Exercicios resolvidos dilatacao termica
Upcoming SlideShare
Loading in...5
×
 

Exercicios resolvidos dilatacao termica

on

  • 71,636 views

 

Statistics

Views

Total Views
71,636
Views on SlideShare
71,630
Embed Views
6

Actions

Likes
4
Downloads
591
Comments
0

3 Embeds 6

http://www.topicobr.com 3
https://www.facebook.com 2
http://www.facebook.com 1

Accessibility

Categories

Upload Details

Uploaded via as Microsoft Word

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Exercicios resolvidos dilatacao termica Exercicios resolvidos dilatacao termica Document Transcript

    • Exercícios resolvidos – Dilatação térmica Obs.: Na maioria dos livros os autores utilizam θ (teta) ou Δθ (delta teta) para representar a TEMPERATURA ou a VARIAÇÃO DE TEMPERATURA. Também utilizam na dilatação superficial (diminuição ou aumento da área) a letra S ou ΔS (variação da área ou superfície). ------------------------------------------------------------------------------------------------------------------------------- Dilatação Linear: 1. Duas barras de 3 metros de alumínio encontram-se separadas por 1cm à 20°C. Qual deve ser a temperatura para que elas se encostem, considerando que a única direção da dilatação acontecerá no sentido do encontro? Sendo . Sendo a dilatação linear dada por: Mas a variação no comprimento das barras deve ser apenas 0,5cm = 0,005m, pois as duas barras variarão seu comprimento, então substituindo os valores: ------------------------------------------------------------------------------------------------------------------------------ 2. Um fazendeiro quer cercar com arame um terreno quadrado de lados 25m e para isso adquire 100m de fio. Fazendo o cercado, o fazendeiro percebe que faltaram 2cm de fio para a cerca ficar perfeita. Como não quer desperdiçar o material e seria impossível uma emenda no arame, o fazendeiro decide pensar em uma alternativa. Depois de algumas horas, ele percebe que naquele dia a temperatura da cidade está mais baixa do que a média e decide fazer cálculos para verificar se seria possível utilizar o fio num dia mais quente, já que ele estaria dilatado. Sabendo que o acréscimo no comprimento do fio é proporcional ao seu comprimento inicial, ao seu coeficiente de dilatação linear e à variação de temperatura sofrida, calcule o aumento de temperatura que deve ocorrer na cidade para que o fio atinja o tamanho desejado. (Dado: coeficiente de dilatação térmica linear do fio = .) Sendo a dilatação linear dada por: Lembrando que as unidades de comprimento devem estar no mesmo sistema de unidades, a variação deve ser igual a 0,02m:
    • ------------------------------------------------------------------------------------------------------------------------------- Dilatação Superficial: 3. Uma peça de zinco é constituída a partir de uma chapa de zinco com lados 30cm, da qual foi retirado um pedaço de área 500cm². Elevando-se de 50°C a temperatura da peça restante, qual será sua área final em centímetros quadrados? (Dado ). Primeiramente deve-se calcular a área da peça final que é dada pela subtração da área de 500cm² pela área inicial, que é: Portanto, a área da peça é: Sendo a dilatação superficial dada por: Mas: Substituindo os valores na equação: Assim, a área final será: Dilatação Volumétrica: ------------------------------------------------------------------------------------------------------------------------------- 4. Um paralelepípedo de uma liga de alumínio ( ) tem arestas que, à 0°C, medem 5cm, 40cm e 30cm. De quanto aumenta seu volume ao ser aquecido à temperatura de 100°C? Primeiramente deve-se calcular o volume do paralelepípedo à 0°C:
    • Sendo a dilatação volumétrica dada por: Mas: Substituindo os valores na equação: ------------------------------------------------------------------------------------------------------------------------------ Dilatação dos líquidos: 5. Um recipiente de vidro com a capacidade de 3000cm³, está completamente cheio com líquido, a 0°C. O conjunto é aquecido até 100°C e observa-se que 15cm³ desse líquido extravasa do recipiente. Considerando-se o coeficiente de dilatação linear do vidro como sendo constante no referido intervalo térmico e igual a , qual o coeficiente de dilatação real desse líquido? Sabendo que E que: De modo que podemos calcular o coeficiente de dilatação aparente do líquido e descobrir o coeficiente de dilatação real, ou seja: ------------------------------------------------------------------------------------------------------------------------------- 6. (VUNESP-SP) A dilatação térmica dos sólidos é um fenômeno importante em diversas aplicações de engenharia, como construções de pontes, prédios e estradas de ferro. Considere o caso dos trilhos de trem
    • serem de aço, cujo coeficiente de dilatação é α = 11 . 10-6 °C-1. Se a 10°C o comprimento de um trilho é de 30m, de quanto aumentaria o seu comprimento se a temperatura aumentasse para 40°C? a) 11 . 10-4 m b) 33 . 10-4 m c) 99 . 10-4 m d) 132 . 10-4 m e) 165 . 10-4 m RESOLUÇÃO: O cálculo da dilatação linear ΔL, do trilho é: ΔL = L0 . α . Δθ ΔL = 30 . (11 . 10-6) . (40 – 10) = 99 . 10-4 m RESPOSTA: C ------------------------------------------------------------------------------------------------------------------------------- 7. (UFPE) - O gráfico abaixo representa a variação, em milímetros, do comprimento de uma barra metálica, de tamanho inicial igual a 1,000m, aquecida em um forno industrial. Qual é o valor do coeficiente de dilatação térmica linear do material de que é feita a barra, em unidades de 10-6 ºC-1. RESOLUÇÃO: ΔL = L0 . α . Δθ 15 = 1000 . α . (500 - 0) α = 30. 10-6 ºC-1 RESPOSTA: 30 ------------------------------------------------------------------------------------------------------------------------------- 8. O que acontece com o diâmetro do orifício de uma coroa de alumínio quando esta é aquecida? RESOLUÇÃO A experiência mostra que o diâmetro desse orifício aumenta. Para entender melhor o fenômeno, imagine a situação equivalente de uma placa circular, de tamanho igual ao do orifício da coroa antes de ser aquecida. Aumentando a temperatura, o diâmetro da placa aumenta.
    • ------------------------------------------------------------------------------------------------------------------------------- 9. Os componentes de uma lâmina bi-metálica são o aço e o zinco. Os coeficientes de dilatação linear desses metais são, respectivamente, 1,2 . 10-5 °C-1 e 2,6 . 10-5 °C-1. Em uma determinada temperatura, a lâmina apresenta-se retilínea. Quando aquecida ou resfriada, ela apresenta uma curvatura. Explique por quê. RESOLUÇÃO Como αzinco > αaço, para um mesmo aumento de temperatura o zinco sofre uma dilatação maior, fazendo com que na lâmina ocorra uma dilatação desigual, produzindo o encurvamento. Como a dilatação do zinco é maior, ele ficará na parte externa da curvatura. No resfriamento, os metais se contraem. O zinco, por ter α maior, sofre maior contração. Assim, a parte de aço ocupa a parte externa da curvatura. ------------------------------------------------------------------------------------------------------------------------------------------------------- 10. Uma proveta de vidro é preenchida completamente com 400 cm3 de um liquido a 20°C. O conjunto é aquecido até 220°C. Há, então, um transbordamento de 40 cm3 do liquido. É dado γVidro = 24 . 10-6 ºC-1 Calcule: a) o coeficiente de dilatação volumétrica aparente do liquido (γap) b) o coeficiente de dilatação volumétrica real do liquido (γreal) SOLUÇÃO: a) O transbordamento do líquido é sua dilatação aparente: ΔVap = 40 cm3 . Tem-se também a expressão Δt = 220 - 20 Δt = 200ºC Da expressão da dilatação aparente de líquidos, escreve-se . Logo
    • b) Pela expressão γap + γvidro tem-se: γ = 500 x 10-6 + 24 x 10-6 γ = 424 x 10-6 °C-1 RESPOSTAS: a) γap = 500 x 10-6 °C-1 b) γ = 424 x 10-6 °C-1 ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------