SlideShare una empresa de Scribd logo
1 de 48
¿Qué es la ELECTRICIDAD? ,[object Object],[object Object],[object Object],[object Object],[object Object],Todos conocemos la electricidad a través de los efectos que produce.
Naturaleza eléctrica de la materia ,[object Object],[object Object],[object Object],[object Object]
Corriente eléctrica. A l igual que el agua para poder moverse necesita un cauce de un río, un canal o una tubería, los electrones necesitan un conductor eléctrico. Generalmente se trata de un cable de cobre. El cable de cobre está formado por el hilo de cobre y por un aislante (la funda de plástico que lo envuelve). La corriente aparece en el cable de cobre cuando los electrones se mueven a lo largo del hilo de cobre. Van en fila, empujándose unos a otros. Los de atrás empujan a los de adelante, y , según se van desplazando éstos, los primeros ocupan su lugar. Así que por cada nuevo electrón  que entra en un extremo del cable, otro es empujado hacia fuera por el otro extremo. Esto nos lleva a una conclusión importante: “Para que exista una corriente eléctrica son necesarias dos cosas: algo capaz de introducir electrones en el cable, y algo capaz de recoger los que salen por el otro lado”. Esta es la razón por la que los aparatos eléctricos se conectan a dos cables y no sólo a uno: uno le da los electrones y el otro los recoge después de que hayan realizado cierto trabajo dentro del aparato (dar luz en una bombilla, tostar el pan, enfriar la bebida, ...).
Corriente eléctrica.
Tipos de corriente eléctrica ,[object Object],[object Object]
Conductores y aislantes Los electrones no son capaz de moverse en cualquier material. Sólo existen algunos materiales por cuyo interior pueden moverse los electrones y, por tanto, conducir la electricidad. A estos materiales se les llama  CONDUCTORES  y suelen ser metales (cobre, hierro, ...). Los materiales que no dejan pasar la corriente eléctrica se llaman  AISLANTES  (plásticos, madera, ...).   En un cable, la corriente eléctrica viaja por el centro, que es de cobre, y que al ser un metal, es un buen conductor. Por fuera se recubre de un material aislante que evita que el cobre entre en contacto con el exterior y que la corriente escape del cable. Sin embrago, la frontera entre conductores y aislantes no está muy clara. Cualquier aislante, en determinadas condiciones, es capaz de conducir la electricidad. Tomemos, por ejemplo, el aire. Si dejamos al aire los extremos pelados de un cable conectado a un enchufe, no hay ninguna corriente entre ellos. El aire se comporta como un aislante. Pero sin embargo en una tormenta, los rayos atraviesan el aire sin dificultad. En este caso, el aires se comporta como un conductor.   En realidad, si el voltaje de la corriente que intenta atravesar un aislante, es lo suficientemente grande éste es capaz de comportarse como un conductor. Los 220 voltios de la red doméstica no son suficientes para que el aire sea un conductor, pero sí lo son los miles de voltios generados entre una nube y el suelo durante una tormenta.
Actividades (I). Copia las actividades en tu cuaderno y responde. ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Circuito eléctrico.
Circuito eléctrico.
Circuito eléctrico ,[object Object],Componentes de un circuito eléctrico: GENERADORES : Son los elementos que producen e impulsan la energía eléctrica al circuito. Son las pilas, baterías, etc. CONDUCTORES : Son los elementos que transportan la energía eléctrica. Proporcionan el camino por el que circulan los electrones. Son los hilos y los cables eléctricos. RECEPTORES : Son operadores muy diversos que sirven para transformar la energía eléctrica recibida en otro tipo de energía. Las bombillas transforman la energía eléctrica en luminosa, los timbres en acústica, los motores en movimienrto, etc. ELEMENTOS DE MANIOBRA : Permiten manejar el circuito a voluntad. Interruptores, conmutadores, pulsadores. ELEMENTOS DE PROTECCIÓN : Protegen al circuito de posibles sobrecargas que se puedan producir. Fusibles, diferenciales, magnetotérmicos, etc.
Funcionamiento de un circuito eléctrico  Circuito hidráulico Circuito eléctrico Aquí la pila (1) equivale al depósito (D) y a la bomba (1) del circuito hidráulico. Cuando se presiona el pulsador (4), se cierra el circuito eléctrico y “una especie de bomba” que hay en el interior de la pila, comienza a enviar electrones por el conductor que está unido a su borne negativo, hasta el motor (3).   Aquí la pila (1) equivale al depósito (D) y a la bomba (1) del circuito hidráulico. Cuando se presiona el pulsador (4), se cierra el circuito eléctrico y “una especie de bomba” que hay en el interior de la pila, comienza a enviar electrones por el conductor que está unido a su borne negativo, hasta el motor (3).   Podemos decir que la energía que tiene el agua (que se manifiesta en forma de presión) se transforma en energía mecánica de rotación de la rueda.   En el interior del motor la energía que poseen los electrones (que se manifiesta a través del voltaje) es cedida y los electrones regresan de nuevo a la pila a través del polo positivo de ésta. Si queremos que la rueda no gire, cerraremos la llave de paso (4), por lo que se interrumpe la corriente de agua.   Si dejamos de accionar el pulsador (4), el circuito se abre y cesa la corriente eléctrica con lo que le motor se para.   El agua vuelve al depósito (D), sin perderse nada por el camino. Por ello recibe el nombre de circuito.   Todos los electrones que salen de la pila por el borne negativo, regresan a ella por el positivo completando el circuito.   Cuanto mayor cantidad de litros de agua por segundo bombee la bomba, desde el depósito hasta la rueda, mayor será el caudal de agua.   Cuanto mayor número de electrones circulen por el motor en un segundo, mayor será la intensidad de la corriente.   GENERADOR:  Bomba de agua (1) RECEPTOR: Rueda de aspas (3) CONDUCTOR: Tubería ELEMENTO DE MANIOBRA: Llave de paso (4) GENERADOR: Pila (1) RECEPTOR: Motor eléctrico (3) CONDUCTOR: Hilo. ELEMENTO DE MANIOBRA: Pulsador (4)
Generadores eléctricos.
Generadores eléctricos.
Generadores eléctricos. De forma genérica se llama generador eléctrico a todo aparato o máquina capaz de producir corriente eléctrica a expensas de cualquier otro tipo de energía. Los que se utilizan con más frecuencia son los que transforman energía química en energía eléctrica, generadores electro-químicos (pilas y baterías) y los que transforman energía mecánica en eléctrica, generadores electro-mecánicos (dinamos y alternadores).
Generadores eléctricos.
Receptores eléctricos.
Receptores eléctricos.
Receptores eléctricos.
Receptores eléctricos.
Receptores eléctricos.
Elementos de maniobra. Interruptores. Sirve para realizar operaciones de apertura o cierre de un circuito eléctrico. Lo podemos comparar con la función que realiza el grifo en el circuito hidráulico. Aunque su apariencia es muy variada, todos los interruptores tienen el mismo principio de funcionamiento: consisten en un mecanismo con dos partes conductoras (polos) y una pieza móvil de material conductor (contacto) que, al ser accionada, cambia de posición. ,[object Object],[object Object],[object Object],[object Object],[object Object]
Elementos de maniobra. Pulsadores. Se utiliza cuando queremos que un circuito esté accionado solamente un breve período de tiempo. Su especial característica es que solamente cierra el circuito cuando se presiona sobre él. El funcionamiento es el mismo que el del interruptor.   ,[object Object],[object Object],[object Object],[object Object],[object Object]
Elementos de maniobra. Conmutadores. Su forma exterior es idéntica a los interruptores.  Tienen  tres   polos. Su función consiste en cambiar (conmutar) la conexión del contacto entre un polo llamado común y cualquiera de los otros dos. Se utiliza en instalaciones de alumbrado en las que queremos accionar la luz desde dos puntos diferentes (pasillo, dormitorio, ...) . También para invertir el giro de un motor de corriente continua. Para esto hay que utilizar dos pilas.
Elementos de maniobra. Llaves de cruce. Este elemento de maniobra presenta cuatro terminales  (A, 1, B, 2) y dos posiciones estables (A-1, B-2 / A-2, B-1) ,[object Object],[object Object],[object Object]
Elementos de maniobra. Finales de carrera. Son pulsadores, normalmente cerrados, que son accionados por un objeto móvil durante su desplazamiento. Estos pulsadores están conectados en serie con el motor que acciona el  móvil, de forma que una vez que son accionados se interrumpe el paso de corriente eléctrica por el motor y el móvil no continúa su desplazamiento.
Elementos de protección y control. Resistencias fijas. Su función es introducir una dificultad adicionar a la circulación de la corriente para modificar convenientemente los valores del voltaje y la intensidad en determinadas partes del circuito.   Para identificar el valor de una resistencia se utiliza un código de colores. Consiste en cuatro anillos o bandas de color de las que las dos primeras indican el valor en ohmios, la tercera banda indica el factor multiplicador y la cuarta la tolerancia. En su construcción se utilizan materiales de alta resistencia para conseguir valores elevados en pequeño tamaño.
Elementos de protección y control. Resistencias variables/Fusibles. RESISTENCIAS VARIABLES. Se llama también reostato. Se trata de una resistencia que se puede variar a voluntad. Consiste en un hilo metálico arrollado sobre un material aislante y un cursor que se desliza paralelo al eje de arrollamiento haciendo contacto en puntos diferentes del hilo metálico. Resulta muy útil para regulación del voltaje de lámparas, motores, etc. FUSIBLES. Cortocircuito  es un fenómeno que se produce cuando en un circuito la resistencia se reduce a cero, por lo que la intensidad aumenta tanto que el conductor se quema, siempre por su parte más débil.   Este elemento se utiliza para proteger los circuitos contra los cortocircuitos. Consiste en un hilo conductor fino calibrado de forma que sea la parte más débil de un circuito, consiguiendo así que cuando se produce un cortocircuito sólo se queme el hilo del fusible.
Conductores eléctricos.
Conductores eléctricos.
Conductores eléctricos.
Símbolos eléctricos.
Esquemas eléctricos.
Circuitos eléctricos.
Circuitos eléctricos.
Circuitos eléctricos.
Circuitos eléctricos.
Actividades (II). Copia las actividades en tu cuaderno y responde. ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Magnitudes básicas de un circuito eléctrico. MAGNITUDES ELÉCTRICAS Voltaje Tensión Diferencia de potencial (V) Intensidad (A) Resistencia (R) LEY DE OHM V = I x R
Voltaje, tensión o diferencia de potencial.(V) En un circuito eléctrico, la diferencia de potencial (el voltaje o la tensión) existente entre los polos del generador, o entre dos puntos cualesquiera del circuito, es la causa de que los electrones circulen por el circuito si éste se encuentra cerrado.   Su unidad es el  voltio (V) . Se suelen emplear dos múltiplos de esta unidad que son el  kilovoltio (kV)  y el  megavoltio (MV)  y también dos submúltiplos como son el  milivoltio (mV)  y el  microvoltio (  V) . 1 kV = 1.000 V 1 MV = 1.000.000 V 1 V = 1.000 mV 1 V = 1.000.000     V Para medir el voltaje se utiliza un aparato llamado  voltímetro .  Se conecta en paralelo al elemento cuyo voltaje queremos medir. V
Intensidad de la corriente eléctrica.(I) La intensidad de la corriente se define como la cantidad de carga eléctrica que circula por un circuito en la unidad de tiempo. Se mide en  amperios (A) . Normalmente se emplean unos submúltiplos de esta unidad que son el  miliamperio (mA)  y el  microamperio (    A) .   1 A = 1.000 mA 1 A = 1.000.000     A   La intensidad es una característica equivalente al caudal en el circuito hidráulico, esto es, a la cantidad de agua que pasa en la unidad de tiempo por un punto de la tubería.   Para medir la intensidad de corriente que circula por un circuito se utilizan unos aparatos llamados amperímetros.  Se conecta en serie para efectuar la medida. A
Resistencia eléctrica. (R) Es la propiedad que tienen los cuerpos de dificultar más o menos el paso de la corriente eléctrica. Las sustancias conductoras ofrecen poca resistencia al paso de la corriente, sin embargo las sustancias aislantes ofrecen una alta resistencia al paso de la corriente eléctrica.   La resistencia de un conductor depende del tipo de material de que está compuesto, de su longitud y de su sección. A mayor longitud mayor resistencia y, por el contrario, a mayor sección del conductor menor resistencia, de la misma forma que el agua circula con más facilidad cuando las tuberías tienen pocos cambios de dirección y son más anchas.   La unidad de resistencia es el  ohmio (  ) . Normalmente se emplean múltiplos de esta unidad como son el  kiloohmio (k   )  y el  megaohmio (M   ) .   1 k    = 1.000     1M    = 1.000.000   Todos los receptores o componentes de un circuito suponen alguna resistencia, por pequeña que sea, al paso de la corriente eléctrica. Este efecto es, normalmente, no deseado, pero en ocasiones lo aprovechamos en algunos receptores para obtener un efecto calorífico. Es el caso de algunos aparatos compuestos de un fino hilo de metal (wolframio o tungsteno), que se pone incandescente y puede dar luz y calor, que se aprovecha en lámparas y estufas.
Ley de Ohm La ley de Ohm expresa la relación que existe entre la diferencia de potencial que aplicamos a los extremos de un receptor y la intensidad de la corriente que circula por éste.   Matemáticamente se expresa:  V = I    R   Donde V es la diferencia de potencial que se aplica al receptor, medida en voltios. I es la intensidad de la corriente eléctrica que circula por el receptor, medida en amperios. R es la resistencia del receptor, medida en ohmios. Ejemplo: Calcula la intensidad que recorrerá un circuito si a una pila de 9 voltios le conectamos una bombilla cuya resistencia es de 30 ohmios. Ley de Ohm:  V = I    R Sustituimos:  9 v  = I     30   . Despejamos la intensidad: I = 9 v /  30   = 0,3 A
Actividades (III). Copia las actividades en tu cuaderno y responde. ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Actividades (IV). Copia las actividades en tu cuaderno y responde. ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Tipos de conexiones en circuitos. CONEXIONES EN PARALELO. Cuando los elementos se disponen en ramas separadas, formando diferentes caminos para el paso de la corriente, se dice que están conectados en paralelo. Los elementos de un circuito pueden conectarse entre sí de dos formas: en  SERIE  y en  PARALELO . Cuando un circuito incluye ambos tipos de conexiones se dice Que es un circuito  MIXTO . CONEXIONES EN SERIE. Los elementos de un circuito están conectados en serie cuando se colocan en línea, unos a continuación de otros. I R 1 R 2 V T V 1 V 2 I T R 1 R 2 V T V 1 V 2 I 1 I 2
Asociación de generadores Cuando queremos variar alguna de las características de los generadores, podemos asociarlos o agruparlos de distintas formas, siempre que combinemos adecuadamente su polaridad. A un conjunto de generadores agrupados también se llama batería. Pueden asociarse de dos formas:   Asociación de generadores en serie.  Se consigue uniendo el polo negativo de uno con el positivo del otro y así sucesivamente. El voltaje de esta asociación se calcula sumando los voltajes de cada uno de los generadores.   Asociación de generadores en paralelo.  Se unen todos los polos positivos entre sí y todos los polos negativos entre sí. El valor del voltaje de la asociación es el mismo que el voltaje individual de cada uno de los generadores asociados (para ello todos deben tener igual valor). Con este tipo de asociación se consigue que la duración de los generadores sea mayor.            
Asociación de resistencias. Según la forma en que conectemos las resistencias, podremos conseguir distintos efectos. Las resistencias las podemos conectar en serie, en paralelo o de forma mixta. ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],I R 1 R 2 V T V 1 V 2 I T R 1 R 2 V T V 1 V 2 I 1 I 2
Actividades (V). Copia las actividades en tu cuaderno y responde. ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Más contenido relacionado

La actualidad más candente

2.introduccion a la electricidad
2.introduccion a la electricidad2.introduccion a la electricidad
2.introduccion a la electricidadCarlos Cardelo
 
Diapositivas de electricidad
Diapositivas de electricidadDiapositivas de electricidad
Diapositivas de electricidadGissella Galan
 
Presentación Electricidad
Presentación ElectricidadPresentación Electricidad
Presentación ElectricidadRosana Facciano
 
Qué es y como se genera la electricidad
Qué es y como se genera la electricidadQué es y como se genera la electricidad
Qué es y como se genera la electricidadjorge-paz
 
Tipos de corriente eléctrica
Tipos de corriente eléctricaTipos de corriente eléctrica
Tipos de corriente eléctricaAntonio R P
 
La corriente eléctrica
La corriente eléctricaLa corriente eléctrica
La corriente eléctricamarino1157
 
Mapa conceptual de los aspectos basicos de la electricidad
Mapa conceptual de los aspectos basicos de la electricidadMapa conceptual de los aspectos basicos de la electricidad
Mapa conceptual de los aspectos basicos de la electricidadMaria Francia Tachinamo
 
Transformacion de la energia
Transformacion de la energiaTransformacion de la energia
Transformacion de la energiaIvan Calvillo
 
Magnitudes electricas
Magnitudes electricasMagnitudes electricas
Magnitudes electricasAlbontsa
 
Corriente Alterna vs Corriente Continua
Corriente Alterna vs Corriente ContinuaCorriente Alterna vs Corriente Continua
Corriente Alterna vs Corriente ContinuaJesus Martin Gomez
 
La Energía
La EnergíaLa Energía
La Energíaceipamos
 
Electricidad 8° Basico
Electricidad 8° BasicoElectricidad 8° Basico
Electricidad 8° Basicojlpv89
 

La actualidad más candente (20)

Tipos de energia
Tipos de energia Tipos de energia
Tipos de energia
 
Circuitos 5to
Circuitos 5toCircuitos 5to
Circuitos 5to
 
Diapositivas de la electricidad y magnetismo
Diapositivas de la electricidad y magnetismoDiapositivas de la electricidad y magnetismo
Diapositivas de la electricidad y magnetismo
 
2.introduccion a la electricidad
2.introduccion a la electricidad2.introduccion a la electricidad
2.introduccion a la electricidad
 
Diapositivas de electricidad
Diapositivas de electricidadDiapositivas de electricidad
Diapositivas de electricidad
 
Circuitos eléctricos
Circuitos eléctricosCircuitos eléctricos
Circuitos eléctricos
 
Presentación Electricidad
Presentación ElectricidadPresentación Electricidad
Presentación Electricidad
 
PPT Circuitos Electricos
PPT Circuitos Electricos PPT Circuitos Electricos
PPT Circuitos Electricos
 
Qué es y como se genera la electricidad
Qué es y como se genera la electricidadQué es y como se genera la electricidad
Qué es y como se genera la electricidad
 
Tipos de corriente eléctrica
Tipos de corriente eléctricaTipos de corriente eléctrica
Tipos de corriente eléctrica
 
Circuitos electricos y electronicos
Circuitos electricos y electronicosCircuitos electricos y electronicos
Circuitos electricos y electronicos
 
La corriente eléctrica
La corriente eléctricaLa corriente eléctrica
La corriente eléctrica
 
Corriente eléctrica
Corriente eléctricaCorriente eléctrica
Corriente eléctrica
 
Mapa conceptual de los aspectos basicos de la electricidad
Mapa conceptual de los aspectos basicos de la electricidadMapa conceptual de los aspectos basicos de la electricidad
Mapa conceptual de los aspectos basicos de la electricidad
 
Diapositivas electricidad
Diapositivas electricidadDiapositivas electricidad
Diapositivas electricidad
 
Transformacion de la energia
Transformacion de la energiaTransformacion de la energia
Transformacion de la energia
 
Magnitudes electricas
Magnitudes electricasMagnitudes electricas
Magnitudes electricas
 
Corriente Alterna vs Corriente Continua
Corriente Alterna vs Corriente ContinuaCorriente Alterna vs Corriente Continua
Corriente Alterna vs Corriente Continua
 
La Energía
La EnergíaLa Energía
La Energía
 
Electricidad 8° Basico
Electricidad 8° BasicoElectricidad 8° Basico
Electricidad 8° Basico
 

Destacado

Diapositivas de electricidad
Diapositivas de electricidadDiapositivas de electricidad
Diapositivas de electricidaddalmear
 
Qué es la electricidad
Qué es la electricidadQué es la electricidad
Qué es la electricidadEnrique Val
 
Calor y Electricidad- Profesora Rosa Flores - CTA
Calor y Electricidad- Profesora Rosa Flores - CTACalor y Electricidad- Profesora Rosa Flores - CTA
Calor y Electricidad- Profesora Rosa Flores - CTAEsperanza Valdivia Uribe
 
Calor electricidad y optica texto
Calor electricidad y optica textoCalor electricidad y optica texto
Calor electricidad y optica textoPekke Mata Vázquez
 
Electricidad y magnetismo primaria
Electricidad y magnetismo primariaElectricidad y magnetismo primaria
Electricidad y magnetismo primariasextoalqueria
 
Clasificación de la materia
Clasificación  de  la  materiaClasificación  de  la  materia
Clasificación de la materiaGiuliana Tinoco
 
Hidroxidos
HidroxidosHidroxidos
Hidroxidoskarmen1
 
Conceptos Y Leyes Fundamentales De La Electricidad
Conceptos Y Leyes Fundamentales De La ElectricidadConceptos Y Leyes Fundamentales De La Electricidad
Conceptos Y Leyes Fundamentales De La Electricidadcemarol
 
Electricidad basica sena ctcm
Electricidad basica sena ctcmElectricidad basica sena ctcm
Electricidad basica sena ctcmAndres Arbelaez
 
Operación y control de bombas centrifugas
Operación y control de bombas centrifugasOperación y control de bombas centrifugas
Operación y control de bombas centrifugasWilmer Miguel Cruz Tipan
 
Curso de electricidad industrial
Curso de electricidad industrialCurso de electricidad industrial
Curso de electricidad industrialCesarSilvaJose
 

Destacado (20)

Diapositivas de electricidad
Diapositivas de electricidadDiapositivas de electricidad
Diapositivas de electricidad
 
La electricidad
La electricidadLa electricidad
La electricidad
 
Qué es la electricidad
Qué es la electricidadQué es la electricidad
Qué es la electricidad
 
El atomo
El atomoEl atomo
El atomo
 
La luna
La lunaLa luna
La luna
 
Metabolismo celular
Metabolismo celularMetabolismo celular
Metabolismo celular
 
Calor y Electricidad- Profesora Rosa Flores - CTA
Calor y Electricidad- Profesora Rosa Flores - CTACalor y Electricidad- Profesora Rosa Flores - CTA
Calor y Electricidad- Profesora Rosa Flores - CTA
 
Calor electricidad y optica texto
Calor electricidad y optica textoCalor electricidad y optica texto
Calor electricidad y optica texto
 
Origen de las biomoleculas expo
Origen de las biomoleculas expoOrigen de las biomoleculas expo
Origen de las biomoleculas expo
 
¡La electricidad!
¡La electricidad!¡La electricidad!
¡La electricidad!
 
Calor, electricidad y óptica
Calor, electricidad y ópticaCalor, electricidad y óptica
Calor, electricidad y óptica
 
Origen de las biomoleculas
Origen de las biomoleculasOrigen de las biomoleculas
Origen de las biomoleculas
 
Electricidad y magnetismo primaria
Electricidad y magnetismo primariaElectricidad y magnetismo primaria
Electricidad y magnetismo primaria
 
Clasificación de la materia
Clasificación  de  la  materiaClasificación  de  la  materia
Clasificación de la materia
 
Electricidad basica
Electricidad basicaElectricidad basica
Electricidad basica
 
Hidroxidos
HidroxidosHidroxidos
Hidroxidos
 
Conceptos Y Leyes Fundamentales De La Electricidad
Conceptos Y Leyes Fundamentales De La ElectricidadConceptos Y Leyes Fundamentales De La Electricidad
Conceptos Y Leyes Fundamentales De La Electricidad
 
Electricidad basica sena ctcm
Electricidad basica sena ctcmElectricidad basica sena ctcm
Electricidad basica sena ctcm
 
Operación y control de bombas centrifugas
Operación y control de bombas centrifugasOperación y control de bombas centrifugas
Operación y control de bombas centrifugas
 
Curso de electricidad industrial
Curso de electricidad industrialCurso de electricidad industrial
Curso de electricidad industrial
 

Similar a Qué es la electricidad y cómo funciona

Electricidad 3º de E. S. O.
Electricidad 3º de E. S. O.Electricidad 3º de E. S. O.
Electricidad 3º de E. S. O.José González
 
Electricidad de 1º E. S. O.
Electricidad de 1º E. S. O.Electricidad de 1º E. S. O.
Electricidad de 1º E. S. O.José González
 
Que es la electricidad
Que es la electricidadQue es la electricidad
Que es la electricidadwmarcelo
 
Fundamentos de la_electricidad_y_electronica_(1)-convertido
Fundamentos de la_electricidad_y_electronica_(1)-convertidoFundamentos de la_electricidad_y_electronica_(1)-convertido
Fundamentos de la_electricidad_y_electronica_(1)-convertidojhonatanzambrano6
 
Fundamentos de la_electricidad_y_electronica_(1)-convertido
Fundamentos de la_electricidad_y_electronica_(1)-convertidoFundamentos de la_electricidad_y_electronica_(1)-convertido
Fundamentos de la_electricidad_y_electronica_(1)-convertidojhonatanzambrano6
 
Curso sistema-electrico-automovil-tecnologia-automotriz
Curso sistema-electrico-automovil-tecnologia-automotrizCurso sistema-electrico-automovil-tecnologia-automotriz
Curso sistema-electrico-automovil-tecnologia-automotrizDemsey Euceda Ramos
 
Fundamentos de la_electricidad_y_electronica_(1)
Fundamentos de la_electricidad_y_electronica_(1)Fundamentos de la_electricidad_y_electronica_(1)
Fundamentos de la_electricidad_y_electronica_(1)jhonatanzambrano6
 
Fundamentos de la_electricidad_y_electronica_(1)
Fundamentos de la_electricidad_y_electronica_(1)Fundamentos de la_electricidad_y_electronica_(1)
Fundamentos de la_electricidad_y_electronica_(1)jhonatanzambrano6
 
Conceptos básicos de electricidad y electrónica
Conceptos básicos de electricidad y electrónicaConceptos básicos de electricidad y electrónica
Conceptos básicos de electricidad y electrónicaErnestina Sandoval
 
Taller virtual tecnología e informática, juan camilo imbol correa, 10-2
Taller virtual tecnología e informática, juan camilo  imbol correa, 10-2Taller virtual tecnología e informática, juan camilo  imbol correa, 10-2
Taller virtual tecnología e informática, juan camilo imbol correa, 10-2CamiloImbol
 

Similar a Qué es la electricidad y cómo funciona (20)

Electricidad 2
Electricidad 2Electricidad 2
Electricidad 2
 
Electricidad basica
Electricidad basicaElectricidad basica
Electricidad basica
 
Electricidad 3º de E. S. O.
Electricidad 3º de E. S. O.Electricidad 3º de E. S. O.
Electricidad 3º de E. S. O.
 
Electricidad de 1º E. S. O.
Electricidad de 1º E. S. O.Electricidad de 1º E. S. O.
Electricidad de 1º E. S. O.
 
Ionelectricidad
Ionelectricidad Ionelectricidad
Ionelectricidad
 
Que es la electricidad
Que es la electricidadQue es la electricidad
Que es la electricidad
 
Electricidad
ElectricidadElectricidad
Electricidad
 
Fundamentos de la_electricidad_y_electronica_(1)-convertido
Fundamentos de la_electricidad_y_electronica_(1)-convertidoFundamentos de la_electricidad_y_electronica_(1)-convertido
Fundamentos de la_electricidad_y_electronica_(1)-convertido
 
Fundamentos de la_electricidad_y_electronica_(1)-convertido
Fundamentos de la_electricidad_y_electronica_(1)-convertidoFundamentos de la_electricidad_y_electronica_(1)-convertido
Fundamentos de la_electricidad_y_electronica_(1)-convertido
 
Curso sistema-electrico-automovil-tecnologia-automotriz
Curso sistema-electrico-automovil-tecnologia-automotrizCurso sistema-electrico-automovil-tecnologia-automotriz
Curso sistema-electrico-automovil-tecnologia-automotriz
 
Fundamentos de la_electricidad_y_electronica_(1)
Fundamentos de la_electricidad_y_electronica_(1)Fundamentos de la_electricidad_y_electronica_(1)
Fundamentos de la_electricidad_y_electronica_(1)
 
Fundamentos de la_electricidad_y_electronica_(1)
Fundamentos de la_electricidad_y_electronica_(1)Fundamentos de la_electricidad_y_electronica_(1)
Fundamentos de la_electricidad_y_electronica_(1)
 
electricidad
 electricidad electricidad
electricidad
 
Circuitos electricos
Circuitos electricosCircuitos electricos
Circuitos electricos
 
Electricidad2
Electricidad2Electricidad2
Electricidad2
 
Conceptos básicos de electricidad y electrónica
Conceptos básicos de electricidad y electrónicaConceptos básicos de electricidad y electrónica
Conceptos básicos de electricidad y electrónica
 
Elec2
Elec2Elec2
Elec2
 
Tema 8 electricidad
Tema 8 electricidadTema 8 electricidad
Tema 8 electricidad
 
Electricidadbh
ElectricidadbhElectricidadbh
Electricidadbh
 
Taller virtual tecnología e informática, juan camilo imbol correa, 10-2
Taller virtual tecnología e informática, juan camilo  imbol correa, 10-2Taller virtual tecnología e informática, juan camilo  imbol correa, 10-2
Taller virtual tecnología e informática, juan camilo imbol correa, 10-2
 

Más de recursosticjerez

Más de recursosticjerez (8)

Webquest
WebquestWebquest
Webquest
 
Cazas Tesoros
Cazas TesorosCazas Tesoros
Cazas Tesoros
 
Electricidad y Magnetismo
Electricidad y MagnetismoElectricidad y Magnetismo
Electricidad y Magnetismo
 
Análisis de funcionamiento de circuitos
Análisis de funcionamiento de circuitosAnálisis de funcionamiento de circuitos
Análisis de funcionamiento de circuitos
 
Magnitudes eléctricas.
Magnitudes eléctricas.Magnitudes eléctricas.
Magnitudes eléctricas.
 
VERTEBRADOS
VERTEBRADOSVERTEBRADOS
VERTEBRADOS
 
Electricidad 3
Electricidad 3Electricidad 3
Electricidad 3
 
Electricidad 1
Electricidad 1Electricidad 1
Electricidad 1
 

Último

BLOQUE I HISTOLOGIA segundo año medicina Primer bloque primer parcial
BLOQUE I HISTOLOGIA segundo año medicina Primer bloque primer parcialBLOQUE I HISTOLOGIA segundo año medicina Primer bloque primer parcial
BLOQUE I HISTOLOGIA segundo año medicina Primer bloque primer parcial2811436330101
 
PPT Empresas IANSA Sobre Recursos Humanos.pdf
PPT Empresas IANSA Sobre Recursos Humanos.pdfPPT Empresas IANSA Sobre Recursos Humanos.pdf
PPT Empresas IANSA Sobre Recursos Humanos.pdfihmorales
 
15. NORMATIVA DE SST - LA LEY 29783.pptx
15. NORMATIVA DE SST - LA LEY 29783.pptx15. NORMATIVA DE SST - LA LEY 29783.pptx
15. NORMATIVA DE SST - LA LEY 29783.pptxAndreaAlessandraBoli
 
u1_s4_gt_la demanda y la oferta global_b27t9rulx9 (1).pptx
u1_s4_gt_la demanda y la oferta global_b27t9rulx9 (1).pptxu1_s4_gt_la demanda y la oferta global_b27t9rulx9 (1).pptx
u1_s4_gt_la demanda y la oferta global_b27t9rulx9 (1).pptxUrabeSj
 
20240418-CambraSabadell-SesInf-AdopTecnologica-CasoPractico.pdf
20240418-CambraSabadell-SesInf-AdopTecnologica-CasoPractico.pdf20240418-CambraSabadell-SesInf-AdopTecnologica-CasoPractico.pdf
20240418-CambraSabadell-SesInf-AdopTecnologica-CasoPractico.pdfRamon Costa i Pujol
 
Habilidades de un ejecutivo y sus caracteristicas.pptx
Habilidades de un ejecutivo y sus caracteristicas.pptxHabilidades de un ejecutivo y sus caracteristicas.pptx
Habilidades de un ejecutivo y sus caracteristicas.pptxLUISALEJANDROPEREZCA1
 
Proyecto TRIBUTACION APLICADA-1.pdf impuestos nacionales
Proyecto TRIBUTACION APLICADA-1.pdf impuestos nacionalesProyecto TRIBUTACION APLICADA-1.pdf impuestos nacionales
Proyecto TRIBUTACION APLICADA-1.pdf impuestos nacionalesjimmyrocha6
 
Coca cola organigrama de proceso empresariales.pptx
Coca cola organigrama de proceso empresariales.pptxCoca cola organigrama de proceso empresariales.pptx
Coca cola organigrama de proceso empresariales.pptxJesDavidZeta
 
¿ESTÁ PREPARADA LA LOGÍSTICA PARA EL DECRECIMIENTO?
¿ESTÁ PREPARADA LA LOGÍSTICA PARA EL DECRECIMIENTO?¿ESTÁ PREPARADA LA LOGÍSTICA PARA EL DECRECIMIENTO?
¿ESTÁ PREPARADA LA LOGÍSTICA PARA EL DECRECIMIENTO?Michael Rada
 
Tema Documentos mercantiles para uso de contabilidad.pdf
Tema Documentos mercantiles para uso de contabilidad.pdfTema Documentos mercantiles para uso de contabilidad.pdf
Tema Documentos mercantiles para uso de contabilidad.pdfmaryisabelpantojavar
 
PROCESO PRESUPUESTARIO - .administracion
PROCESO PRESUPUESTARIO - .administracionPROCESO PRESUPUESTARIO - .administracion
PROCESO PRESUPUESTARIO - .administracionDayraCastaedababilon
 
El MCP abre convocatoria de Monitoreo Estratégico y apoyo técnico
El MCP abre convocatoria de Monitoreo Estratégico y apoyo técnicoEl MCP abre convocatoria de Monitoreo Estratégico y apoyo técnico
El MCP abre convocatoria de Monitoreo Estratégico y apoyo técnicoTe Cuidamos
 
La electrónica y electricidad finall.pdf
La electrónica y electricidad finall.pdfLa electrónica y electricidad finall.pdf
La electrónica y electricidad finall.pdfDiegomauricioMedinam
 
estadistica basica ejercicios y ejemplos basicos
estadistica basica ejercicios y ejemplos basicosestadistica basica ejercicios y ejemplos basicos
estadistica basica ejercicios y ejemplos basicosVeritoIlma
 
Rendicion de cuentas del Administrador de Condominios
Rendicion de cuentas del Administrador de CondominiosRendicion de cuentas del Administrador de Condominios
Rendicion de cuentas del Administrador de CondominiosCondor Tuyuyo
 
Elección supervisor y comité SST 2020.pptx
Elección supervisor y comité SST 2020.pptxElección supervisor y comité SST 2020.pptx
Elección supervisor y comité SST 2020.pptxDiegoQuispeHuaman
 
T.A CONSTRUCCION DEL PUERTO DE CHANCAY.pptx
T.A CONSTRUCCION DEL PUERTO DE CHANCAY.pptxT.A CONSTRUCCION DEL PUERTO DE CHANCAY.pptx
T.A CONSTRUCCION DEL PUERTO DE CHANCAY.pptxLizCarolAmasifuenIba
 
Derechos de propiedad intelectual lo mejor
Derechos de propiedad intelectual lo mejorDerechos de propiedad intelectual lo mejor
Derechos de propiedad intelectual lo mejorMarcosAlvarezSalinas
 
PRESENTACIÓN NOM-009-STPS-2011 TRABAJOS EN ALTURA
PRESENTACIÓN NOM-009-STPS-2011 TRABAJOS EN ALTURAPRESENTACIÓN NOM-009-STPS-2011 TRABAJOS EN ALTURA
PRESENTACIÓN NOM-009-STPS-2011 TRABAJOS EN ALTURAgisellgarcia92
 
PRESENTACIÓN NOM-004-STPS-2020 SEGURIDAD EN MAQUINARIA
PRESENTACIÓN NOM-004-STPS-2020 SEGURIDAD EN MAQUINARIAPRESENTACIÓN NOM-004-STPS-2020 SEGURIDAD EN MAQUINARIA
PRESENTACIÓN NOM-004-STPS-2020 SEGURIDAD EN MAQUINARIAgisellgarcia92
 

Último (20)

BLOQUE I HISTOLOGIA segundo año medicina Primer bloque primer parcial
BLOQUE I HISTOLOGIA segundo año medicina Primer bloque primer parcialBLOQUE I HISTOLOGIA segundo año medicina Primer bloque primer parcial
BLOQUE I HISTOLOGIA segundo año medicina Primer bloque primer parcial
 
PPT Empresas IANSA Sobre Recursos Humanos.pdf
PPT Empresas IANSA Sobre Recursos Humanos.pdfPPT Empresas IANSA Sobre Recursos Humanos.pdf
PPT Empresas IANSA Sobre Recursos Humanos.pdf
 
15. NORMATIVA DE SST - LA LEY 29783.pptx
15. NORMATIVA DE SST - LA LEY 29783.pptx15. NORMATIVA DE SST - LA LEY 29783.pptx
15. NORMATIVA DE SST - LA LEY 29783.pptx
 
u1_s4_gt_la demanda y la oferta global_b27t9rulx9 (1).pptx
u1_s4_gt_la demanda y la oferta global_b27t9rulx9 (1).pptxu1_s4_gt_la demanda y la oferta global_b27t9rulx9 (1).pptx
u1_s4_gt_la demanda y la oferta global_b27t9rulx9 (1).pptx
 
20240418-CambraSabadell-SesInf-AdopTecnologica-CasoPractico.pdf
20240418-CambraSabadell-SesInf-AdopTecnologica-CasoPractico.pdf20240418-CambraSabadell-SesInf-AdopTecnologica-CasoPractico.pdf
20240418-CambraSabadell-SesInf-AdopTecnologica-CasoPractico.pdf
 
Habilidades de un ejecutivo y sus caracteristicas.pptx
Habilidades de un ejecutivo y sus caracteristicas.pptxHabilidades de un ejecutivo y sus caracteristicas.pptx
Habilidades de un ejecutivo y sus caracteristicas.pptx
 
Proyecto TRIBUTACION APLICADA-1.pdf impuestos nacionales
Proyecto TRIBUTACION APLICADA-1.pdf impuestos nacionalesProyecto TRIBUTACION APLICADA-1.pdf impuestos nacionales
Proyecto TRIBUTACION APLICADA-1.pdf impuestos nacionales
 
Coca cola organigrama de proceso empresariales.pptx
Coca cola organigrama de proceso empresariales.pptxCoca cola organigrama de proceso empresariales.pptx
Coca cola organigrama de proceso empresariales.pptx
 
¿ESTÁ PREPARADA LA LOGÍSTICA PARA EL DECRECIMIENTO?
¿ESTÁ PREPARADA LA LOGÍSTICA PARA EL DECRECIMIENTO?¿ESTÁ PREPARADA LA LOGÍSTICA PARA EL DECRECIMIENTO?
¿ESTÁ PREPARADA LA LOGÍSTICA PARA EL DECRECIMIENTO?
 
Tema Documentos mercantiles para uso de contabilidad.pdf
Tema Documentos mercantiles para uso de contabilidad.pdfTema Documentos mercantiles para uso de contabilidad.pdf
Tema Documentos mercantiles para uso de contabilidad.pdf
 
PROCESO PRESUPUESTARIO - .administracion
PROCESO PRESUPUESTARIO - .administracionPROCESO PRESUPUESTARIO - .administracion
PROCESO PRESUPUESTARIO - .administracion
 
El MCP abre convocatoria de Monitoreo Estratégico y apoyo técnico
El MCP abre convocatoria de Monitoreo Estratégico y apoyo técnicoEl MCP abre convocatoria de Monitoreo Estratégico y apoyo técnico
El MCP abre convocatoria de Monitoreo Estratégico y apoyo técnico
 
La electrónica y electricidad finall.pdf
La electrónica y electricidad finall.pdfLa electrónica y electricidad finall.pdf
La electrónica y electricidad finall.pdf
 
estadistica basica ejercicios y ejemplos basicos
estadistica basica ejercicios y ejemplos basicosestadistica basica ejercicios y ejemplos basicos
estadistica basica ejercicios y ejemplos basicos
 
Rendicion de cuentas del Administrador de Condominios
Rendicion de cuentas del Administrador de CondominiosRendicion de cuentas del Administrador de Condominios
Rendicion de cuentas del Administrador de Condominios
 
Elección supervisor y comité SST 2020.pptx
Elección supervisor y comité SST 2020.pptxElección supervisor y comité SST 2020.pptx
Elección supervisor y comité SST 2020.pptx
 
T.A CONSTRUCCION DEL PUERTO DE CHANCAY.pptx
T.A CONSTRUCCION DEL PUERTO DE CHANCAY.pptxT.A CONSTRUCCION DEL PUERTO DE CHANCAY.pptx
T.A CONSTRUCCION DEL PUERTO DE CHANCAY.pptx
 
Derechos de propiedad intelectual lo mejor
Derechos de propiedad intelectual lo mejorDerechos de propiedad intelectual lo mejor
Derechos de propiedad intelectual lo mejor
 
PRESENTACIÓN NOM-009-STPS-2011 TRABAJOS EN ALTURA
PRESENTACIÓN NOM-009-STPS-2011 TRABAJOS EN ALTURAPRESENTACIÓN NOM-009-STPS-2011 TRABAJOS EN ALTURA
PRESENTACIÓN NOM-009-STPS-2011 TRABAJOS EN ALTURA
 
PRESENTACIÓN NOM-004-STPS-2020 SEGURIDAD EN MAQUINARIA
PRESENTACIÓN NOM-004-STPS-2020 SEGURIDAD EN MAQUINARIAPRESENTACIÓN NOM-004-STPS-2020 SEGURIDAD EN MAQUINARIA
PRESENTACIÓN NOM-004-STPS-2020 SEGURIDAD EN MAQUINARIA
 

Qué es la electricidad y cómo funciona

  • 1.
  • 2.
  • 3. Corriente eléctrica. A l igual que el agua para poder moverse necesita un cauce de un río, un canal o una tubería, los electrones necesitan un conductor eléctrico. Generalmente se trata de un cable de cobre. El cable de cobre está formado por el hilo de cobre y por un aislante (la funda de plástico que lo envuelve). La corriente aparece en el cable de cobre cuando los electrones se mueven a lo largo del hilo de cobre. Van en fila, empujándose unos a otros. Los de atrás empujan a los de adelante, y , según se van desplazando éstos, los primeros ocupan su lugar. Así que por cada nuevo electrón que entra en un extremo del cable, otro es empujado hacia fuera por el otro extremo. Esto nos lleva a una conclusión importante: “Para que exista una corriente eléctrica son necesarias dos cosas: algo capaz de introducir electrones en el cable, y algo capaz de recoger los que salen por el otro lado”. Esta es la razón por la que los aparatos eléctricos se conectan a dos cables y no sólo a uno: uno le da los electrones y el otro los recoge después de que hayan realizado cierto trabajo dentro del aparato (dar luz en una bombilla, tostar el pan, enfriar la bebida, ...).
  • 5.
  • 6. Conductores y aislantes Los electrones no son capaz de moverse en cualquier material. Sólo existen algunos materiales por cuyo interior pueden moverse los electrones y, por tanto, conducir la electricidad. A estos materiales se les llama CONDUCTORES y suelen ser metales (cobre, hierro, ...). Los materiales que no dejan pasar la corriente eléctrica se llaman AISLANTES (plásticos, madera, ...).   En un cable, la corriente eléctrica viaja por el centro, que es de cobre, y que al ser un metal, es un buen conductor. Por fuera se recubre de un material aislante que evita que el cobre entre en contacto con el exterior y que la corriente escape del cable. Sin embrago, la frontera entre conductores y aislantes no está muy clara. Cualquier aislante, en determinadas condiciones, es capaz de conducir la electricidad. Tomemos, por ejemplo, el aire. Si dejamos al aire los extremos pelados de un cable conectado a un enchufe, no hay ninguna corriente entre ellos. El aire se comporta como un aislante. Pero sin embargo en una tormenta, los rayos atraviesan el aire sin dificultad. En este caso, el aires se comporta como un conductor.   En realidad, si el voltaje de la corriente que intenta atravesar un aislante, es lo suficientemente grande éste es capaz de comportarse como un conductor. Los 220 voltios de la red doméstica no son suficientes para que el aire sea un conductor, pero sí lo son los miles de voltios generados entre una nube y el suelo durante una tormenta.
  • 7.
  • 10.
  • 11. Funcionamiento de un circuito eléctrico Circuito hidráulico Circuito eléctrico Aquí la pila (1) equivale al depósito (D) y a la bomba (1) del circuito hidráulico. Cuando se presiona el pulsador (4), se cierra el circuito eléctrico y “una especie de bomba” que hay en el interior de la pila, comienza a enviar electrones por el conductor que está unido a su borne negativo, hasta el motor (3). Aquí la pila (1) equivale al depósito (D) y a la bomba (1) del circuito hidráulico. Cuando se presiona el pulsador (4), se cierra el circuito eléctrico y “una especie de bomba” que hay en el interior de la pila, comienza a enviar electrones por el conductor que está unido a su borne negativo, hasta el motor (3). Podemos decir que la energía que tiene el agua (que se manifiesta en forma de presión) se transforma en energía mecánica de rotación de la rueda. En el interior del motor la energía que poseen los electrones (que se manifiesta a través del voltaje) es cedida y los electrones regresan de nuevo a la pila a través del polo positivo de ésta. Si queremos que la rueda no gire, cerraremos la llave de paso (4), por lo que se interrumpe la corriente de agua. Si dejamos de accionar el pulsador (4), el circuito se abre y cesa la corriente eléctrica con lo que le motor se para. El agua vuelve al depósito (D), sin perderse nada por el camino. Por ello recibe el nombre de circuito. Todos los electrones que salen de la pila por el borne negativo, regresan a ella por el positivo completando el circuito. Cuanto mayor cantidad de litros de agua por segundo bombee la bomba, desde el depósito hasta la rueda, mayor será el caudal de agua. Cuanto mayor número de electrones circulen por el motor en un segundo, mayor será la intensidad de la corriente. GENERADOR: Bomba de agua (1) RECEPTOR: Rueda de aspas (3) CONDUCTOR: Tubería ELEMENTO DE MANIOBRA: Llave de paso (4) GENERADOR: Pila (1) RECEPTOR: Motor eléctrico (3) CONDUCTOR: Hilo. ELEMENTO DE MANIOBRA: Pulsador (4)
  • 14. Generadores eléctricos. De forma genérica se llama generador eléctrico a todo aparato o máquina capaz de producir corriente eléctrica a expensas de cualquier otro tipo de energía. Los que se utilizan con más frecuencia son los que transforman energía química en energía eléctrica, generadores electro-químicos (pilas y baterías) y los que transforman energía mecánica en eléctrica, generadores electro-mecánicos (dinamos y alternadores).
  • 21.
  • 22.
  • 23. Elementos de maniobra. Conmutadores. Su forma exterior es idéntica a los interruptores. Tienen tres polos. Su función consiste en cambiar (conmutar) la conexión del contacto entre un polo llamado común y cualquiera de los otros dos. Se utiliza en instalaciones de alumbrado en las que queremos accionar la luz desde dos puntos diferentes (pasillo, dormitorio, ...) . También para invertir el giro de un motor de corriente continua. Para esto hay que utilizar dos pilas.
  • 24.
  • 25. Elementos de maniobra. Finales de carrera. Son pulsadores, normalmente cerrados, que son accionados por un objeto móvil durante su desplazamiento. Estos pulsadores están conectados en serie con el motor que acciona el móvil, de forma que una vez que son accionados se interrumpe el paso de corriente eléctrica por el motor y el móvil no continúa su desplazamiento.
  • 26. Elementos de protección y control. Resistencias fijas. Su función es introducir una dificultad adicionar a la circulación de la corriente para modificar convenientemente los valores del voltaje y la intensidad en determinadas partes del circuito. Para identificar el valor de una resistencia se utiliza un código de colores. Consiste en cuatro anillos o bandas de color de las que las dos primeras indican el valor en ohmios, la tercera banda indica el factor multiplicador y la cuarta la tolerancia. En su construcción se utilizan materiales de alta resistencia para conseguir valores elevados en pequeño tamaño.
  • 27. Elementos de protección y control. Resistencias variables/Fusibles. RESISTENCIAS VARIABLES. Se llama también reostato. Se trata de una resistencia que se puede variar a voluntad. Consiste en un hilo metálico arrollado sobre un material aislante y un cursor que se desliza paralelo al eje de arrollamiento haciendo contacto en puntos diferentes del hilo metálico. Resulta muy útil para regulación del voltaje de lámparas, motores, etc. FUSIBLES. Cortocircuito es un fenómeno que se produce cuando en un circuito la resistencia se reduce a cero, por lo que la intensidad aumenta tanto que el conductor se quema, siempre por su parte más débil.   Este elemento se utiliza para proteger los circuitos contra los cortocircuitos. Consiste en un hilo conductor fino calibrado de forma que sea la parte más débil de un circuito, consiguiendo así que cuando se produce un cortocircuito sólo se queme el hilo del fusible.
  • 37.
  • 38. Magnitudes básicas de un circuito eléctrico. MAGNITUDES ELÉCTRICAS Voltaje Tensión Diferencia de potencial (V) Intensidad (A) Resistencia (R) LEY DE OHM V = I x R
  • 39. Voltaje, tensión o diferencia de potencial.(V) En un circuito eléctrico, la diferencia de potencial (el voltaje o la tensión) existente entre los polos del generador, o entre dos puntos cualesquiera del circuito, es la causa de que los electrones circulen por el circuito si éste se encuentra cerrado. Su unidad es el voltio (V) . Se suelen emplear dos múltiplos de esta unidad que son el kilovoltio (kV) y el megavoltio (MV) y también dos submúltiplos como son el milivoltio (mV) y el microvoltio (  V) . 1 kV = 1.000 V 1 MV = 1.000.000 V 1 V = 1.000 mV 1 V = 1.000.000  V Para medir el voltaje se utiliza un aparato llamado voltímetro . Se conecta en paralelo al elemento cuyo voltaje queremos medir. V
  • 40. Intensidad de la corriente eléctrica.(I) La intensidad de la corriente se define como la cantidad de carga eléctrica que circula por un circuito en la unidad de tiempo. Se mide en amperios (A) . Normalmente se emplean unos submúltiplos de esta unidad que son el miliamperio (mA) y el microamperio (  A) .   1 A = 1.000 mA 1 A = 1.000.000  A   La intensidad es una característica equivalente al caudal en el circuito hidráulico, esto es, a la cantidad de agua que pasa en la unidad de tiempo por un punto de la tubería.   Para medir la intensidad de corriente que circula por un circuito se utilizan unos aparatos llamados amperímetros. Se conecta en serie para efectuar la medida. A
  • 41. Resistencia eléctrica. (R) Es la propiedad que tienen los cuerpos de dificultar más o menos el paso de la corriente eléctrica. Las sustancias conductoras ofrecen poca resistencia al paso de la corriente, sin embargo las sustancias aislantes ofrecen una alta resistencia al paso de la corriente eléctrica.   La resistencia de un conductor depende del tipo de material de que está compuesto, de su longitud y de su sección. A mayor longitud mayor resistencia y, por el contrario, a mayor sección del conductor menor resistencia, de la misma forma que el agua circula con más facilidad cuando las tuberías tienen pocos cambios de dirección y son más anchas.   La unidad de resistencia es el ohmio (  ) . Normalmente se emplean múltiplos de esta unidad como son el kiloohmio (k  ) y el megaohmio (M  ) .   1 k  = 1.000  1M  = 1.000.000  Todos los receptores o componentes de un circuito suponen alguna resistencia, por pequeña que sea, al paso de la corriente eléctrica. Este efecto es, normalmente, no deseado, pero en ocasiones lo aprovechamos en algunos receptores para obtener un efecto calorífico. Es el caso de algunos aparatos compuestos de un fino hilo de metal (wolframio o tungsteno), que se pone incandescente y puede dar luz y calor, que se aprovecha en lámparas y estufas.
  • 42. Ley de Ohm La ley de Ohm expresa la relación que existe entre la diferencia de potencial que aplicamos a los extremos de un receptor y la intensidad de la corriente que circula por éste.   Matemáticamente se expresa: V = I  R   Donde V es la diferencia de potencial que se aplica al receptor, medida en voltios. I es la intensidad de la corriente eléctrica que circula por el receptor, medida en amperios. R es la resistencia del receptor, medida en ohmios. Ejemplo: Calcula la intensidad que recorrerá un circuito si a una pila de 9 voltios le conectamos una bombilla cuya resistencia es de 30 ohmios. Ley de Ohm: V = I  R Sustituimos: 9 v = I  30  . Despejamos la intensidad: I = 9 v / 30  = 0,3 A
  • 43.
  • 44.
  • 45. Tipos de conexiones en circuitos. CONEXIONES EN PARALELO. Cuando los elementos se disponen en ramas separadas, formando diferentes caminos para el paso de la corriente, se dice que están conectados en paralelo. Los elementos de un circuito pueden conectarse entre sí de dos formas: en SERIE y en PARALELO . Cuando un circuito incluye ambos tipos de conexiones se dice Que es un circuito MIXTO . CONEXIONES EN SERIE. Los elementos de un circuito están conectados en serie cuando se colocan en línea, unos a continuación de otros. I R 1 R 2 V T V 1 V 2 I T R 1 R 2 V T V 1 V 2 I 1 I 2
  • 46. Asociación de generadores Cuando queremos variar alguna de las características de los generadores, podemos asociarlos o agruparlos de distintas formas, siempre que combinemos adecuadamente su polaridad. A un conjunto de generadores agrupados también se llama batería. Pueden asociarse de dos formas:   Asociación de generadores en serie. Se consigue uniendo el polo negativo de uno con el positivo del otro y así sucesivamente. El voltaje de esta asociación se calcula sumando los voltajes de cada uno de los generadores.   Asociación de generadores en paralelo. Se unen todos los polos positivos entre sí y todos los polos negativos entre sí. El valor del voltaje de la asociación es el mismo que el voltaje individual de cada uno de los generadores asociados (para ello todos deben tener igual valor). Con este tipo de asociación se consigue que la duración de los generadores sea mayor.        
  • 47.
  • 48.