Data Vault automation conference - all presentations

2,534 views
2,409 views

Published on

All the presentations that were held at the Data Vault automation conference (October 6th 2011). Organized by Ronald Damhof, Tom Breur and Simone Molenaar (DIKW).

We had 110 attendees, 8 sponsors.

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
2,534
On SlideShare
0
From Embeds
0
Number of Embeds
54
Actions
Shares
0
Downloads
203
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Data Vault automation conference - all presentations

  1. 1. Content accountability Ronald Damhof Tom BreurOrganization accountability Simone Molenaar
  2. 2. !!!!!!!!!!!!!!!!!!!!!!!!!!!! ! !Prudenza !
  3. 3. To Push or To Pull, That is the question Ronald Damhofwoensdag 21 september 11 1 !"#$%& !"#$%& Taken from ‘Out of the Crisis’, Dr. W.Edwards Deming !&()*+%,)- !"#$%!&(%)*+!,+(-#./(!,+(.*$$woensdag 21 september 11 2
  4. 4. woensdag 21 september 11 3woensdag 21 september 11 4
  5. 5. woensdag 21 september 11 5woensdag 21 september 11 6
  6. 6. Push characteristics ! Mass production ! Known specifications, operational definitions, standards ! Repeatable, predictable, & even better; uniform process ! Part of the system that needs statistical control ! Inventory allowed/necessary ! Supply driven ! Reliability over flexibility Pull characteristics ! Just in time ! Demand driven ! Build to order ! Preferably no inventory ! Flexibility over Reliabilitywoensdag 21 september 11 7 D&%4-4&*/ ?@A&*&$)/&F*1"$()+"*-$"8#%/2 01(+2&/(!3*456*+7!,+(.*$$ 7*89#2&$:;"%)<= .)/)01#*%+"*2&$34%& ? ? ? ? ? >@7*$4%B)*8%<&)*2&8)/) > > > > > 5@D&,42/&$0!/)*8)$84E& 5 5 5 5 5 6@A&//B&$)C:#*%#/=8)/) 6 6 6 6 6 8**+5.!90!,+(.*$!:;*%+&4< .)/)2"#$%&2 01(+2&/(!3*456*+7!=+(.*$woensdag 21 september 11 8
  7. 7. E5*BF!;(2,(*%!65*B 6 5 > ? ;(2,&7!AAA!-&%&!B&+*)(#$*!C!9#$5*$$!0%*445D*.*!!3(2&5 ? > HF)--2 ?*,(+%$ 5 !"#$%&2/"$& 6PJ5P H#24*&22O4&CJ !"#$%&2 .)/)1&&82 6 HFI--2 >&47$5$ 7*/&$-$42& .)/)G)$&B"#2& HFI--2 >-@)(. .)/)JKGB)/L M#*%+"*JKN"CL KGB&$&LJKGB"(L 7Q/&$*)< 2"#$%&2woensdag 21 september 11 9 !"#$%&/" !"#$%&2/"$& !"#$%&2/"$& 7.G:.O= -$"8#%/ /"-$"8#%/ /"HO >-&,%&H4* G#$%&5&H4* ;(2,45&% 3*.(#,4*- JK*./6* G%&-&+-5I*- ;*%+&45I*-woensdag 21 september 11 10
  8. 8. E5*BF!;(2,(*%!65*B 6 5 > ? ;(2,&7!AAA!-&%&!B&+*)(#$*!C!9#$5*$$!0%*445D*.*!!3(2&5 ? > HF)--2 ?*,(+%$ 5 !"#$%&2/"$& 6PJ5P H#24*&22O4&CJ !"#$%&2 .)/)1&&82 6 HFI--2 >&47$5$ 7*/&$-$42& .)/)G)$&B"#2& HFI--2 >-@)(. .)/)JKGB)/L M#*%+"*JKN"CL KGB&$&LJKGB"(L 7Q/&$*)< 2"#$%&2woensdag 21 september 11 11 I8(4*42/$)+3&-$"%&22 F*1"$()+"*.&<43&$SR$"%&22 .&%424"*90%"*/$"< 8**+&%*C! .)/)0F*1"$()+"*$&%4-4&*/2 35$%+5H#%* J+5.) ?*D5$%*+!C! G%&-&+-5I* >L&5R$"%&2 R.UI U"(-<4)*%&$&-"$+*, F*1"$()+"* !"#$ -$"8#%/2 D42VW)*),&(&*/ !"#$ !S2/&(2 .OT)2&8 !"%% :4*/&$*)<0 .)/) R&$1"$()*%& &Q/&$*)<= G)$&B"#2& W)*),&(&*/ H#24*&22 !#--<S%B)4* !/),4*, $#<&2 "-+(4E)+"* .)/)-$"8#%/2 M$)#88&/&%+"* W)$V&/T)2V&/ )*)<S242 U"*/$"<XW&/)8)/)woensdag 21 september 11 12
  9. 9. Remember the Push characteristics ! Mass production Data Vault ! Known specifications, operational definitions, standards Data Vault ! Repeatable, predictable, & even better; uniform process Data Vault ! Part of the system that needs statistical control Data Vault ! Inventory allowed/necessary Data Vault ! Mainly supply driven Data Vault ! Reliability over flexibility Data Vault Automation of a Data Vault production system is just common sensewoensdag 21 september 11 13 WSR"O IT"#/:.)/)O)#</=)#/"()+"*Y""<4*, ! A&*&$)+"*42)*)48J*"/),")<4*4/2&<1 – ."*"/)%%"("8)/&/B&-$4*%4-<&2/"Z//B&/""<@@@@ – ;""V1"$8&%"#-<4*, ! Y$#<S#*8&$2/)*8/B&(&%B)*4%29B)*8%$)[4/Z$2/ – F*3&2/4*-$"-&$&8#%)+"*)*8<&)$*4*, – F*3&2/4*K,&]*,$&)8SL+(& – F*3"<3&S"#$K%#2/"(&$2L1$"(/B&2/)$/ ! R"UJR"UJR"U ! .&<43&$J.&<43&$J.&<43&$woensdag 21 september 11 14
  10. 10. YS-&69U<)224%.)/)O)#</ H#24*&22 Y$)*2)%+"* !S2/&( !/),4*, .)/)O)#</ .)/)2&/2 b#/ H#24*&22 Y$)*2)%+"* 8**+5.!9#$5*$$!?#4*$ !S2/&( D#<&O)#</ !/$#%/#$&/$)*21"$()+"* H#24*&22$#<&&Q&%#+"* N#T^T#24*&22V&S2 !/$#%/#$&)*83)<#&/$)*21"$()+"*I8)-/)T<& !#2/)4*)T<& U"(-<4)*/ .&%"#-<&8 7_&%+3&*&22 !/)*8)$84E&8 U&*/$)<4E&8 ` `woensdag 21 september 11 15 YS-&59!"#$%&.)/)O)#</ H#24*&22 Y$)*2)%+"* !/),4*,O)#</ !S2/&( H#24*&22 .)/)W)$/2 .)/)O)#</ H#24*&22 Y$)*2)%+"* !/),4*,O)#</ !S2/&( !/$#%/#$&/$)*21"$()+"* H#24*&22$#<&&Q&%#+"* !/$#%/#$&/$)*21"$()+"* a"4*/&,$)+"*JN#T^2#$$",)/&V&S2 F*/&,$)+"* R&$242+*,2/),4*,4*.O1"$()/ .O("8&<<&8I8)-/)T<& !#2/)4*)T<& U"(-<4)*/ .&%"#-<&8 7_&%+3&*&22 !/)*8)$84E&8 U&*/$)<4E&8 ` ` `woensdag 21 september 11 16
  11. 11. !"#$%& !"#$%& 6ccd!&()*+%,)- !"#$%& !/),4*,.O H#24*&22.O !"#$%& !/),4*,.O 6ccd!&()*+%,)- !+<</B&2"#$%& F*/&,$)+"*J%<&)*24*,J%"*2"<48)+"* H#24*&22$#<&&Q&%#+"*#-2/$&)(`` .O("8&<<&8woensdag 21 september 11 17 !"#$%& !"#$%& 6ccd!&()*+%,)- !"#$%& !"#$%& !/),4*,.O H#24*& .)/) G)$&B"#2& !"#$%& !"#$%& !/),4*,.O 22.O 6ccd!&()*+%,)- !+<</B&2"#$%& F*/&,$)+"*J%<&)*24*,J%"*2"<48)+"* H#24*&22$#<&&Q&%#+"*#-2/$&)(`` .O("8&<<&8woensdag 21 september 11 18
  12. 12. W&/)("8&<8$43&*)#/"()+"* 9 W"8&<2:-$"%&22J$#<&2)*88)/)=8&/&$(4*&/B&(&/)8)/)J/B&(&/)8)/)8&/&$(4*&2/B&)#/"()+"*)$+1)%/2 9 I4(42/"T&6ccd8&%<)$)+3& 9 F/%)**"/T&,&*&$)/&8)<<J2-&%4Z%/)4<"$&8(&/)8)/)C4<<$&()4**&%&22)$S W&/)8)/)8$43&*)#/"()+"* 9F*-#/2e!"#$%&("8&<:2=J/)$,&/("8&<JY&(-<)/&.&24,*Ja)(4*,%"*3&*+"*2 9I83)*%&84*-#/2ea"$()<4E)+"*-$&1&$&*%&2Jb*/"<",4&2 Y)V&*1$"(.)*;4*2/&8/L2T<",-"2/eBf-eXX8)*<4*2/&8/@%"(X8)/)3)#</%)/X%"8&9,&*&$)+"*91"$98)/)93)#</9*"/9)29&)2S9)29S"#9/B4*VX .)/)O)#</ 4(-<&(&*/)+"*2 Y&(-<)/&8$43&*)#/"()+"* 9 F*/B&("2/T)24%1"$(2g8"%#(&*/)+"*98&2%$4T4*,)-)f&$* 9 W"$&)83)*%&8g,&*&$)+*,hW;%"8&1"$5*8,&*@7Y;/""<4*, 9 OT9Bf-eXXCCC@,$#*82)/E<4%B94/@*<XT49/""<29/&(-<)/"$@B/(<woensdag 21 september 11 19 I#/"()+"*/S-"<",S • YB"2&/B)/2#--"$/2-&%4&2i6:T#4<84*,)!"#$%&O)#</= – Y&(-<)/&8$43&*"$W&/)8)/)8$43&* – b[&*,&*&$)/&2/B&("8&<)*8/B&<",42+%2 • YB"2&/B)/2#--"$/2-&%4&2i5:T#4<84*,)U<)224%O)#</= – Y&(-<)/&8$43&*"$W&/)8)/)8$43&* – A&*&$)/&:(&/)8)/)"1=/B&<",42+%2 – W"8&<4*,$&()4*2)%$)[jF.7aYFMkYN7Hl!Fa7!!m7k! • YB"2&/B)/,"T&S"*8 – W&/)("8&<8$43&* – H)2&8"*/B&T#24*&22-$"%&22J/B&$#<&2)*8/B&8)/) – YB&8)/)("8&<:.OJIWJ@@=42)%"*2&n#&*%&"1/B&-$"%&22 – !#--"$/1"$I;W%B)$)%/&$42+%2woensdag 21 september 11 20
  13. 13. YB)*Vk"# &#()*+,-%.)&()&-/$+0 H<", Bf-eXX-$#8&*E)@/S-&-)8@%"(X Bf-eXXCCC@T9&S&9*&/C"$V@%"(XT<",2X8)(B"1X ;4*V&84* Bf-eXX*<@<4*V&84*@%"(X4*X$"*)<88)(B"1 7()4< $"*)<8@8)(B"1o-$#8&*E)@*< YC4f&$ D"*)<8.)(B"1 !VS-& D"*)<8@.)(B"1 W"T4<& p>6:c=q5qrqs6t? b/B&$2 F*1"$()+"*u#)<4/SU&$+Z&8R$"1&224"*)<:FuUR= .)/)O)#</U&$+Z&8A$)*8W)2/&$ U&$+Z&8!%$#(W)2/&$ W&(T&$"1/B&H"#<8&$HFH$)4*Y$#2/:iHHHY= *+,-%.)&-/$+0)42)*4*8&-&*8&*/-$)%++"*&$4*/B&Z&<8"18)/)()*),&(&*/)*88&%424"*2#--"$/@A$)8#)/&84*6rrv4* /B&2/#8S"17%"*"(4%2@!4*%&6rrvB&C"$V&8)2)-$)%++"*&$4*/"/B&Z&<8"1F*1"$()+"*W)*),&(&*/C4/B)1"%#2"* 8&%424"*2#--"$/)*88)/)()*),&(&*/J/$S4*,B)$8/"&*B)*%&/B&$4,"$)*8$&<&3)*%&4*/B&2&Z&<82TS%"(T4*4*,2%4&*+Z% $&2&)$%BC4/B/B&&3&$S8)S%B)<<&*,&2"1/B&-$)%++"*&$@D"*)<842()4*<SB4$&8TS%#2/"(&$24*/B&$"<&"1T#24*&22XFY )$%B4/&%/J)#84/"$J%")%B0/$)4*&$@N&T<",2"*H97S&9a&/C"$V@%"()2C&<<)2B42"C*T<",J42)(&(T&$"1/B&-$&2+,4"#2 HHHYJC$"/&2&3&$)<)$+%<&2$&,)$84*,8&%424"*2#--"$/)$%B4/&%/#$&2)*842)$&2&)$%B&$4*/B&Z&<8"1F*1"$()+"* W)*),&(&*/@ I</B"#,BD"*)<8<4V&2/"C"$VC4/B/B&"$&+%)<,$"#*8&8$&2&)$%B)*8-$"3&*-$)%+%&2JD"*)<842*"/)wCB4/&-)-&$w )$%B4/&%/g-#/S"#$("*&SCB&$&S"#$("#/B42J42B42("f"@N&<4V&2/"2&&)$%B4/&%/#$&2w<43&w4*&*/&$-$42&2J*"/x#2/C$4/& )T"#/4/@F*("2/"$,)*4E)+"*2B42$"<&&Q/&*82)$%B4/&%/#$&"[&*@F*/$#&<S),4<&2-4$4//B&$"<&2B&-<)S28&-&*8"*/B& %"*/&Q/"1/B&%<4&*/gB&%)*T&)(4224"*)$S:2&<<4*,/B&3)<#&=J)-$"x&%/()*),&$:,&]*,4/8"*&=J)2%$#(()2/&$:$&("34*, 4(-&84(&*/2=J2-&%4)<42/:&8#%)+*,B)$8C)$&-&&-2J8)/))$%B4/&%/2J8)/)<",42+%2&/%@="$)<&)8&$@woensdag 21 september 11 21
  14. 14. !!!!!!!!!!!!!!!!!!!!!!!!!!!!Qosqo !
  15. 15. Introducing QUIPU October 2011 Jeroen Klep QOSQO +31 6 2953 2342 Jeroen.Klep@QOSQO.nlopen source data warehousing
  16. 16. Agenda NewBackground Architecture developments
  17. 17. What is a quipu? AD 1300 - 1600
  18. 18. Quipucamayocs
  19. 19. Facts and figures
  20. 20. Visitors and downloaders
  21. 21. Customers QUIPU QOSQO
  22. 22. •  BI strategy development •  Maintenance & support•  Information analysis •  Data vault technology•  (E)DW architecture •  Quipu development•  Project management•  Adapttm training
  23. 23. QUIPU: Open Source DW generation•  Open Source Data Warehouse Generation System, based on Data Vault principles•  First public release July 1st 2010•  QOSQO takes a leading role in continuous development and support
  24. 24. Fast implementationof DV based EDWHRemoval ofrepetitive tasksReduction of riskof modeling errors Source:
  25. 25. QUIPU - Key business benefits
  26. 26. QUIPU - Key IT benefits•  Automated data warehouse data model design and implementation•  Fully repository based metadata driven data model and load code generation•  Supports most common database platforms using ANSI-SQL over JDBC –  Template based platform support•  Integration with ETL and scheduling tools•  Lower total cost of ownership using open source licensing model
  27. 27. Workflow
  28. 28. Characteristics Design time Run time Source(s) Target DW
  29. 29. Quipu basic architecture: ‘classic’
  30. 30. Quipu extended architecture
  31. 31. Business model•  Development of new functionality –  Paid customer assignments –  QOSQO roadmap priority•  Support –  Quick start consultancy –  Proof of Concepts –  Flexible support model •  On site •  Remote•  Training•  Quipu Model Manager –  Paid software –  Hosting
  32. 32. Quipu products Community Model Edition Manager Powered by New DWH Management & developments Maintenance -  Open source -  Closed source -  Embedded in BI -  Generate models -  Manage models solutions -  Single user -  Delta changes -  Continuous -  Multi-user -  CaseWise Modeler developments and solution improvements -  New: Data mart -  New New product -  New solutions DM product generation roadmap generation roadmap assistance
  33. 33. Data Mart assistance•  In cooperation with BinckBank•  Logical layer on top of DataVault•  Basic Starschema or snowflake generation
  34. 34. Quipu Model Manager•  Version control of data models•  Multiple users, projects, versions•  Quipu Community Edition as client•  Check in / Check out•  Migration of run time DW data•  Central repository of models and code Quipu CE Quipu Quipu MM CE Quipu CE
  35. 35. •  Download and evaluate Quipu (it’s free!)•  Share your experience and feature wishes•  Hire us
  36. 36. More info•  www.datawarehousemanagement.org•  @OS_Quipu•  Demo Youtube channel: ‘osquipu’•  Sourceforge: https://sourceforge.net/projects/quipu/•  www.QOSQO.nl
  37. 37. QOSQO, the DataVault Our sister companyKarel Doormanlaan 1b specialist, is the leading Nippur assists in5688 BP OIRSCHOT company behind Quipu executing businessThe Netherlands intelligence projectsE: info@QOSQO.nlT: +31 ( 0499 ) 577 562 www.QOSQO.nl www.nippur.nlF: +31 ( 0499 ) 577 059open source data warehousing
  38. 38. !!!!!!!!!!!!!!!!!!!!!!!!!!!! ! ! ! !Infosupport
  39. 39. 26-09-2011 !"#$%&#()$(#%*"#$+,-./0+)110#230*%% 45(.6"%•  7./0%&)110#%•  8.6("90)#%:7%•  4#3;-(3)#(%•  !("%6""%6#-9(.%6(9(<01*(.%•  =(<-9(#"><(+%•  ?0.3<)+-0.% 1
  40. 40. 26-09-2011!"#$%&(($)*%•  +!%,$-(.*."/.%,."*.)%•  0.*1$2$3$45.6%5"/325"4%75-8933:%!"-$":%;9*9% <93*%•  =)95"5"4%,."*.)%•  +!%;.>.3$(-."*%?39@$)-A%B"2.9>$)%+!%!"#$%&(($)*%+!%;.>.3$(-."*%?39@$)-%•  B"2.9>$)%+!% 2
  41. 41. 26-09-2011 !"#$%&(#)*+&%)&,#% 9/:.-,77.#&5%&"0"&"6%7.4+&.#8 6%7.#&4 0"&" 3,4+/%44 0"&" -.,#)% -&"$+/$ 1",2& 1",2& 5"#& (/"284+4Source Back End Front End Reporting &Systems Systems Systems Analysis 9/:.-,77.#&;./&#.2</=+#./>%/& !"#$%&(#)*+&%)&,#% 9/:.-,77.#&5%&"0"&"6%7.4+&.#8 6%7.#&4 0"&" 3,4+/%44 0"&" -.,#)% -&"$+/$ 1",2& 1",2& 5"#& (/"284+4Source Back End Front End Reporting &Systems Systems Systems Analysis 9/:.-,77.#&;./&#.2</=+#./>%/& 3
  42. 42. 26-09-2011!"#$%&$#$%&()"*%&")"+,-."*#% !"#$%&$#$% &"+()"$8+"% /,01"%!,2"+% 4"-,5(#,6% 3.-,#% !$*$7"% 9"*"$#"%:"$;*7%$%&$#$%<$0+#%!,2"+% =  /,01"%!,2"+% =  >+7,(#?.% 3*7"2("*#5% 4"1(-"% =  &$#$%<$0+#% =  :,*A70$;,*5% !,2"+% 9"*"$#,% @,,+5% &"1,$;,*% 4
  43. 43. 26-09-2011!"#"$%"&#$()*+$,+-+."/)-$ •  Configurations Generator •  Source Model •  Staging Model •  Data Vault Model •  Mappings (+#"$!"#"$ 0+1)23#).4$!+35+."6+2$•  789$7+.5+.$!"#"6"2+$()*+:2;$ –  <"6+2$:=&6>$93-?>$7"#+3#+;$ –  %3+@2$:"62#."A/)-$"4+.;$ –  B)-2#."3-#2$ –  C-*+D+2$•  E<9$ –  77C7$1"A?"F+2$ •  G"2+*$)-$6+2#$1."A/A+2$"-*$F&3*+3-+2$ –  H&*3#$#."3$ 5
  44. 44. 26-09-2011 !"#$%"&(#)*%"#+,#$-.*&/*#0-&"12 •  344&*156"#7-5$189#*$ •  :$5#/5%/*;,/&"00*#0 •  :$5#/5%/*;,/,<1,46"#85#/&*#0 •  !"#=0.%56"#> •  ?#1%,+,#$>7@"A1".#$>B"%5./*$5C*&*$D •  ?#1&./,>%,4"%$>B"%+5*#$,#5#1, E%"#$(#/:D>$,+ ?#B":.44"%$G,$5F5$5@,4">*$"%D @,4"%$> F5$5 -.>*#,>> F5$5 :".%1, :$50*#0 H5.&$ H5.&$ G5%$ 3#5&D>*> Source Back End Front End Reporting & Systems Systems Systems Analysis ?#B":.44"%$!"#$%"&(#)*%"#+,#$•  F5$5G5%$7-.>*#,>>H5.&$ –  !5#C,,*$8,%)*%$.5&"%48D>*15&•  !.C,>I@,4"%$> –  !%,5$,/+5#.5&&D 6
  45. 45. 26-09-2011!"#$%&("#)•  *#+,-./+,0)"%&1"#) –  2/+/3/,) –  456) –  !"#+."%)4#7(."#8,#+)•  !"+),9,$17,)•  :,+/)0/+/)0.(7,#)•  ;.,0($+/3%,)<&/%(+=)•  :".,)18,)+")>"$&)"#)3&(#,).,<&(.,8,#+) 7
  46. 46. !!!!!!!!!!!!!!!!!!!!!!!!!!!! !Centennium
  47. 47. !"#$ !%&%&&()*$"++,+-%./)0%$#%./1/2/34$ 5-)6)-%$ $#/1%2$ $7%&%-+%$ $8&/,2%13%$9+-&%-0.(:$ ! "#$%!&#()*(! +(,-$(*!.,*/0! 12,-3*#!45!6788!1 ;3%&1+$ 9*(,*(($:0!;<!*=>*#,$)*?:$)! 9@A! !"#$%"$#&! ! B*C*#*(2*!+#2?$,*2,:#*! ()&*! ! ! @,!D:/,! +&,&#-"&! ! E*0>/,*!;)*F!@*G*/->0*(,! .,(/*&)0&11 2-#",&#3456! ! H(-I/*FJ*!,#()C*#5!2-2?$(J! 9@A!>#-2*))! ! !2
  48. 48. !"#$"##%&()*("+,"-$%."/&%.( !"#$%$"#$"& ($%)*+,#$*-).-/&*0$)/1,&2&2$),32&/4,55/67&&2$ ),32&&,0$7"#&2$),32&178 9*"/-5&7".867#:,"&$),0/-%%*)&6%)*;$.&,0%5$0$"&7&,*" 7"#&)7,","3/$)+,.$/6<-&%),07),587.&/7/7=!>?(@ 4"*15$#3$%7)&"$)A*),&/.5,$"&/ ($&74$*)/27)$)$/%*"/,<,5,&8A*)&2$$B$.-&,*"7"# 07"73$0$"&*A=!7"#?(@%)*;$.&/7"#%)*+,#$/$.*"# *)&2,)#5,"$/-%%*)&A*)$B,/&,"3,0%5$0$"&7&,*"/ ($*AA$)7"$B&$"/,+$%*)&A*5,**A.*-)/$/7"#&)7,","3 /$)+,.$/ ($%)*+,#$*-).-/&*0$)/1,&2&2$4"*15$#3$7"# %)7.&,.75,"/,32&/)$C-,)$#&*<$D.*0$E/$5A:/-AA,.,$"&," 07,"&7,","37"#$B%7"#,"3&2$,)=!:$"+,)*"0$"&/ 111F.$"&$"",-0F"53 !"#$"##%&(01$121-"/3&."(4"$/3536378( G0$&2*#*5*386,".5-#,"3?(@:&**5/ =-,5#*)0,3)7&$#7&717)$2*-/$/A7/&61,&22,32C-75,&87"# 5*1.*/& G-&*07&,.3$"$)7&,*"*A#7&717)$2*-/$<7/$#*"#$/.),%&,+$ 0$&7#7&7 9?H,".5-#$/I J$0%57&$=7/$#?$+$5*%0$"& =$/&%)7.&,.$/ K-75,&8.*"&)*50$.27",/0 L"*15$#3$%7)&"$)/2,% =$/&M)7.&,.$/I?7&7N7-5&6L,0<7556O$A$)$".$G).2,&$.&-)$ K-75,&8.*"&)*50$.27",/0I$B&$"/,+$.2$.45,/&/7"# #*.-0$"&7&,*" L"*15$#3$&)7"/A$)<8&)7,","36.$)&,A,.7&,*"7"#5$7)","3*": &2$:;*< 4
  49. 49. !"#$"##%&()*$*+*,"-.&/"(0"$-.1.2.34( Knowledge Partnership5 Structuring Modelling Generating 5#.+2"13"(6*,$#",/-%6( !"#$%&&($)*+,--"./0123&456*#7#.(&8,+/"9(.+& :.#01012&"-/0"1+& & ;<&#1=&5>?&),1=#9(1/#$+& 456&=(+021(.&@&:;5&=(A($"-(.&/.#01012& ! 5#/#&B#,$/&),1=#9(1/#$+&& ! 5#/#&B#,$/&8(./0)08#/0"1&C!(1(+((&D8#=(9EF& ! 509(1+0"1#$&9"=($$012& "#$%!&(#!#!)))*+&,#-.%&/&0%*.! G1*/H(*I"J&8"#8H0123&$(#.1012&JE&="012! 4(1/(110,9&+,--"./+& &8,+/"9(.+&JE&& C9#1#2(9(1/F&8"1+,$/#18E3&#++(++9(1/+3&-."I(8/+3& /.#01012&#1=&+",.8012&6
  50. 50. !"#"$"%&"($&)*+"&+,$"- .+$,&+,$*%/7 0"1234+"546"78"9"3:21"%+- ;"%"$4+*%/ !"#$%&&()*&+$),,$-!.$)/$012&3*+$40($ 5&%6+*()*60$,)7&($ 8(&+&*)*60$,)7&($ 5&90+6*0(7$)/$+3(69*+$)(&$4(&&$04$3:)(%&$ ;(&)*6%$*:&$+*)%6%$,)7&($6+$0*$9)(*$04$!"#$1<*$ 3)$1&$)<*0=)*&/$9&($3<+*0=&($ $8
  51. 51. !"#$%&&(&)*)$ <*=1)71->$3<?94$ 5&67,6$ +*,-&.$#&&$ 92(.7:&71,$ 35!84$ /&-*012)*$3+#/4$ 39;"4$9 !"#$-*=1)71->$ <*=1)71->$3<?94$ 5&67,6$ +*,-&.$#&&$ 92(.7:&71,$ 35!84$ /&-*012)*$3+#/4$ 39;"4$10
  52. 52. -3D, J4K, GHI, DEF, !"#$%&#()&%*+,-.+/012&%/*+ )3+%(4)02+567+ !"#$%&#()&%*+,, -./&0%1(%&#,2,()),345,61$.00.0, 7#0&/8%,&#,9(%(,)/&0%&$0, :&0%1&$,612&).,2,)(9&#/,61$.00.0, , ;()+, 41($.(<&)&%*,, =(&#%.#(#$.+,)$()&0(%&#,(#9,&9.#%&2&$(%&#,2,()), 9(%(>%1(#0($%&#0,?@1#/,(#9,$11.$%A, 5&#B(/.,%,0"1$.,0*0%.C0,11 -3D, J4K, GHI, DEF, !"#$%&#()&%*+,-.+/012&%/*+ %081)(%0+%(4)02+ !"#$%&#()&%*+,, G.#%1(),0%1(/.,2,%.C6)(%.,0$1&6%0,21,/.#.1(%&#/, %(<).0,(#9,345,61$.9"1.0, 3(0*,61C%&#,%,%8.1,.#L&1#C.#%0,?M4KDA, 41(#06(1(#%, , ;()+,, N.10&#,C(#(/.C.#%,2,%.C6)(%.0, M<O.$%,?1.PA$1.(%&#,(#9,C(&#%.#(#$.,12
  53. 53. <8@, A9H, 6-G, @EF, !"#$%&#()&%*+,-.+/012&%/*+ 30%(+4(%(+%(5)02+ !"#$%&#()&%*+,, -./&#.0,1.2&0%1(%&#,(#3,4"5)&$(%&#,)(*.1, 6#%(&#0,57.$%,(#3,89:,3./&#&%&#0, 6#%(&#0,3(%(,)2&0%&$0, , ;()+, ;.#.1(%&#2+, <.2&0%1(%&#,)(*.1,=-(%(,>(")%,%(5).0?, @"5)&$(%&#,)(*.1,=A%(1,0$B.C.0?,, 89:,41$.00.0, 0%1.3, , D57.$%,$1.(%&#,(#3,C(&#%.#(#$.,13 <8@, A9H, 6-G, @EF, !"#$%&#()&%*+,-.+/012&%/*+ 30%(+4(%(+%(5)02+ 9(5)., <.40I9(5). , 6#%(&#0,57.$%,#(C.0,/1,, A%(2&#2,, <.2&0%1(%&#, @"5)&$(%&#, 9(5).,&0,/&)).3,5*,(#,(44)&$(%&#,1,8J$.),0B..%, , , <.40IK(44&#2 , 6#%(&#0,C(44&#2,/,0%(2&#2L,1.2&0%1(%&#,(#3, 41.0.#%(%&#, 9(5).,&0,/&)).3,5*,(#,(44)&$(%&#,1,8J$.),0B..%,14
  54. 54. !"#$%&(&$)*+,(-"+ !"=)%$&)-+3!>84+ 5&(#$*#+ ."*&(,+/(&(+ 829,$:(&$)*+ 35674+ 0("1)2%"+3./04+ 38;<4+15 G7B! @EF! ./0! BCD! !"#$%&(&$)*+,(-"+ ! "#$#%&#(!&))!*+,!&,)#(!-$!*#!./01!&(!2#3-$#2!-$! %#45(-5%6! 78#%6!*+,!95$&-$(!*#!95)+:$(;!! !"#$%&!(&)#*+),-#.(/*0&1!2345*+)-#+1(56(("5"17-# +1(58&02#+2#+1(5(9"!15!"# <&%-&,)#(!3%5:!%#45(-5%6!&%#!&44)-#2! =$9#!*#!*+,(!&%#!>#$#%&#21!*#!%#45(-5%6!-(! +42&#2! ?+,(!>#$#%&#2!&995%2-$>!5!/&&!<&+)!@&$2&%2(A!16
  55. 55. G7B! @EF! ./0! BCD! !"#$%&(&$)*+,(-"+ ! "#$#%&#(!&))!*+,!&,)#(!-$!*#!./01!&(!2#3-$#2!-$! %#45(-5%6! 78#%6!*+,!95$&-$(!*#!95)+:$(;!! !"#$%&!(&)#*+),-#.(/*0&1!2345*+)-#+1(56(("5"17-# +1(58&02#+2#+1(5(9"!15!"# <&%-&,)#(!3%5:!%#45(-5%6!&%#!&44)-#2! =$9#!*#!*+,(!&%#!>#$#%&#21!*#!%#45(-5%6!-(! +42&#2! ?+,(!>#$#%&#2!&995%2-$>!5!/&&!<&+)!@&$2&%2(A!17 G7B! @EF! ./0! BCD! !"#$%&(&$)*+,(-"+ @9%-4! &,#)! ! "#$#%&#(!&))!(&#))-#!&,)#(!-$!*#!./01!&(!2#3-$#2! -$!%#45(-5%6! 78#%6!(&#))-#!95$&-$(!*#!*#!95)+:$(;!! :5!"#$/0&+!32#*+),-#+1(56(("5"17-# +1(56(("5+!2"5"17-#+1(58&02#+2#+1(5(9"!15!"# <&%-&,)#(!3%5:!%#45(-5%6!&%#!&44)-#2! =$9#!*#!*+,(!&%#!>#$#%&#21!*#!%#45(-5%6!-(! +42&#2! @&(!>#$#%&#2!&995%2-$>!5!/&&!<&+)!@&$2&%2(A!18
  56. 56. F8A !DE 012 ABC !"#$%&(&$)*+,(-"+ !"#$%& &()*+ ,*-*#(&*.(++.(&*++$&*&()+*.$-&/*0123(.4*5$-*4 $-#*%6.$&6#7 89*#7.(&*++$&*"6-&($-.&/*&/*"6+:;-.< !"#$%&()*#+,%-*./0%1*23"433$"$250% 1*23"433$"*#,$"$250%1*23"6)(,%*,%1*23"37$#2"#$% =(#$()+*.5#6;#*%6.$&6#7(#*(%%+$*4 >-"*&/*/:).(#*?*-*#(&*43&/*#*%6.$&6#7$. :%4(&*4 !(&.?*-*#(&*4(""6#4$-?&61(&(=(:+&!&(-4(#4.@19 F8A !DE 012 ABC !"#$%&(&$)*+,(-"+ !"#$%& &()+*+$-G ,*-*#(&*.(+++$-G&()+*.$-&/*0123(.4*5$-*4$- #*%6.$&6#7 89*#7+$-G$."6--*"&*4&6&H66#;6#*/:).% =(#$()+*.5#6;#*%6.$&6#7(#*(%%+$*4 >-"*&/*+$-G.(#*?*-*#(&*43&/*#*%6.$&6#7$. :%4(&*4 I$-G.?*-*#(&*4(""6#4$-?&61(&(=(:+&!&(-4(#4.@ 20
  57. 57. H9C !FG 123 CDE !"#$%&(&$)*+,(-"+ !"#$%& &()*+*$,- .+,+#(&+/(***$,-&()*+/$,&0+1234(/5+6$,+5$, #+%7/$&7#8 9:+#8*$,-$/"7,,+"&+5&7&;77#<7#+0=)/! >(#$()*+/6#7<#+%7/$&7#8(#+(%%*$+5 ?,"+&0+*$,-/(#+@+,+#(&+54&0+#+%7/$&7#8$/ =%5(&+5 A$,-/@+,+#(&+5(""7#5$,@&72(&(>(=*&!&(,5(#5/B 21 H9C !FG 123 CDE !"#$%&(&$)*+,(-"+ !"#$%& .+,+#(&+/(***$,-/(&+**$&+&()*+/$,&0+1234(/ 5+6$,+5$,#+%7/$&7#8 >(#$()*+/6#7<#+%7/$&7#8(#+(%%*$+5 ?,"+&0+*$,-/(&+**$&+/(#+@+,+#(&+54&0+#+%7/$&7#8 $/=%5(&+5 A$,-/(&+**$&+/(#+@+,+#(&+5(""7#5$,@&72(&(>(=*& !&(,5(#5/B22
  58. 58. EF@ !CD 123 @AB !"#$%&(&$)*+,(-"+ !"#$%& ()*)#+&),+---$*.,+&)--$&)&+/-),$*&0)1234+, 5)6$*)5$*#)%7,$&7#8 9+#$+/-),6#7:#)%7,$&7#8+#)+%%-$)5 ;*")&0)-$*.,+&)--$&),+#)<)*)#+&)54&0)#)%7,$&7#8 $,=%5+&)5 >$*.,+&)--$&),+#)<)*)#+&)5+""7#5$*<&72+&+9+=-& !&+*5+#5,?23 ./0,$1(&$)*+,(-"+ !"=)%$&)-+6!>.7+ 8&(#$*#+ 2"*&(,+3(&(+ ./0,$1(&$)*+ 689:7+ 4("5)/%"+62347+ 6.;<7+24
  59. 59. FGC$ ?>E$ 012$ CD6$ !"#$%&(%)*+$,-.+ /%0-*1%)*1+*/+2&(1+ !"#$%&($)&#$#*+",-($.+%/$012$ 0%&.%+/3$-%$ $3-)+$3,4"/"$3-)&#)+#3$ 5+$)&($%-4"+$.%+/)-$$ 673*&"33$+7"3$,)&$8"$)99*"#$ 07++"&-($73*&:$;*"<3$ 673*&"33$+7"$"#*-%+$*&$&"=-$+"")3"$ >(9"$?01$@A$@@A$"-,B$ 0%&.%+/"#$#*/"&3*%&3$<4"&$&""#"#$ $ $25 3456+7.)&-11+ @&,+"/"&-)$)99+%),4$ >*/"8%="3$%.$HIJ$<""K3$ $ $ $26
  60. 60. !"#$%&()*+,%)-*./0/-&% 90% Centennium 70% Customer 100% Customer 100% Centennium 30% Customer 40% Centennium 10% Centennium !"#$%&& !"#$%&(& !"#$%&)& !"#$%&*& +,-.%/%,0&1-8-2011 31-12-2011 !"#1 "+&+%3+4,&% 7.+)-)-2%+-8%!6+*9)-2%6-1&9/1:6;% <4((6.&)-2%*4=&60/.% &.+)-)-2% !/.&)5)*+&)6-% Typical increment ranges from 2 to 6 months Centennium role changes from LEAD to FOLLOW Customer is fully CDM-aware at the end of the increment Centennium continues supporting customers through knowledge partnership >?@A7%!BC7BCCDA#% 28
  61. 61. !"#$"##%&()*("+,"-$%."/&%.(/0&.".(122($/"("+,"-$.(&#3"-(0#"(-0045(!"#"$%&(("#)*+&,--&.*/-"0+"&,*0&"12"#3)4"&3&,00#"44&3!"&562-"1&$74)*"44&)*3"--)+"*5"&)447"4&(,5)*+&7#&5-)"*34&30,%&;18$.(1#3(4%<&-".:( 6"-7%8".(07"-7%"9:( L"%#4/4M+NOOP+ !"#$%&(#)*+ QRS+6%$1#/$$+1#/&&12/#)/+)"#$%&(#$+ ,-"./)$++ + 0/$"%-)1#2++!0-"(712&".:( 34%)(1"#+ T%H(#+!(?1(&+ + K#+)&"$/+)"&&(6"-(1"#+ 60"(04(0&-(82%"#$.:(5""#6-"#7+8&6-"#7++ <6./)1A/+(#4+K#4/?/#4/#+ 9:(7+!8;7+<=07+>"?(@7+$/A/-(&+B%)C++( D%#1)1?(&11/$7+8/2"#7+9%-/)"7+E9<7+=+,"-$%.":( F/#G*H/7+E((+I//&7+;,97+B3JE87++K;387+ 8))/&&7+E"HE"H7+;8I+=89;7+J/($/,&(#7++ =%$1#/$$+1#/&&12/#)/+ =-(6(#+5(/-+ I-(/21)7+()1)+(#4+"?/-(1"#(&+ + !"-$%4%81$%0#(1#3(*#3&.$->(?"80<#%$%0#( 8&&+!/#/##1%H+)"#$%&(#$+(-/+!/-1U1/4+=K+,-"U/$$1"#(&$+V!=K,W+(X(-4/4+6*+ EB5KY++ + !=K,7+6()@/4+6*+EB5KZ$+-/?%(1"#+($+C/+&/(4/-+1#+=K+/4%)(1"#+(#4+-/$/(-)C7+ H(@/$+(+$-"#2+$(/H/#+C(+X/+(-/+(H"#2+C/+&/(4/-$+1#+C/+1#4%$-* %?+"+ 4(/+X1C+=K+/)C#"&"21/$7+@#"X&/42/(6&/+(6"%+6/$+?-()1)/$+(#4+$(/["U[C/[ (-+$"&%1"#$7+(#4+1#U"-H/4+"U+/H/-21#2+-/#4$+ 8&&+!/#/##1%H+B((+>(%&+$?/)1(&1$$+(#4+(-)C1/)$+(-/+)/-1U1/4+"#+B((+ >(%&+H"4/&1#2+6*+B(#+J1#$/47+B((+5(-/C"%$/+1#4%$-*+C"%2C+&/(4/-+ (#4+U"%#4/-+"U+C/+B((+>(%&+H"4/&1#2+$(#4(-4. !/#/##1%H+1$+C/+6%$1#/$$+?(-#/-+"U+F/#/$//+8)(4/H*+1#+"-2(#1G1#2+C/+B((+ >(%&+D"4/&1#2++!/-1U1)(1"#+ +3%-"?/+!"%-$/Y++ 5/+(-/+())-/41/4+"+?/-U"-H+C/+F/#/$//+8)(4/H*+B((+>(%&+-(1#1#2$Y+ +)%$"H/-+9%-/)"+ B((+D"4/&+1#+]^^O+U"-+C/1-+)"-?"-(/+U1#(#)1(&+(#4+?-")%-/H/#+4((+X(-/C"%$/+ H"4/&Y+
  62. 62. 31 !"#$"##%&()*("+,"-$%."/&%.( 01#2"(344-/4&$(56( 7895(:!(;.<=-1>"#/12"(( ?"@"A44#( BCB(69(7B(6CB( D1+(( BCB(69(7B(6C9( EF0(( GGGHI"#$"##%&H#@(( ( ( ( GGGHJ%<4,@"%K%#2"#H#@( ! ! ! !
  63. 63. !!!!!!!!!!!!!!!!!!!!!!!!!!!! ! !Logica
  64. 64. 29 september 2011 Metadata driven Data Integration Hype or reality ? Datavault Conference - Automation Bertram Hof & Tom van Gessel 6-10-2011 Generating or still Programming !  Do you use Data Integration tools ? !  Do you use Metadata Exchange ? !  Do you use design patterns / reusable components !  Do you spend much time testing !  Do you have metadata management in place ? © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 2Title of Presentation 1
  65. 65. 29 september 2011 Agenda !  Logica and our BI Practice !  Framework approach !  Best practices !  Demo Mapping Builder !  One step beyond, Business Metadata driven !  Recap !  Q & A © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 3 Logica, our presence - Europe " Our widespread presence means we have the capability 9,600 to sell and deliver where our UK Nordics clients work and live 5,400 " Speaking the same language 1,900 Germany gives us strong client and 5,500 cultural intimacy Benelux 200 " Combining these skills with blended delivery is a platform 8,900 CEE France to deliver services in the most efficient way to our clients 900 Portugal © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 4Title of Presentation 2
  66. 66. 29 september 2011 Logica, our BI workforce world wide > 3000 consultants work on BI every day, on site, remote, near- & offshore © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 5 in Roll out thought leader in Logica, plan ce en Business Intellig w Europe, launches its ne book to share its vision How to Transform Information Into a Competitive Asset Discover the BI Framework Investing in Business Intelligence to aid competitiveness is, for the fourth year in a row, top priority for CIOs, say analysts. BI is even more important when times are tough: it can help find bottlenecks and inefficiencies or expose areas that are profitable. Knowing that most organisations already have some BI solutions in place, this publication focuses on cost effective management of BI and provides with a clear roadmap on how to lower the total cost of ownership of the current landscape. Discover a structured approach to manage the BI life cycle in a cost effective and efficient manner. © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 6Title of Presentation 3
  67. 67. 29 september 2011 Agenda !  Logica and our BI Practice !  Framework approach !  Best practices !  Demo Mapping Builder !  One step beyond, Business Metadata driven !  Recap !  Q & A © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 7 Logica - BI Framework Business Focus ICT Focus Operation Focus Change Focus © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 8Title of Presentation 4
  68. 68. 29 september 2011 Logica - BI Referentie architectuur Operational Actionable Data Information Client Operations Services Reporting PDA Product X Sales Services RSS Enterprise Analytics Data Product Y Warehouse Finance Mail Services Mining Product Z Web Marketing Services Extract Access Publish Source Integrate Storage Subject Area Utilities Personalise Present Data Warehouse (back-end) Business Intelligence (front-end) Sequential Development Iterative Development © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 9 Logica - Engineering Framework BI Engineering Framework subject models Deliverable Data Function Network Timing People Motivation Mission & Vision statement Services Business Business Business Organisational Goals & & Terms Locations Events Entities Strategy Business Products Context Semantic Business Logistic Master Organisational Objectives data process System Plan Structure & Policies model model Enterprise Architecture criteria, topologies and standards BI BI BI System semantic BI infra BI event BI user task essential semantic Context data context model model context rule model model BI BI architecture criteria, topologies and standards Architecture Logical Logical Logical System Logical Logical user Logical data process control Concept Infra. Model interface mdl. rule model model model model Physical Physical Physical System Physical Physical user Physical d ata process control Specification Infra. Model interface mdl. rule model model model model Busines Repository Database Process Infrastructure Procesflow User interface rule data & Code code code Environments code code code Business BI Solution Database Process Infrastructure Procesflow User interface rule Configuration objects objects Environments objects objects objects © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 10Title of Presentation 5
  69. 69. 29 september 2011 Agenda !  Logica and our BI Practice !  Framework approach !  Best practices !  Demo Mapping Builder !  One step beyond, Business Metadata driven !  Recap !  Q & A © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 11 DWH, layer reference model " 3nf " Per source " Per source " Per source " Integrated " Integrated " Subject " incomplete " Source " Source " Storage " Target " Subject oriented history model model model " Delta oriented " Business " Detail " Delta " Complete " Complete " Truncate/ " Dimensional Language " OLTP " Truncate/ History History insert Model insert " Merge " Merge " Merge Source IMP STG/ODS DVT 1 1 1 1 D D D D Source IMP STG/ODS DVT F F 2 2 2 2 D D D D Bron n Source IMP STG/ODS DVT n n n n IMP STG/ODS DVT INT/BVT STO/DMT Source Knowledge system Reference data Worker Meta data Processflow © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 12Title of Presentation 6
  70. 70. 29 september 2011 Productivity Boosters !  Import flat files – Import Tabel + Import Mapping !  Staging / ODS – Staging/ODS tabel + Merge / SC Mapping !  Storage / Datamart – Dimension / Fact + Mapping !  Processflows !  Quantitative Measures !  Seedfile driven generation – flatfiles / imp /ods !  Seedfile driven generation – XML delivery / interfaces !  Seedfile driven generation – dimension/fact loading !  Datavault Experts – Hup, Link en Satellite generation © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 13 Example of Productivity Booster Datavault Link © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 14Title of Presentation 7
  71. 71. 29 september 2011 Some Practical results !  Seedfile driven approach ODS => 15-30% of budget !  Productivity Boosters during development => 10-20% of budget !  Quality improvement => 40% !  Test reduction => 70% !  Exploitation reduction !  Time to market !  Impact Analysis ! … © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 15 Agenda "  Logica and our BI Practice "  Framework approach "  Best practices "  Demo Mapping Builder "  One step beyond, Business Metadata driven "  Recap "  Q & A © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 16Title of Presentation 8
  72. 72. 29 september 2011 Demo, mapgen the functionality Mapping generation with informatica powercenter Parameters Repository Mapgen Informatica Visio Template © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 17 Demo, mapgen the templates Target ODS Target Satellite (DataVault) © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 18Title of Presentation 9
  73. 73. 29 september 2011 Demo Mapping Builder !  Ferarri case © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 19 Agenda !  Logica and our BI Practice !  Framework approach !  Best practices !  Demo Mapping Builder !  One step beyond, Business Metadata driven !  Recap !  Q & A © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 20Title of Presentation 10
  74. 74. 29 september 2011 ETL Development Process © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 21 ETL Framework a different perspective © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 22Title of Presentation 11
  75. 75. 29 september 2011 Logica - ETL Framework, components © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 23 ETL Generator © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 24Title of Presentation 12
  76. 76. 29 september 2011 Some lab implementations Microsoft SSIS IBM Cognos/ Infosphere © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 25 Lab results •  BI- Platform indepedant ETL methode •  Generic ETL model/design •  Cost reduction of 8% with ETL Framework •  Cost reduction of 17% with ETL Generator •  Combination of ETL Framework and ETL Generator will result in cost reduction > 26% © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 26Title of Presentation 13
  77. 77. 29 september 2011 Agenda !  Logica and our BI Practice !  Framework approach !  Best practices !  Demo Mapping Builder !  One step beyond, Business Metadata driven !  Recap ! Q & A © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 27 Recap Generation of Dataware House not a hype but reality "  Main parts of the datawarehouse can be generated "  Requirement Capture needs further maturity "  Framework approach provides the structures needed to generate "  Mature enough to use within projects and organisations "  Quality results obvious /Testtime reduction "  Faster implementation, time to market / Reduced TCO © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 28Title of Presentation 14
  78. 78. 29 september 2011 Agenda !  Logica and our BI Practice !  Framework approach !  Best practices !  Demo Mapping Builder !  One step beyond, Business Metadata driven !  Recap ! Q & A © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 29 Q&A © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 30Title of Presentation 15
  79. 79. 29 september 2011 Thank you BI brilliant together Ing. Bertram Hof Tom van Gessel Principal Consultant BI Software architect © Logica 2011. All rights reserved Datavault Conference – Automation 6 oct 2011 No. 31 BI brilliant together © Logica 2011. All rights reservedTitle of Presentation 16
  80. 80. !!!!!!!!!!!!!!!!!!!!!!!!!!!! ! !XLNTconsulting !
  81. 81. Agile BI:Accounting for progress Tom Breur Data Vault Automation Utrecht, 6 Oktober 2011
  82. 82. “Our highest priority is to satisfy the customer through early and continuous delivery of valuable software” Agile Manifesto, 2001 Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern,Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomaswww.xlntconsulting.com 2
  83. 83. Counter intuitive Agile practices! People are more productive if nobody tells them what to do! Pair programming leads to more (effective) production code! Business partners must be full-time engaged (co-located) with the development teamwww.xlntconsulting.com 3
  84. 84. Counter intuitive Agile practices! Only the business has the right to choose what gets done! An efficient team must have “slack”, must have people sitting idle, with nothing productive to do, on a regular basis! Etc.www.xlntconsulting.com 4
  85. 85. Software ‘inventory’ “Work-in-Progress is a liability – not an asset” Tom Breur, 2011www.xlntconsulting.com 5
  86. 86. Simplified development Error Reports Idea Develop Test Working Codewww.xlntconsulting.com 6
  87. 87. (More) realistic development Idea Analysis Design Code Error Error ErrorWorking Acceptance System Unit Code Test Test Testwww.xlntconsulting.com 7
  88. 88. Agile manufacturing Theory Focus J-i-T Inventory TQM/QA Quality & Conformance T-o-C Bottlenecks Lean Inventory, Quality & Conformance Six Sigma Quality & Variancewww.xlntconsulting.com 8
  89. 89. Throughput Accounting metrics THROUGHPUT INVENTORY Rate of cash* generated through Quantity of ideas for client-valued delivery of working code into functionality queing for input to, in- production, not merely code process through, or waiting for complete output, from the system *Assuming a constant level of Investment INVESTMENT OPERATIONAL EXPENSE The sum of money invested in the The sum of money spent in the system of software production plus system to produce working code from the sum spent to obtain the ideas for ideas for client-valued functionality client-valued functionality input to the (marginal expense to create system (gathering requirements) production code)www.xlntconsulting.com 9
  90. 90. ROI in Throughput Accounting Unknown (T) – Pretty hard to guess (OE) ROI = Didn’t bother to measure (I)www.xlntconsulting.com 10
  91. 91. NP in Throughput Accounting (more) Net Profit (NP) = T – (less) OEwww.xlntconsulting.com 11
  92. 92. ROI in Throughput Accounting Throughput (T) – Operating Expense (OE) (more) ROI = (less) Investment in Inventorywww.xlntconsulting.com 12
  93. 93. ROI in Throughput Accounting (more) Net Profit (NP) = (more) T - OE (more) Throughput (T) – Operating Expense (OE) (more) ROI = Investmentwww.xlntconsulting.com 13
  94. 94. Focus on Throughput! Focus on T, I, or OE?! Throughput is unlimited, it can grow forever! Focusing on cost has a logical (yet unattainable) lower bound – namely zero! Throughput focuses on the customer – externally! Cost focuses on the team – internallywww.xlntconsulting.com 14
  95. 95. Investment! Minimizing Investment (I) drives ROI up! Minimizing Investment also reduces OE, by reducing carrying cost of capital! And, most importantly! Lower I means lower inventory, which leads to reduced Lead Times, hence earlier delivery of value (Agile Manifesto principle #1)www.xlntconsulting.com 15
  96. 96. Cost vs Throughput AccountingCost Accounting Throughput Accounting!  Inventory is an asset !  Inventory is a liability!  Efficiency = function/ !  Efficiency = function/ dollar (hours) " labor is direct costs (idle or not) a “variable” cost " labor is a “fixed” cost!  People sitting idle are !  People sitting idle are a discarded! part of the system!www.xlntconsulting.com 16
  97. 97. Cost vs Throughput Accounting Cost Accounting Operating Inventory Production Least Focus Expense Most Focus Throughput Operating Inventory (Production) Expense Throughput Accountingwww.xlntconsulting.com 17
  98. 98. Agile & Data Vault! (very) few other architectures allow incremental build at such low marginal cost ! Deliver early – in (very) small increments! (very) few other architectures allow ‘mistakes’ in your model, that you can recover from inexpensively ! Deliver early – (long) before you have settled on “the” final business modelwww.xlntconsulting.com 18
  99. 99. Conclusion! By providing appropriate metrics (=Throughput Accounting), complex adaptive systems (Agile projects) will display the desired emergent properties! Agile BI is not about delivering faster (or cheaper) – efficiency! Agile BI is about delivering in arbitrarily smaller increments to end-users – hence gathering feedback about effectivenesswww.xlntconsulting.com 19
  100. 100. !!!!!!!!!!!!!!!!!!!!!!!!!!!! ! ! !Genesee Academy !
  101. 101. 25568 Genesee Trail Rd Golden, Colorado 80401 (303) 526-0340 Data  Vault  Modeling  and  Approach   DW2.0  and  Unstructured  Data   Master  Data  Management  and  Metadata      Data  Vault     DW  Automation   Classification  Matrix      Data  Vault  Automation  Conference    2011            ©2011 Genesee Academy, LLC         25568 Genesee Trail Rd Golden, Colorado 80401   Hans  Hultgren     © 2011 Genesee Academy, LLC
  102. 102. Welcome   Overview  of  Data  Warehouse  Automation   Scope  of  the  Classification  Matrix   Classification  Criteria   Automation  Categories     The  Automation  Matrix   Applying  the  Matrix     © 2011 Genesee Academy, LLC

×