Your SlideShare is downloading. ×
0
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Introdução metodos computacionais
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Introdução metodos computacionais

4,242

Published on

Introdução metodos computacionais

Introdução metodos computacionais

Published in: Technology
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
4,242
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
120
Comments
0
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Introdução aos Métodos Computacionais Professor: Raul B. V. Pessolani
  • 2. Análise de sistemas de engenharia Problema físico Erro Simplificações e aproximações Modelo matemático Ex: Equação Diferencial Erro Discretização Modelo numérico Ex: Modelo de Elementos Finitos 2
  • 3. Análise de sistemas de engenharia  A seleção do modelo matemático depende do tipo de problema:  Distribuição de temperatura.  Campo de tensões.  Um bom modelo deve:  Considerar os aspectos essenciais do problema.  Desprezar os fatores secundários.  Fornecer resultados próximos das respostas reais.  Se as previsões do modelo não estão de acordo com as respostas reais é necessário refinar o modelo:  Incluir aspectos inicialmente desprezados. 3
  • 4. Análise de sistemas de engenharia  Modelos numéricos são aproximações dos modelos matemáticos.  Um método numérico é confiável se ele converge para a solução exata do modelo matemático.  Garantia de convergência com o refinamento.  Velocidade de convergência.  Custo computacional envolvido.  Facilidade de implementação e utilização.  A solução numérica de um problema não pode ser melhor do que o modelo matemático utilizado. 4
  • 5. Discretização Problema: Determinação do perímetro de um círculo. R Dividindo em n partes: l = 2Rsen(α/2) α α = 2π/n L = n l = 2πR sen(α/2) α/2 5
  • 6. Discretização Laprox/Lexato log(Laprox/Lexato- 1) Verifica-se que a solução converge para o resultado exato. A velocidade de convergência é boa ? 6
  • 7. Importância dos métodos numéricos  Os problemas da engenharia envolvem a solução de equações diferenciais ordinárias ou parciais.  Soluções analíticas exatas (fechadas) só existem em casos especiais:  Geometria e condições de contorno simples.  Certos tipos de carregamento.  Material homogêneo.  A solução de problemas reais requer a utilização de métodos numéricos (aproximados):  Método das Diferenças Finitas.  Método dos Elementos Finitos.  Método dos Elementos de Contorno. 7
  • 8. Análise por elementos finitos Malha elemento Geometria Material apoios nó carregamento 8
  • 9. Passos da Análise 1. Dividir o domínio do problema em regiões (elementos finitos) de geometria simples:  Triângulos, quadriláteros, tetraedros, hexaedros,...  Os elementos adjacentes são conectados através dos nós. 2. Aproximar os deslocamentos no interior dos elementos:  Interpolar a partir dos valores nodais.  Utilizar funções simples: lineares, quadráticas,... 3. Obter e resolver as equações de equilíbrio em função dos deslocamentos nodais (graus de liberdade). 4. Calcular respostas no interior dos elementos:  Deformações a partir do campo de deslocamentos.  Tensões a partir das deformações. 9
  • 10. Vantagens  Aplicação a qualquer problema de campo:  Tensões, transferência de calor, percolação, etc.  Não há restrição quanto a geometria do problema nem quanto ao carregamento e as condições de contorno do problema.  O material pode variar de elemento para elemento.  O modelo de elementos finitos aproxima o comportamento físico na região a ser analisada segundo funções de interpolação: Constantes, lineares, quadráticas,...  Um modelo pode incluir componentes com diferentes comportamentos:  Barras, vigas, placas, cascas, sólidos, etc.  A aproximação é melhorada facilmente refinando a malha de elementos finitos ⇒ convergência. 10
  • 11. Exemplo de aplicação: estrutura de edifício http://www.csiberkeley.com/ 11
  • 12. Análise de um tanque esférico http://www.csiberkeley.com/ 12
  • 13. Contato pneu-pavimento (não linearidade) http://www.manufacturingcenter.com/dfx/ 13
  • 14. Trem de pouso http://www.abaqus.com/ 14
  • 15. Fuselagem http://www.abaqus.com/ 15
  • 16. Fuselagem Cargas e apoios Configuração pós-flambagem 16
  • 17. Pontes Depois do terremoto San Francisco Bay Bridge http://www.adina.com/ 17
  • 18. Pontes 18
  • 19. Passos da Simulação Numérica  Análise preliminar:  Obter uma solução aproximada do problema.  Modelo analítico simplificado, fórmulas, análise experimental, análises anteriores, etc.  Análise por Métodos Numéricos:  Pré-processamento:  Modelagem: geometria, apoios, carregamento, materiais, ...  Geração de malha.  Análise numérica.  Pós-processamento:  Deformadas, modos de vibração/flambagem, animações,...  Contornos e gráficos de tensões. 19
  • 20. Análise de navios – Malha Global 20
  • 21. Análise de Navios - Carregamento 21
  • 22. Análise de Navios – Detalhamento 22
  • 23. Exmeplo do Método dos Elementos de Contorno  Tubulação de 3 metros de comprimento, cubo de 2 metros de lado e o fluxo livre é de 1m/s  Discretização inicial com 22 elementos Qoo = 1 m/s Qoo = 1 m/s 23
  • 24. Resultados – Validação  Discretização final com 2400 elementos  Avaliação da faixa central, pois se aproxima à solução 2D que possui solução analítica 24
  • 25. Validação - Solução analítica x Solução Programa V p=2 RV ∞ SEN  θ  Raio = 1 Voo = 1.0 Vp =0.27 =0.58 =0.87 =1.08 =1.14 =1.59 =1.76 =1.89 =1.95 =1.99 25
  • 26. Jaqueta para Plataforma 26
  • 27. Aeronave para AeroDesign 27
  • 28. Passos da Simulação Numérica 1. Pré-Análise Escolher o modelo Obter resultados aproximados Planejar a discretização Matemático Para posterior validação 2. Pacote 3. Análise dos Resultados PRÉ-PROCESSAMENTO Alteração SIM Dados. Devo refinar mais a malha? Devo mudar o tipo de elemento? ANÁLISE Devo mudar o Método? SIM NÃO Os resultados são coerentes? PARAR PÓS-PROCESSAMENTO Há erros grosseiros? 28
  • 29. Análise dos resultados  Avaliação qualitativa:  A resposta “parece” certa ?  As simetrias esperadas estão presentes?  As condições de contorno são respeitadas?  As maiores deformações (ou tensões) estão nos pontos esperados?  Verificar se a estrutura está em equilíbrio ou se a massa se mantém  Avaliação quantitativa  A resposta está correta?  Comparar resultados obtidos com as soluções preliminares.  Verificar se o nível de discretização é satisfatório especialmente quando há picos na solução. 29
  • 30. Por que estudar a teoria?  Por que estudar a teoria?  Programas comerciais são utilizados a bastante tempo.  Intensivamente testados: fabricantes e usuários.  Os programas atuais possuem interface amigável.  Sua utilização não requer grandes conhecimentos.  A obtenção de resultados confiáveis requer:  Conhecimento do comportamento físico:  Mecânica dos Fluídos , Resistência dos Materiais, ...  Conhecimento dos diferentes Métodos:  Comportamento dos elementos, características dos algoritmos aproximações e limitações 30
  • 31. Principais questões envolvidas na análise  Estático x dinâmico  As cargas atuantes são periódicas ou impulsivas ?  A estrutura é muito flexível ?  A freqüência do carregamento é próxima a da estrutura ?  O comportamento do material é dependente do tempo ?  Linear x não-linear  Os deslocamentos/rotações são significativos ?  A relação tensão-deformação pode ser considerada linear ?  O material sofre deformações permanentes ?  Existe a formação de trincas ? 31
  • 32. Tipos de análise  Acoplada (multi-física) x desacoplada  Termo-mecânico.  Solo-estrutura.  Fluido-estrutrura.  Estado da prática:  Depende do ramo de aplicação.  Engenharia civil: estática, linear e desacoplada.  Análise dinâmica: terremotos, edifícios altos,...  Análise não-linear: problemas especiais. 32
  • 33. Método das Diferenças Finitas  Problema da Difusão e propagação da onda acústica Bor Área do modelo da Algoritmos de absorção testados 33

×