• Like
1 ไฟฟ้าสถิตย์  physics4
Upcoming SlideShare
Loading in...5
×

1 ไฟฟ้าสถิตย์ physics4

  • 20,428 views
Uploaded on

 

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
20,428
On Slideshare
0
From Embeds
0
Number of Embeds
28

Actions

Shares
Downloads
6
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. 432204 AJ. Suminya Teeta Faculty of Science Technology Rajabhat Maharakham University (RMU)
  • 2. Electrostatics)1.2.3.
  • 3. 1.      3
  • 4. . » » » »3. » »
  • 5. Electrostatics : ( Electric Current) : IAmpere AMP. Amp.Meter Direct Current):
  • 6. 1 2. 3. 4. 5. ……………
  • 7. ? Thales of Miletus (600 BC) : http://faculty-staff.ou.edu/
  • 8. Benjamin Franklin (1706 -1790) ?( ) (fluid) : http en wikipedi
  • 9. :(Static Electric)
  • 10. • ???????•••
  • 11.  -
  • 12. (Electric Charges)•• C : C x1018 A s 12
  • 13. •••  
  • 14. •  15
  • 15. - ++ - - +
  • 16.  e  q=  N Ne  e = 1.6 x 10-19  C = -e q  q = +e 17
  • 17.     18
  • 18. ????????• ??????????
  • 19. ????1.2.3.**** polarization
  • 20. 1.• 2• 2
  • 21. 2.••
  • 22. 3. ( Induction) •
  • 23. ???••
  • 24. (Coulombs Law• Charles Coulomb Fe q1q2 1 Fe r2 25
  • 25. (Coulomb La r q1 q 2q2 q1 Fe = F12 = F21 = ke r2 ˆ r12 F12 q1 F12 q1 q2 q2 q2  q1 q 2 q1 F12 = ke 2 r12 ˆ rF12 q2 r ˆ12 q1 q2 q1 1 ke = = 8.9875 x 109 @9 x109 N ×m2 /C2 4pe0 0= 26 (permittivity of free space) =
  • 26.  q1 q 2 q q F12 = ke 2 r12 r ˆ r q1 q2 (a) (unit (b) vector) q ˆ r12 q1 q q q q2   q F12 F21q q q q qq q q 27
  • 27.  q1q 2  q 2q1 F12 = ke 2 r12ˆ F21 k E 2 r21ˆ r rF12 q2 q1ˆr12 q1F21 q2 q1ˆr21 q1 q2 q2 (Repulsive force) q1 q2 (Attractive force)     F F F12 F21 12 21 q1 q2 q1 q2 r r 28
  • 28. q q3 q2 q32- - + +ˆr ˆ r ˆ r r r r  = +q1 - F - 13 q1 q1 -   F1 F12 q1 29
  • 29.    r = r- r 12  1 2   r- r z ˆ r =  12 1 2  F12 r- 1 r q1  q1 q 2 q q2 r1F12 = ke  2 r ˆ12 = ke  1  2 r12 ˆ q2 r12 r1 - r2 q q2    = ke  1  3 (r1 - r2 )  F21 r1 - r2 r2 y q1 q 2 q q2F21 = ke  2 r ˆ21 = ke  1  2 r21 ˆ r21 r2 - r1 x q1 q 2   = ke   3 (r2 - r1 ) r2 - r1
  • 30. q1 q2 q3   q3 q1 q2F31 F32 q1    F3 F31 F32 - r31 ˆ r31  q3q1 F31 ˆ r31  q2q3 F32 4 2 r31 - ˆ r32 0 r32 +F31  F32 q3q 2 ˆ r32 2 4 r32  0 F3 31
  • 31. n q1, q2,…,qn  n q i n qiq j 1 Fi Fij 2 ˆ rij j i 4 0 j i r ijFi qiFij qi qjˆrij (unit vector) qjrij qi qj qi , qj (C) rij (m) Fi , Fij (N) 32
  • 32. 1 1.0 1.0 KQ1Q2F r2 9.0 109 Nm 2 / C 2 1.0 C 1.0 C 2 (1.0 m) 9.0 109 N 1C
  • 33. 2 x - m q1q2- Fe k 2 r 19 11- q1 q2 e 1.6 x10 C, r 5.3 x10 m 19 2 9 2 2 1.6 x10 C Fe 8.99 x10 N m / C 2 8.2 x10 8 N 11 5.3x10 m 34
  • 34. m1m2 Fg G 2 r 31 27 me 9.11x10 kg, mp 1.67 x10 kg 31 27 11 2 2 9.11x10 kg 1.67 x10 kgFg 6.67 x10 N m / kg 2 11 5.3x10 m 47 3.6 x10 N 8 Fe 8.2 x10 N 2 x1039 Fg 3.6 x10 47 N 35
  • 35. 3 q3 q1 q C C C q1= q3=5.0q2= 2.0 C a = 0.1 m F31  F32 2 6 6 q2 q3 9 (2.0 10 )(5.0 10 ) F32 ke 2 (8.99 10 ) 2 9.0 N a (0.1)  q1 q3 (5.0 10 6 )(5.0 10 6 ) F31 ke (8.99 109 ) 2 11N ( 2a ) 2 2 (0.1) F31x F31 cos 450 , F31 y F31 sin 450 F31 cos 450 F31 sin 450 11 2 2 7.9 N F3 x F31x F32 7.9 N 9.0 N 1.1N F3 y F31 y 7.9 N  F3 ( 1.1i 7.9j) N 36
  • 36. 4 q1 470 1,2,4) q2 250 3,3,0) q1 q2  qq qq ˆ F = k  r = k 1 2   rˆ 1 2 21 r e 2 21 q q2   e r- r 2 21 21 F21 = ke  1  3 (r2 - r1 ) 2 1 qq  r2 - r1  = k   (r - 1 2 r)  (9 x109 )(470 x10- 6 )(250 x10- 6 )(2iˆ + ˆ - 4kˆ) e 3 2 1 r- r 2 1 j   F21 = ˆ + ˆ - 4kr21 = r2 - r1 = 2i j ˆ 4.583    2 1 2 j ˆ F21 = 21.97iˆ + 10.99 ˆ - 43.94k N r2 - r1 = = 2 + 1 + 4 = 4.58 37
  • 37. Electric field + + q3 F Q q1 + + q2 F F Q P ?
  • 38. + + q3 F Q Qq1 + + q2F F ? ?
  • 39. ?? ? ?
  • 40. ?+ + q0 q0 FQ +++ ++++ ++++ ++++++ + + + ++++ + +++ + F++++++ +++ lim ++++++++ q0 0 q0 ++ ++
  • 41.  E = F / q0
  • 42. VS Test charge +Source of Electric field   FE E  +  E  FE -  -  E  FE -  E -  FE
  • 43.   F E lim q0 0 q0 E = F / q0 kqq0 kq E= 2 = 2 r q0 r***    F F ? E q0 q0
  • 44. ? +q1 -q2 +q4 -q3 E20 qn En0 P E10 P (     qiEP E1 E2 ........ En Ei k ˆ r 2 i i i ri
  • 45. •• –   dv y 1  ay qE dt m•
  • 46.  47
  • 47. (CRT)• CRT• CRT
  • 48. • Fe = qE = ma a = qE /m 49
  • 49. 5 9.6x10-14 kg 2x106 N/C  F 0FE ( Fg ) 0 ++++++++FE Fg FEqE mgq 2 106 N / C 9.6 10 14 kg 10 m / s 2 19q 4.8 10 C Fg E FE E - - - --19- - - - - - - - 4.8x10 C
  • 50. Electric ra a Q Q+ Ea k 2 Eb k 2 rb ra rbQ b Ea Eb a b ?
  • 51. Electric field lines
  • 52.  B
  • 53. Electric field lines
  • 54. Electric field lines Electric
  • 55. + -
  • 56. ??????
  • 57. ?•
  • 58. 6 q C q - C x m P : P , m P 2 q1 (7.0 10 6 )E1 ke 2 (8.99 109 ) 3.9 105 N / C r1 (0.40)2  q2 (5.0 10 6 )E2 ke 2 (8.99 109 ) 1.8 105 N / C r2 (0.50)2 E1 3.9 10 j ; E2 1.1 105 i-1.4 105 j 5   E E1 E2 1.1 10 i+2.5 10 j E 2.7 105 N / C 5 5
  • 59. 7 A 2 C q = C + q1 q1 A q0 3cm 3cm + A 4cm       E1 E E1 E2 - q2 2 E E 2 C E1 ˆ E1 cos i E1 sin ˆ j y E2 ˆ E2 cos i E2 sin ˆ j  E2 cos q1 =q2 r1= r2 E1=E2 +  x  ˆ  q0 E1 cos E 2 E1 sin jE2 E2 sin    kQ  kq1 E1 sin E1 E 2 ˆ r EA 2 2 sin ˆ j r r1  9 109 2 10 6 3ˆ N 4 3 E 2 i 0.86 10 7 cos และsin 5 5 (5 10 2 ) 2 5 C
  • 60. y 8 q1= q2 = q3 +q1 a a +q2 q a a 2  E3 a q3     x E0 E1 E2 E3 a   E2 E1 q2 = q3   r2=r3 +q3 E0 E1   E1 cos E0 E1 cos i E1 sin ˆ ˆ j  kQ   E1 E 2 rˆ E2 sin r  kq1 a 2 1 E0 cos i ˆ kq1 sin ˆ ja sin 2  2 r1 kq r12 kq1 ˆ 1 E0 1 ˆ i j a และ cos 2 2a 2 2 2a 2 2
  • 61. • : ,• : E E• kq E= 2 r
  • 62. 1.dq dE
  • 63.  dqi qi dE ke 2Ei ke 2 ri r  i   dqE Ei E dE ke 2 r i
  • 64. 9 l Q P ddx dq dE dq dE k 2 x Qdq dx dx l
  • 65. P dE ke dq dE EX dE dE x2 l d l d ke dx 2 dx ke d x d x2 l d 1 1 1 ke l ke ke x d l d d d (d l )
  • 66. (linear charge dens Q Q dq   d d dq d dq
  • 67. (area charge density) AQ dA Q dq A dA dq dq dA
  • 68. (volumecharge density) : V Q dV Q dq V dV dq dq dV
  • 69. 10 a +Q x +Qa x Q ds s ds Q Q s +Q Q dq l º = s ds
  • 70. ds Q dq ds ds s dq dq2 dq1 =dq1  y   dE2 E2 sin E2  x  + E2 cos x  dE1 q0 E1 cos  dq2 E1 sin E1
  • 71. Ex = ò dE dq dE = dE cos q a r a2 x2  E= ò dE cos q (1 dE cos ) x  dE = kdq dE r2 Q k dq x kQ x dE cosq E= ò 2 = 2 0 (a + x ) a + x (a + x2 ) a 2 + x2 2 2 2 kQ x E (a 2 x 2 ) a 2 x 2 x a x kQcos E 2 2 3 x a2 x2 (a x ) 2
  • 72. (Electric Flux) ?  :  E =EA
  • 73. (Electric Flux) E EAcosE EA = 0o E 0 = 90o
  • 74. C E q 1 10 6 3 E kE 2 (9 109 ) 899 10N/C . r (1) 2 E EA 3 (8.99 10 )(12 .6) 1.13 10 5 N m 2 /C. . = 4p r 2 = 4(3.14)1 = 12.6 m2
  • 75. ( )•   E Ei Ai cos i Ei Ai•     E lim Ei . Ai E.dA Ai 0 i
  • 76. Close surface
  • 77. • (1), ;θ <90o, Φ• (2), ; θ =90o, Φ = 0• (3), E EAcos ;90o
  • 78. ( )     E lim Ei . Ai E.dA Ai 0 i   E E dA E n dA En
  • 79. Flux through a cube E x L E dA A=LL L   E dA E(cos1800 )dA E dA EA EL2 1 1 1   E dA E(cos 00 )dA E dA EA EL2 x 2 2 2 E EL2 EL2 0 0 0 0 0
  • 80.     E lim Ei . Ai E.dA Ai 0 i surface ?  ? ?
  • 81. Gauss’ Law Gauss’ Law E 0   qin E E.dA surface 0 0 = (permittivity of free space
  • 82.  E   E E dA   qin E E dA ε0• qin E 84
  • 83.  q r E=keq/r2 *** Gaussian surface ( 85
  • 84. • surface integral) 86
  • 85. (Point Charge)   qin E E.dA Gauss’ law surface 0
  • 86. q S1 S2S3 q/ 0 S1 S1 q S2 , S3 q/ 0 88
  • 87. 89
  • 88. q • q q   qin E E dA EdA εo qin Ñ E ò dA = e0 q q q E 4πr 2 E= = ke 2 ε0 4πεo r 2 r 90
  • 89. Qa r>a r<a r>a r   qinE E dA EdA εo qin E dA εo Q E 4πr 2 = εo Q E= 4πεo r 2 91
  • 90. r<a r qin < Q Q qin 4 / 3 a3 4 / 3 r3 3 qin Q r/a   qin E E dA EdA εo 3 Q r/a E 4 r2 0 3 Q r /a Q E= = ke 3 r 4πεo r 2 a 92
  • 91.   qin E E dA EdA εo λl E 2πrl = εo λ λ E= = 2ke 2πεo r r 93
  • 92. ••• q2EA in σA σ 2EA = 2EA = E= εo εo 2ε o 94
  • 93. (Su E 2 0σ (Area charge density)
  • 94. q R RE (r>R)   E dA EdA qin εo q 1 q E 4πr 2 E , r R ε0 4πε0 r 2   (r<R) dA E E 4πr 2 0 ε0 E 0, r R 96
  • 95. - E- AE EA cos  - E E dA surface- E 0   q in E E dA 0 97
  • 96. R Q kEQ/r2 kEQr/R3 R kEQ/r2Q 0 r<R 2k E / r /2 0 / 0 0 98
  • 97. q 5 C q -8 C q q2 P 2q3 q2 q1 q C C q1=q3=2.0 q2= 3.0 a=1m
  • 98. http://www.rit.ac.th/homepage-sc/charud/selftest/2/index21. q1 = q q2 = q5 = -5.9 nC q3 = -3.1 nC 100
  • 99. http://www.rit.ac.th/homepage-sc/charud/selftest/2/index22. 3, 4, 2, 1 101
  • 100. http://www.physics.sci.rit.ac.th/charud/oldnews/48/magnetic/OnlineTest_V4/indehttp://www.rit.ac.th/homepage-sc/charud/selftest/2/index 102
  • 101. 2. ? ….. ?
  • 102. Wg Ug m
  • 103. A B r
  • 104. ? r   D U = - ò F .ds q0ETest charge q kq E = k 2 , D U = - q0 ò 2 .dr r r qq0 qq0 UB UA k k rB rA q2 q1 ( U (r ) k r q2 q1 ( U (r ) ) k r
  • 105. ? q2 q1 Gm1m2 U e (r ) k U g (r ) r r G (universal gravitational 6.67259 x 10-11 G= constant) N.m2 / kg2
  • 106. Qq U e (r ) k +10 μC r r +10 μC +20 μC+Q r +20 μC U e (r ) Q k Const q r Q r U e (r ) Equipotential line V (r ) q
  • 107. q0E V VB VA U We Wext q0 q0 q0Test charge V Qq0 Fext Fe q0 E k 2 r kQ kQ VB V A rB rA : +1 C kQ V (r ) r
  • 108. ? U We Wext V VB VA q0 q0 q0
  • 109. • (equipotential surface) B A C B B C 111
  • 110. •   112
  • 111. • 1 1 A B B -VA = keq r - r V B A V =0 rA = q V = ke r 1/r 113
  • 112. • qi V = ke i ri V=0 r=∞ 114
  • 113. U q0 Ed U q0 EdV Ed q0 q0 115
  • 114. Ex. V -Q +Q 3 +Q a +Q V k qi ri P 2Q 2Q 2Q 2Q a a k 2 a a a a +Q -Q 2 2kQ a
  • 115. Ex 9 (i) P (ii)P
  • 116. • dq dq dV = ke r dq V = ke r V=0 118
  • 117. • Q a P x dq λdldV = ke ke r r dq dl V = ke ke λ r x 2 a2 2πa keQ V = ke λ x2 a2 x2 a2 Q dq  d 119
  • 118. L [C/m] P d [m] x dx P L d kdq k dx dq = dxdV r d x L k dx L d LV dV k ln( d x) 0 k ln( ) 0 ( d x) d
  • 119. Q qR r q1 q2 Q R V ke ke 1 r1 r2 q r 121
  • 120. Q q E1 ke 2 E2 ke R r2 QE R 1/E2 q r QE1 kQ / R 2 R2 Q r2 Rr 2 r RE2 kq / r 2 q qR 2 rR 2 R E2 E1 r2 r 122
  • 121.  A E ds 0 B)E  ds 123
  • 122. E V q  V = ke r q E ke 2 r 124
  • 123. • q1 q2 U = ke r12 125
  • 124.  q1q2 q1q3 q2 q3U = ke + + r12 r13 r23 126
  • 125. Ex. q1=2.0 µC XY q2=-6.0 µC ก) m P m ข) μC q3=3.0 P ค) 127
  • 126. qi q1 q2 V ke ke ri r1 r2 9 2 2 2.0 x10 6 C 6.0 x10 6 CVp 8.99 x10 N m / C 4.0 m 5.0 m 6.29 x103 V U U f Ui Ui 0  ri Uf q3V p U q3Vp 0 3.0 x10 6 C 6.29x103V 0 2 1.89 x10 J 128
  • 127. q1q2 q1q3 q2 q3U ke r12 r13 r23 2.0 x10 6 C 6.0 x10 6 C 8.99 x109 N m2 / C 2 3.0 m 2.0 x10 6 C 3.0 x10 6 C 3.0 x10 6 C 6.0 x10 6 C 4.0 m 5.0 m 2 5.48 x10 J 129
  • 128. 3.• (Capacitor) capacitance) 130
  • 129. Capacitor 131
  • 130. • 132
  • 131.  Q C= ΔV (farad, F) 133
  • 132. • 135
  • 133.  Q Q Q εo A C= = = = ΔV Ed Q/εo A d d 136
  • 134. • a q E 2 b 0 Lr q b V ln 2 0L a Q = L L 2πε C= 2k ln b / a 0 b ΔV e ln a 138
  • 135. • a b 1 1 ΔV = keQ - b a Q ab ab C= = 4πε0 ΔV ke b - a b a b ab a C= 4πε0a ke b ke 140
  • 136. b ar
  • 137. • C = a/k a••
  • 138. • 143
  • 139.  Qtotal= Q1+Q2=C1V+C2V Ceq V=C1V C2V Ceq =C1 C2 144
  • 140. • C1 C2 C2 C2 C2 C1 -Q 145
  • 141.  Q Q1 Q2 V V1 V2 ... Q Q1 Q2 1 1 1 = + = + … Ceq C1 C2 C C1 C2 146
  • 142. • q dW = ΔVdq = dq C Q q Q2  W= 0 C dq = 2C  Q2 1 1 U= = QΔV = C(ΔV)2 2C 2 2  150
  • 143. • 1 1 eA U CV 2 ( o Ad ) E 2 C= 0 ,V = Ed 2 2 d  U 1 uE o E2 Ad 2 151
  • 144. • C kCo k o A/ d k 152
  • 145. 153
  • 146. 7.60 cm2 1.8 mm ก) 20 V ข) ค) ง) A=7.60 cm2 , d=1.8V Ed V=20 Vmm, E V 20V จ) d 1.8 x10 3 m 11.1x103 V / m 11.1 kV / m 154
  • 147. E 0E 8.85x10 12 C 2 / N m2 11.1x103 V / m 0 9 98.3x10 C / m2 98.3 nC / m2 A 7.6 x10 4 m2C 0 8.85x10 12 C 2 / N m2 d 1.8x10 3 m 3.74 x1012 F 3.74 pF QC Q CV 3.74 x1012 F 20 V V 74.7 pC 1 1 12 2 U CV 2 74.7 x10 C 20 V 2 2 14.9 x10 9 J 14.9 nJ 155
  • 148. F 10 A 10 F B A 10 F B 10 FC C1 C2 C3 10 F 10 F 10 F 30 F 156
  • 149. 3 18V a a c C1 C3=20µF b C1=15µF C1=15µF 18 V C2=10µF C2=10µF C3=20µF 18 V• C2 C3 Ccb C2 C3 10 F 20 F 30 F• c b a b a +Q -Q +Q -Q b +Q -Q C1=15µF C ab C 18 V 157 18 V
  • 150. • a 1 b 1 1 Ccb C1 Cab C1 Ccb C1Ccb C1Ccb 15 F 30 F Cab Ccb C1 30 F 15 F 15 30 F 10 F 45• Q Q Q C Q CV 10 F 18 V 180 C V 158
  • 151. …TheEnd…