Foothill College Energy Program


Published on

Foothill College's energy program, using sys-STEMic energy principles, our campus microgrid, and projects with our partners.

Published in: Education
1 Comment
  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Foothill College Energy Program

  1. 1. Foothill College Energy Program
  2. 2. Big Ideas <ul><li>Foothill College Energy Program </li></ul><ul><ul><li>Campus as a classroom </li></ul></ul><ul><ul><li>Energy systems approach </li></ul></ul><ul><li>Living laboratory for energy technology </li></ul><ul><ul><li>Distributed generation </li></ul></ul><ul><ul><li>High efficiency buildings </li></ul></ul><ul><li>Partnerships for research and instruction </li></ul><ul><ul><li>Corporate, government, and academic </li></ul></ul>
  3. 3. Foothill Energy Program <ul><li>Energy systems approach </li></ul><ul><ul><li>Macrogrid, Microgrid, Nanogrid </li></ul></ul><ul><li>Campus energy lab practicum </li></ul><ul><ul><li>Monitor energy, buildings, PV, EVs </li></ul></ul><ul><li>Integration with UCSC engineering </li></ul><ul><ul><li>Community renewable energy projects </li></ul></ul><ul><li>Industry involvement </li></ul><ul><ul><li>Research, equipment, internships </li></ul></ul>
  4. 5. Smart Energy System Stack Clean generation Smart distribution Efficient end use Flow of Energy Flow of Information Electrical Generation Electrical Use SYS-STEMic Energy principles described in Foothill College NSF-ATE Energy Program proposal October 2010
  5. 6. Energy Systems Model Macrogrid Microgrid Nanogrid Clean generation Smart distribution Efficient end use Modern Energy Systems Large-scale Renewables Distributed Resources Smart Energy Systems Advanced Transportation Building Energy Efficiency 1 3 5 4 2 6 fossil-fuel based & centralized de-centralized low-carbon G2V/V2G DR/AMI/HEN EMS/DMS/GIS integration integration
  6. 7. Core Energy Program Power systems Smart grid / AMI Building energy / efficiency Flow of Energy Flow of Information Electrical Generation Electrical Use Renewable energy Active distribution / microgrid Advanced transportation solutions SYS-STEMic Energy program design described in Foothill College NSF-ATE Energy Program proposal October 2010
  7. 8. Benefits of Systems Approach <ul><li>Develop smart energy system ethic </li></ul><ul><li>Model, design and engineer large-scale projects ( distributed grid/EV charging ) </li></ul><ul><li>Develop cross industry competencies </li></ul><ul><ul><li>Displacement of petroleum with electricity </li></ul></ul><ul><ul><li>Integrate RE projects with net-zero buildings </li></ul></ul><ul><li>Distributed generation ( microgrid concept ) is the emerging 21 st century energy model </li></ul>
  8. 9. Buildings as Systems
  9. 10. New Electricity Model <ul><li>Macrogrid </li></ul><ul><ul><li>Central power generation, transmission and distribution, 90+% of power, current utility model </li></ul></ul><ul><ul><li>Future utility scale solar/PV and wind deployment </li></ul></ul><ul><li>Microgrid </li></ul><ul><ul><li>Distributed generation, smart management </li></ul></ul><ul><ul><li>Aggregation and coordination of nanogrids </li></ul></ul><ul><li>Nanogrid </li></ul><ul><ul><li>Building level circuits, optimized for power factor, building integrated power (BIPV) </li></ul></ul><ul><ul><li>Future DC technology with enhanced electrical circuit controls and integrated EMS/BMS </li></ul></ul>Nanogrids - Evolving our electricity systems from the bottom up - Bruce Nordman - Lawrence Berkeley National Laboratory
  10. 11. NSF Energy Proposal <ul><li>Seven course program in (networked) energy systems design </li></ul><ul><ul><li>Articulates to UCSC program </li></ul></ul><ul><ul><li>Sustainable energy + MS Engineering </li></ul></ul><ul><li>Partnership projects UCSC & NASA </li></ul><ul><li>Living laboratory/analysis Foothill Microgrid Housed in new PSEC facility </li></ul><ul><li>$700K for program development </li></ul>
  11. 12. Foothill Campus Energy Foothill College is the ideal test bed for innovative energy technology for clean generation, smart distribution, and efficient end use
  12. 13. Foothill Microgrid <ul><li>$10M in infrastructure investment </li></ul><ul><li>1.5 MW solar PV (completed) </li></ul><ul><li>0.25 MW cogeneration electricity / pool heating (completed) </li></ul><ul><li>Campus smart metering rollout (2011-2012) </li></ul><ul><li>EMS/BMS system (2011-2012) </li></ul><ul><li>Student access wind turbine & solar (2012) </li></ul><ul><li>Extensive electrical analysis </li></ul><ul><li>Electrical master plan development </li></ul>
  13. 15. Campus Energy Lab Practicum <ul><li>Electrical energy measurements </li></ul><ul><ul><li>Building and electrical network </li></ul></ul><ul><li>Building energy audits </li></ul><ul><ul><li>Correlate with campus energy profile </li></ul></ul><ul><li>Energy profile analysis / benchmarks </li></ul><ul><li>Modeling and simulation (HOMER) </li></ul><ul><li>EMS/BMS and smart meter deployment </li></ul><ul><li>Real experience on real buildings </li></ul>
  14. 16. PSEC Energy Analysis Program Analysis Sustainable Design Dept. Blocks/Bldg. Space Planning Site Analysis/Planning Image Study Energy Cost Savings: 30.34 %
  15. 17. Submetering Project <ul><li>Individually meter buildings </li></ul><ul><li>Fluke power loggers (V,A, phase, power factor, TOU) </li></ul><ul><ul><li>Determine power use for building types </li></ul></ul><ul><li>Coolant / heater loop sensors </li></ul><ul><ul><li>Total electricity / therms for HVAC </li></ul></ul><ul><li>What is the BTU/sq-ft per building? </li></ul><ul><ul><li>Baseline / Benchmark APPU </li></ul></ul><ul><ul><li>How do our buildings compare? </li></ul></ul>
  16. 18. Electric Vehicle Charging Spots <ul><li>10 spots at PSEC (planned 2012) </li></ul><ul><li>Long-term => </li></ul><ul><li>~30 spots ‘planned’ </li></ul><ul><li>1% of total parking </li></ul><ul><li>2015 - 2017 </li></ul><ul><li>~ 90 Kw at 60% usage </li></ul>
  17. 19. Foothill EV Racing Team Nissan Leaf and Toyota RAV-4 are ‘participating’ in the Foothill Energy Program
  18. 20. Energy Program Partners
  19. 21. UC Santa Cruz Partnership <ul><li>Engineering faculty relationships </li></ul><ul><li>Articulation / sharing of core courses </li></ul><ul><li>Joint SLO/PLO development </li></ul><ul><li>Community energy projects </li></ul><ul><li>Liaison to PE / industry projects </li></ul><ul><li>Joint research / study (UC faculty) </li></ul><ul><ul><li>Analysis of Foothill / UCSC microgrid </li></ul></ul><ul><ul><li>NASA energy engineering project </li></ul></ul>
  20. 22. RE / Microgrid Sites Santa Cruz Foothill NASA-Ames Aggregation and comparison of energy data from three RE / microgrid sites
  21. 23. Wave Power Projects Wave projects in Santa Cruz Collaboration with UCSC Tidal energy is a relatively new research area with significant potential
  22. 24. NASA Sustainability Base <ul><li>Platinum ++ </li></ul><ul><li>Bloom Box V2 </li></ul><ul><li>Solar Roof </li></ul><ul><li>Custom EMS/BMS </li></ul><ul><li>Internships </li></ul><ul><li>Commissioning starts Feb 2011 </li></ul><ul><li>Access to facility energy data </li></ul>
  23. 25. Project Green Home Project Green Home is a zero-net energy LEED home built in Palo Alto California
  24. 26. Active Learning PSEC Fall 2012 planned occupancy
  25. 27. LEED Silver Program Analysis Sustainable Design Dept. Blocks/Bldg. Space Planning Site Analysis/Planning Image Study <ul><li>LEED Target: SILVER </li></ul><ul><li>Divert minimum 75% construction waste from landfill </li></ul><ul><li>Restore native landscape habitats </li></ul><ul><li>Minimum 30% water use reduction beyond baseline </li></ul><ul><li>Minimum 21% energy savings beyond ASHRAE 90.1 </li></ul><ul><li>On-site renewable energy generation </li></ul><ul><li>High recycled content materials </li></ul><ul><li>Improved indoor air quality </li></ul><ul><li>Enhanced building commissioning </li></ul>
  26. 28. Science Through Display + Student learning integrated with building design reinforcing sustainable engineering principles
  27. 29. Building for a Green Future <ul><li>Clean technology outdoor classroom </li></ul><ul><li>Solar integration </li></ul><ul><li>Wind technology </li></ul><ul><li>EV charging </li></ul><ul><li>Materials science </li></ul><ul><li>Nanotechnology </li></ul><ul><li>Biomimetic design </li></ul>
  28. 30. Industry Participation <ul><li>Silicon Valley Power (SVP) </li></ul><ul><li>Pacific Gas & Electric (PG&E) </li></ul><ul><li>Chevron Energy </li></ul><ul><li>Tesla demonstrations </li></ul><ul><li>Coulomb Technologies (ARRA) </li></ul><ul><li>Cisco Systems? </li></ul><ul><li>SunPower? </li></ul><ul><li>Google energy? </li></ul>
  29. 31. Target Audience <ul><li>Incumbent workers </li></ul><ul><li>Displaced professionals </li></ul><ul><ul><li>Many with science / engineering </li></ul></ul><ul><li>Professional ‘technicians’ </li></ul><ul><ul><li>College degree (AA/AS of BS) </li></ul></ul><ul><ul><li>Energy certificate from Foothill </li></ul></ul><ul><li>Transfer students (UCSC) </li></ul><ul><li>Community at large </li></ul>‘ First in family’ engineers who discover careers that can change the world
  30. 32. Nanotech Meets Clean Energy Technologies NSF-ATE PI Conference Fall 2010
  31. 33. Materials Matter High performance applications require high performance materials . Key challenges include higher performance targets, lower cost / performance, size and weight , scalability of manufacturing process , and material safety .
  32. 34. Materials Characterization Seeing is more than believing, it’s the first step to developing an understanding Iron particles used in advanced manufacturing CIGS PV module cross-section
  33. 35. Lithium Nanochemistry Better materials make for better batteries, and nanoparticles of lithium are essential for developing high performance batteries for automotive applications Images from Georgia Tech, table from Auto Focus, other references from American Elements
  34. 37. Nano characterization PNPA projects (topics) <ul><li>CIGS process development and phase identification </li></ul><ul><li>Graphene preparation from graphite (thin film CVD deposition from CxHy) </li></ul><ul><li>Electroceramics analysis (fuel cell characterization) and contamination fouling </li></ul><ul><li>Batteries (nanoparticles) AES analysis of lithium defect structures </li></ul><ul><li>Carbon nanotubes and fiber for composite filler, carbon fiber derivatives </li></ul><ul><li>High performance window glazing (Heat Mirror™) etc. </li></ul>XPS data from the carbon C(1s) peak show the addition of hydrogen to the graphitic sp 2 bonding network
  35. 38. Nanomaterials Engineering
  36. 39. Foothill Energy Program <ul><li>Campus energy system – a living laboratory for research and discovery </li></ul><ul><ul><li>Clean energy systems approach </li></ul></ul><ul><ul><li>Emerging electricity model </li></ul></ul><ul><li>NASA UCSC partnership is central to development and workforce preparation </li></ul><ul><li>Industry partners are sought to help build a 21 st century energy system – internships </li></ul><ul><li>Nanomaterials program cross connection </li></ul>