diketahui ABC, alas AB = 7, BC = 6 dan AC = 8.Garis yang menghubungkan C dengan pusat lingkaran singgung pada sisi a I a memotong perpanjangan AB di D. Panjang DI a = a. 4 2/3 b. 5 c. 4 15 d. 4 2/3 15 6.Lingkaran dengan jari-jari R dan garis tengah AB, dibuat ABC siku-siku dan ABD siku-siku dengan salah satu sudut lancipnya 30 0 . C dan D terletak pada pihak yang sama terhadap AB. Panjang CD dinyatakan dengan R adalah : a. ½ R ( 6 - 2) b. ½ R 61
  • 62. c. ½ R 6 d. ½ R 2 7.Trapesium ABCD merupakan segiempat garis singgung dan segiempat talibusur. AB = 28 dan CD = 8. Panjang diagonal AC = a. 137 b. 2 137 c. 137 d. Semua jawaban salah 8. Tiga lingkaran dengan jari-jari R saling bersinggungan. Maka luas daerah “Segitiga” yang dibatasi oleh ketiga lingkaran tsb. adalah : a. 1/7 R2(7 3 – 11) b. 1/7 R2 3 c. 11/7 R2 d. Semua jawaban salahII. Kerjakan semua soal dibawah ini : 1. Dua lingkaran yang berpusat di M dengan jari-jari 3a dan N berjari-jari a bersinggungan di A. Dilukiskan garis singgung dalam persekutuan dan garis singgung luar persekutuan BC yang berpotongan di D .Buktikan bahwa AD garis berat dan tentukan luas ABC. 2.Melalui P pada talibusur persekutuan 2 lingkaran M danN yang berpotongan, ditarik dalam masing-masing lingkaran sebuah taliusur, yang berturut-turut pada MP dan NP. Buktikan kedua talibusur itu sama panjang. 3. Hitunglah luas sebuah segiempat talibusur, jika sisi-sisinya adalah a,b,c, dan d. 62
  • 63. KUNCI JAWABAN TES FORMATIFKEGIATAN BELAJAR 1I. 1.a 2.b 3.a 4.c 5.d 6.d 7.a 8.cII 1.Menggunakan teorema : pada segitiga siku maka panjang garis berat kesisi miring = ½ panjang sisi miring ( bobot 3) 2.Menggunakan sifat persegi panjang ( bobot 1) Menggunakan kongruensi (bobot 2) 3.Buat garis pertolongan dengan cara : buat sudut 600 dari BC.(bobot 1) Lihat keistimewaan y ang terjadi (bobot 1) Gunakan kongruensi (bobot 2)KEGIATAN BELAJAR 2I 1.d 2.c 3.c 4.d 5.b 6.a 7.a 8.cII 1. Dengan menggunakan teorema Pythagoras ( bobot 3) 2. Dengan menggunakan sifat belah ketupat ( bobot 3) 3. Buat diagonal AC dan BD yang berpotongan di E (bobot 1) Gunakan sifat jajar tengah (bobot 3)KEGIATAN BELAJAR 3I 1.a 2.b 3.c 4.c 5.a 6.c 63
  • 64. II 1.Dari persamaan yang ke 2 substutusikan ke persamaan yang 1 (bobot3) 2.Gunakan keistimewaan sudut. (bobot 3) 3.Sebelum melukis analysa dahulu Gunakan teorema : Besar sudut luar = 2 sudut dalam yang lain(bobot 1) Selanjutnya dapat dilukis (bobot 3)KEGIATAN BELAJAR 4I 1.a 2.d 3.b 4.a 5.d 6.a 7.a 8.dII 1.Dengan menggunakan teorema garis berat, panjang alas AB dapat. Se- Lanjutnya segitiga dapa dilukis.(bobot 3) 2.Dengan menggunakan teorem Pythagoras (bobot 3) 3.Gunakan teorema proyeksi (bobot 1) Gunakan teorem:perbandingan luas 2 segitiga yang sebangun (bobot3)KEGIATAN BELAJAR 5I 1.c 2.a 3.b 4.c 5.d 6.a 7.b 8.aII. 1.Dengan menggunakan teorem bahwa panjang garis singgung dari suatu Titik adalah sama (bobot 1) Dengan menggunakan Pythagoras, dan rumus luas. (bobot 2) 2.Dengan menggunakan kuasa (bobot 3) 3.Dengan menggunakan kesebangunan (bobot 1) Menggunakan rumus luas (bobot 3). 64
  • 65. GLOSARIUMAAksioma : pernyataanyang tidak perlu dibuktikan lagi kebenarannya.Apotema : ruas garis yang ditarik dari pusat lingkaran tali busur.BBangun- bangun kongruen : bangun-bangun yang sama dan sebangunCCeva : (teorema)DDiameter: garis tengahGGaris bagi sudut : T.K titik yang berjarak sama kekaki-kaki sudut tsb.HHipotenusa : sisi miring suatu segitiga siku-sikuKKolinear : 3 titik kolinear berarti 3 titik tsb. terletak pada sebuh garisMMenelaos ; (teorema)PParallelogram : jajargenjangPostulat : pernyataan yng harus kita anggap atau terima sebagai kebenaran agar Kita bisa mereduksi pernyataan yang lainPythagoras: (teorema)Ptelemeus : (teorema)Proyeksi : (teorema)RRectangle : persegipanjangRhombus : belahketupatSSquare : persegiStewart : (teorema)TTranversal: Suatu garis yang memotong sebuah bangun 65
  • 66. DAFTAR PUSTAKA1.Ahsanul In,am, 2003, Pengantar Geometri.Bayu media Malang2 Barnett Rich, 2005, Geometry. The MCGRaw-Hill Companies3 Kurniawan,2007, Olympiade Matematika. Penerbit Erlangga Jakarta4 Kusni, 2003, Geometri. Penerbit : unnes5 Kristianto, 2002, Kapita Selekta. Penerbit : Erlangga Jakarta6.Wijdenes, 1959, Planimetri . Noordhoff- Kolff N.V. Jakarta7.Wono Setya Budhi, Ph.D. 2003, Matematika Untuk SLTP Jilid IA,IB,IIA,IIB,IIIA. Penerbit ; Erlangga Jakarta.8.Wono Setya Budhi, Ph.D. 2004, Langkah Awal Menuju Ke Olimpiade MATEMATIKA. Penerbit :C.V. Ricardo Jakarta 66

×