Slides PDI 2009 Raphael versao4
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

Slides PDI 2009 Raphael versao4

on

  • 1,509 views

 

Statistics

Views

Total Views
1,509
Views on SlideShare
1,508
Embed Views
1

Actions

Likes
0
Downloads
36
Comments
0

1 Embed 1

http://www.slideshare.net 1

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Slides PDI 2009 Raphael versao4 Presentation Transcript

  • 1. Introdução ao Processamento Digital de Imagens Prof. Leonardo Vidal Batista DI/PPGI/PPGEM leonardo@di.ufpb.br leovidal@terra.com.br http://www.di.ufpb.br/leonardo José Raphael Teixeira Marques – DI/PPGI jose.raphael.marques@gmail.com raphaelmarques.wordpress.com
  • 2. Filtros de suavização  Média, Moda, Mediana, Gaussiano...  Vizinhança m x n
  • 3. Filtros de aguçamento e detecção de bordas  Efeito contrário ao de suavização: acentuam variações de intensidade entre pixels adjacentes.  Baseados no gradiente de funções bidimensionais.  Gradiente de f(x, y):  f   x   f 2 2 1 / 2      f  G[f(x, y)] = G[ f ( x, y )]         y     x      f       y 
  • 4. Filtros de detecção de bordas  g(i, j): aproximação discreta do módulo do vetor gradiente em f(i, j).  Aproximações usuais: g(i, j) = {[f(i,j)-f(i+1,j)]2 + [f(i,j)-f(i,j+1)]2}1/2 g(i, j) = |f(i,j)-f(i+1,j)| + |f(i,j)-f(i,j+1)| Gradiente de Roberts: g(i,j) = {[f(i,j)-f(i+1,j+1)]2+[f(i+1,j)-f(i,j+1)]2}1/2 g(i, j) = |f(i,j)-f(i+1,j+1)| + |f(i+1,j)-f(i,j+1)|
  • 5. Filtros de detecção de bordas  Aproximações usuais: Gradiente de Roberts:
  • 6. Filtros de detecção de bordas Gradiente de Prewitt: g(i, j) = |f(i+1,j-1) + f(i+1, j) + f(i+1, j+1) - f(i-1, j-1) - f(i-1, j) - f(i-1, j+1)| +|f(i-1, j+1) + f(i, j+1) + f(i+1, j+1) - f(i-1, j-1) - f(i, j-1) - f(i+1, j-1)| Gradiente de Sobel: g(i, j) = |f(i+1, j-1) + 2f(i+1, j) + f(i+1, j+1) - f(i-1, j-1) - 2f(i-1, j) - f(i-1, j+1)| + |f(i-1,j+1) + 2f(i,j+1) + f(i+1, j+1) - f(i-1, j-1) - 2f(i, j-1) - f(i+1, j-1)|
  • 7. Filtros de detecção de bordas Gradiente de Prewitt: Gradiente de Sobel:
  • 8. Gradiente de Roberts Limiares 15, 30 e 60
  • 9. Processamento de Histograma  Se o nível de cinza l ocorre nl vezes em imagem com n pixels, então nl P(l )  n  Histograma da imagem é uma representação gráfica de nl ou P(l)
  • 10. Histograma Histograma nl Imagem 7 6 1 0 0 3 3 5 4 0 0 3 3 3 3 1 1 1 3 3 2 1 0 0 1 2 3 l Imagem 3 x 5 (L = 4) e seu histograma
  • 11. Histograma  O histograma representa a distribuição estatística de níveis de cinza de uma imagem nl nl nl 0 255 l 0 255 l 0 255 l
  • 12. Histograma 10000 8000 6000 4000 2000 0 0 50 100 150 200 250
  • 13. Histograma 1500 1000 500 0 0 50 100 150 200 250
  • 14. Expansão de Histograma  Quando uma faixa reduzida de níveis de cinza é utilizada, a expansão de histograma pode produzir uma imagem mais rica. nl nl nl A B C l l l m0=0 m1 L-1 0 m0 m1 L-1 0 m0 m1=L-1
  • 15. Expansão de Histograma  Quando uma faixa reduzida de níveis de cinza é utilizada, a expansão de histograma pode produzir uma imagem mais rica:  r  rmin  s  T ( r )  round  r ( L  1)    max  rmin 
  • 16. Expansão de Histograma 1500 1000 500 0 0 50 100 150 200 250 1500 1000 500 0 0 50 100 150 200 250
  • 17. Expansão de Histograma  Expansão é ineficaz nos seguintes casos: nl nl nl A B C l l l 0 L-1 L-1 0 m0 m1 L-1 0 L-1
  • 18. Equalização de Histograma  Se a imagem apresenta pixels de valor 0 e L-1 (ou próximos a esses extremos) a expansão de histograma é ineficaz.  Nestas situações a equalização de histograma pode produzir bons resultados.  O objetivo da equalização de histograma é gerar uma imagem com uma distribuição de níveis de cinza uniforme.
  • 19. Equalização de Histograma  L 1 r  s  T (r )  round   nl   RC l 0  1500 1000 500 0 0 50 100 150 200 250 1500 1000 500 0 0 50 100 150 200 250
  • 20. Equalização de Histograma  Exemplo: imagem 64 x 64, L = 8 nl l nl 0 790 1200 1 1023 1000 2 850 800 3 656 600 4 329 400 5 245 200 6 122 0 7 81 0 1 2 3 4 5 6 7 l
  • 21. Equalização de Histograma  Exemplo (cont.):  r=0s = round(790 x 7 / 4096) = 1  r=1s = round(1813 x 7 / 4096) = 3  r=2s = round(2663 x 7 / 4096) = 5  r=3s = round(3319 x 7 / 4096) = 6  r=4s = round(3648 x 7 / 4096) = 6  r=5s = round(3893 x 7 / 4096) = 7  r=6s = round(4015 x 7 / 4096) = 7  r=7s = round(4096 x 7 / 4096) = 7
  • 22. Equalização de Histograma  Exemplo: imagem 64 x 64, L = 8 l nl nk 0 0 1 790 1200 1000 2 0 800 3 1023 600 4 0 400 5 850 200 6 985 0 7 448 0 1 2 3 4 5 6 7 k
  • 23. Equalização de Histograma nl Hist. Original nl Hist. Equal. (Ideal) nl Hist. Equal. (Real) 0 L-1 L-1 l 0 m0 m1 L-1 l 0 L-1 l
  • 24. Equalização de Histograma  Expansão de histograma é pontual ou local? E equalização de histograma?  O que ocorre quando uma imagem com um único nível passa pela operação de equalização de histograma?  Melhor fazer equalização seguido por expansão de histograma, o inverso, ou a ordem não importa?
  • 25. Equalização de Histograma Local  Para cada posição (i,j) de f • Calcular histograma na vizinhança de (i,j) • Calcular s = T(r) para equalização de histograma na vizinhança • G(i,j) = s
  • 26. Controle de contraste adaptativo  desvio padrão na   (i, j )    visinhança do ponto (i,j )      média na   (i, j )    visinhança do ponto (i,j )      c  (i, j )  [ f (i, j )   (i, j )]; (i, j )  0 g (i, j )    (i, j )  f (i, j ); (i, j )  0 
  • 27. Controle de contraste adaptativo Original c<σ c>σ
  • 28. Pseudo-cor Nível de R G B cinza 0 15 20 30 1 15 25 40 ... L-1 200 0 0
  • 29. Pseudo-cor
  • 30. Pseudo-cor
  • 31. Outros filtros:  Curtose, máximo, mínimo etc.  Filtros de suavização + filtros de aguçamento  Laplaciano do Gaussiano (LoG)  “Emboss”  Aumento de saturação  Correção de gama  ...
  • 32. Filtros Lineares e Invariantes ao Deslocamento  Filtro linear: T [af1 + bf2] = aT [f1] + bT [f2] para constantes arbitrárias a e b.  Filtro invariante ao deslocamento: Se g[i, j] = T [f[i, j]] então g[i - a, j – b] = T [f[i - a, j – b]].  Se i e j são coordenadas espaciais: filtros espacialmente invariantes.
  • 33. Dissolve Cruzado  ht (i, j)= (1 - t) f(i, j) + t g(i, j)  t é um escalar no intervalo [0, 1]  http://jose.raphael.marques.googlepage s.com/PDI_Dissolve.jnlp
  • 34. Dissolve Cruzado t = 0,3 t = 0,5 t = 0,7
  • 35. Dissolve Cruzado Não- Uniforme  ht(i, j)= [1 - t(i, j)] f(i, j) + t(i, j) g(i, j)  t é uma matriz com as mesmas dimensões de f e g cujos elementos assumem valores no intervalo [0, 1]
  • 36. Dissolve Cruzado Não- Uniforme t(i,j)=(i+j)/(R+C-2) t(i,j)=j/(C-1) t(i,j)=i/(R-1)
  • 37. Detecção de Movimento L  1, se | f1  f 2 | Lt g 0, caso contrario f1 f2 g
  • 38. Detecção de Movimento
  • 39. Redução de Ruído por Média de Imagens  f[i, j] imagem sem ruído  nk(i, j) ruído de média m  gk[i,j] = f[i,j] + nk(i,j) M  1 g [i, j ]  g k [i, j ] M k 1
  • 40. Redução de Ruído por Média de Imagens M  1 g [i, j ]  ( f [i, j ]  nk (i, j )) M k 1 M  1 g [i, j ]  f [i, j ]  nk (i, j ) M k 1  Para M grande: g[i, j ]  f [i, j ]  m
  • 41. Operações Topológicas  Rígidas  Translação  Rebatimento  Rotação  Mudança de Escala  Não rígidas (Warping)
  • 42. Rotação  Rotação em torno de (ic, jc) i'  (i  ic ) cos   ( j  jc ) sen   ic j '  (i  ic ) sen   ( j  jc ) cos   jc  http://jose.raphael.marques.googlep ages.com/PDI_Rotation.jnlp
  • 43. Rotação e Rebatimento Imagem original Rebatimento pela Rotação de 90 diagonal graus em torno de (R/2,C/2)
  • 44. Ampliação (Zoom in)  Por replicação de pixels Original Ampliação por fator 3 10 10 10 10 10 10 10 10 20 30 10 10 10 10 10 10 10 10 10 10 10 10 20 20 20 30 30 30 20 20 20 30 30 30 20 20 20 30 30 30
  • 45. Ampliação (Zoom in)  Por interpolação bilinear Original Ampliação por fator 3 10 10 10 10 10 10 10 10 20 30 Interpolação nas linhas Passos de níveis de cinza: 10 a 10: 0 20 a 30: (30-20)/5 = 2 20 22 24 26 28 30
  • 46. Ampliação (Zoom in)  Por interpolação bilinear Original Ampliação por fator 3 10 10 10 10 10 10 10 10 20 30 12 12 13 13 14 14 Interpolação nas colunas 14 15 16 16 17 18 Passos de níveis de cinza: 16 17 18 20 21 22 10 a 20: (20-10)/5 = 2 10 a 22: (22-10)/5 = 2.4 18 20 21 23 24 26 ... 20 22 24 26 28 30 10 a 30: (30-10)/5 = 4
  • 47. Ampliação (Zoom in)  Por interpolação bilinear  passos:  12/5 = 2.4  12/9 = 1.333... (dízima) n  a b in i xi  xa    xb  , i  {0..n}  n  n
  • 48. Ampliação (Zoom in)  Exemplo: Ampliação por fator 10 Original Replicação Interpolação
  • 49. Redução (Zoom out)  Por eliminação de pixel  Por Média Original Redução por média por fator 3 10 10 10 10 10 10 13 14 16 17 18 19 14 18 17 19 21 23 25 28 28 41 20 23 27 30 33 37 23 27 33 37 41 46 27 32 38 43 48 55
  • 50. Reconstrução de Imagens  Zoom por fatores não inteiros  Ex: F = 3,75432  Operações elásticas, etc.  Técnicas mais avançadas devem ser utilizadas  Uma dessas técnicas é a reconstrução de imagens
  • 51. Reconstrução de imagens  Dados f(i,j), f(i,j+1), f(i+1,j), f(i+1,j+1) (i, j) (i, y) (i, j+1)  Reconstrução: Encontrar f(x,y), (x,y) x em [i, i+1] y em [j, j+1] (i+1, j) (i+1, y) (i+1, j+1)
  • 52. Reconstrução de imagens por interpolação bilinear  f(i, y) = f(i, j)+(y–j)[f(i, j+1)-f(i, j)]  f(i+1,y)=f(i+1,j)+(y–j)[f(i+1,j+1)-f(i+1, j)]  f(x, y) = f(i, y) + (x – i) [f(i+1, y) - f(i, y)] (i, j) (i, y) (i, j+1) (x,y) (i+1, j) (i+1, y) (i+1, j+1)
  • 53. Reconstrução de imagens  Ex: f(10.5, 15.2)=?  f(10, 15) = 10  f(10, 16) = 20  f(11,15) = 30  f(11, 16) = 30
  • 54. Reconstrução de imagens Solução: x = 10.5; y = 15.2 => i = 10; j = 15 f(i, y) = f(i, j)+(y–j)[f(i, j+1)-f(i, j)] f(10, 15.2)=f(10,15)+(15.2-15)*[f(10,16)-f(10,15) = 10 + 0.2*[20 – 10] = 12 f(i+1,y)=f(i+1,j)+(y–j)[f(i+1,j+1)-f(i+1, j)] f(11, 15.2)=f(11,15)+(15.2-15)*[f(11,16)-f(11,15) =30 + 0.2*[30 – 30] = 30 f(x, y) = f(i, y) + (x–i) [f(i+1, y) - f(i, y)] f(10.5, 15.2)=12+(10.5-10)*[30-12] =21
  • 55. Zoom por reconstrução de imagens Ex: Ampliação por fator 2.3 Passo para as coordenadas: 1/2.3 = 0.43 x = 0, 0.43, 0. 87, 1.30, 1.74, 2.17, 2.61, 3.04... y = 0, 0.43, 0. 87, 1.30, 1.74, 2.17, 2.61, 3.04... g(0,0) = f(0,0); g(0,1) = f(0, 0.43); g(0,2) = f(0, 0.87); g(0,3) = f(0, 1.30);... Ex: Redução por fator 2.3 x = 0, 2.3, 4.6, 6.9, 9.2, 11.5, 13.8... y = 0, 2.3, 4.6, 6.9, 9.2, 11.5, 13.8... g(0,0) = f(0,0); g(0,1) = f(0, 2.3); g(0,2) = f(0, 4.6); g(0,3) = f(0,6.9);...
  • 56. Operações Topológicas Não Rígidas (warping)  Warping = distorção  Zoom por fator F(i, j)  Rotação por ângulo teta(i,j)  Translação com deslocamento d(i,j)  Warping especificado pelo usuário
  • 57. Warping (Deformação)
  • 58. Warping (Deformação)
  • 59. Warping (Deformação)
  • 60. Warping baseado em Campos  Entretenimento  Efeitos especiais, morphing  Correção de distorções óticas  Alinhamento de elementos correspondentes em duas ou mais imagens (registro)  Modelagem e visualização de deformações físicas
  • 61. Warping baseado em Campos 1. Características importantes da imagem são marcados por segmentos de reta orientados (vetores de referência) 2. Para cada vetor de referência, um vetor alvo é especificado, indicando a transformação que se pretende realizar
  • 62. Warping baseado em Campos 3. Para cada par de vetores referência-alvo, encontra-se o ponto X’ para onde um ponto X da imagem deve migrar, de forma que as relações espaciais entre X’ e o vetor alvo sejam idênticas àquelas entre X e o vetor de referência 4. Parâmetros para as relações espaciais : u e v
  • 63. Warping baseado em Campos
  • 64. Warping baseado em Campos  u: representa o deslocamento normalizado de P até O no sentido do vetor PQ (Normalizado: dividido pelo módulo de PQ)  |v|: distância de X à reta suporte de PQ
  • 65. Warping baseado em Campos  Se O=P, u = 0  Se O=Q, u = 1  Se O entre P e Q, 0<u<1;  Se O após Q, u>1  Se O antes de P, u<0
  • 66. Warping baseado em Campos  http://sites.google.com/site/joserap haelmarques/arquivos/PDI_UV.jnlp  http://sites.google.com/site/joserap haelmarques/arquivos/PDI_Warping. jnlp
  • 67. Warping baseado em Campos  Encontrar u e v: norma, produto interno, vetores perpendiculares, projeção de um vetor sobre outro.  Vetores a = (x1, y1) e b = (x2, y2)  Norma de a: || a ||  x  y 2 1 2 1  Produto interno: a.b = x1x2 +y1y2
  • 68. Warping baseado em Campos  “Norma” da projeção de a sobre b (o sinal indica o sentido em relação a b) a a.b || c ||  || b || b c
  • 69. Warping baseado em Campos  Vetor b = (x2, y2) perpendicular a a = (x1, y1) e de norma igual à de a: b a  Perpendicularidade: x1x2 +y1y2 = 0  Mesma norma: x22 + y22 = x12 + y12
  • 70. Warping baseado em Campos  Soluções: x2 = y1, y2 = -x1 x2 = -y1, y2 = x1 b a b’
  • 71. Warping baseado em Campos  Parâmetro u: “norma” da projeção de PX sobre PQ, dividido pela norma de PQ PX .PQ u 2 || PQ ||
  • 72. Warping baseado em Campos  P = (xp,yp), Q = (xq, yq), X = (x,y) PX .PQ u 2 || PQ || u = (x - xp).(xq - xp) + (y -yp)(yq – yp) (xq-xp)2 + (yq-yp)2
  • 73. Warping baseado em Campos  Parâmetro v: distância de X à reta suporte de PQ PX .  PQ v || PQ ||  v: vetor perpendicular a v e de mesma norma que este.
  • 74. Warping baseado em Campos  PQ = (Xq-Xp, Yq-Yp) PQ1 = (Yq–Yp, Xp-Xq) PQ2 = (Yp–Yq, Xq-Xp)  Vamos usar PQ1 Q P
  • 75. Warping baseado em Campos  Parâmetro v: PX .  PQ v || PQ || v = (x-xp)(yq-yp) + (y-yp)(xp–xq) [(xq-xp)2 + (yq-yp)2]1/2
  • 76. Warping baseado em Campos  Cálculo de X’: v.  P ' Q' X '  P'u.P' Q' || P' Q' ||
  • 77. Warping baseado em Campos PX .PQ u 2 || PQ || PX .  PQ v || PQ || v.  P ' Q' X '  P'u.P' Q' || P' Q' ||
  • 78. Warping baseado em Campos  Quando há mais de um par de vetores referência-alvo, cada pixel sofre a influência de todos os pares de vetores  Será encontrado um ponto Xi’ diferente para cada par de vetores referência-alvo.  Os diferentes pontos para os quais o ponto X da imagem original seria levado por cada par de vetores referência-alvo são combinados por intermédio de uma média ponderada, produzindo o ponto X’ para onde X será efetivamente levado.
  • 79. Warping baseado em Campos
  • 80. Warping baseado em Campos  http://sites.google.com/site/joserap haelmarques/arquivos/PDI_UV2.jnlp  http://sites.google.com/site/joserap haelmarques/arquivos/PDI_Warping 2.jnlp
  • 81. Warping baseado em Campos  Peso da coordenada definida pelo i-ésimo par de vetores de referência-alvo: di: Distância entre X e o segmento PiQi li: ||Pi Qi|| a, b e p : Parâmetros não negativos
  • 82. Warping baseado em Campos  Relação inversa com a distância entre a reta e o ponto X  Parâmetro a : Aderência ao segmento  a = 0 (Peso infinito ou aderência máxima)
  • 83. Warping baseado em Campos  Parâmetro p controla a importância do tamanho do segmento  p = 0: independe do tamanho do segmento
  • 84. Warping baseado em Campos  Parâmetro b controla a forma como a influência decresce em função da distância  b = 0: peso independe da distância
  • 85. Warping baseado em Campos  Bons resultados são obtidos com: a entre 0 e 1 b=2 p = 0 ou p = 1.
  • 86. Warping baseado em Campos  Exemplo: P0 = (40, 10); Q0 = (20, 5) P0’ = (35, 15); Q0’ = (25, 20) 0 5 10 15 20 25 30 35 40 45 50 55 60 P1 = (20, 30); Q1 = (10, 35) 0 Q1’ P1’ = (25, 50); Q1’ = (5, 40) 5 Q1 X = (20, 25) 10 u0 = [(20-40) (20-40) + (25- 15 10)(5-10)] / [(20-40)2+ X (5-10)2] = 0.76 20 Q0 P1 v0 = [(20-40) (5-10) + (25- 25 Q0’ P1’ 10)(40-20)] / [(20-40)2+ 30 (5-10)2]1/2 = 19.40 35 X0’ = (35, 10) + 0.76 (25-35, P0’ 20-15) + 19.4 (20-15, 35- 40 P0 X0’ 25) / [(25-35)2 + (20- 45 15)2]1/2 X0’ = (36.03, 31.17) 50
  • 87. Warping baseado em Campos  Exemplo (cont): u1 = [(20-20) (10-20) + (25-30)(35-30)] / [(10- 20)2+ (35-30)2] = - 0.2 0 5 10 15 20 25 30 35 40 45 50 55 60 v1 = [(20-20) (35-30) + 0 (25-30)(20-10)] / [(10- 5 Q1’ 20)2+ (35-30)2]1/2 = - 10 Q1 4,47 15 X1’ = (25, 50) - 0.2 (5-25, X 40-50) -4,47 (40-50, 20 Q0 25-5) / [(25-5)2 + (40- 25 Q0’ P1 50)2]1/2 P1’ X1’ = (25, 50) + (4.6, 2) + 30 (2, -3.99) = (31.6, 35 X1’ 48,01) 40 P0’ X0’ P0 45 50
  • 88. Warping baseado em Campos  Exemplo (cont): Dados a = 0.1; b = 2; p= 0 wi = 1/[0.1+di]2 d0 = v0 = 19.4 => w0 = 0 5 10 15 20 25 30 35 40 45 50 55 60 0.0026 0 5 Q1’ d1 = distância de X a P1 = Q1 [(20-20)2 + (25-30)2]1/2 10 = 5 =>: w1 = 0.0384 15 X’ = [0.0026* (36.03, 20 Q0 X 31.17) + 0.0384*(31.6, P1 48,01)]/( 0.0026+ 25 Q0’ P1’ 0.0384) 30 X’ X’ = (31.88, 46,94) X1’ 35 P0’ X0’ 40 P0 45 50
  • 89. Warping baseado em Campos 0 5 10 15 20 25 30 35 40 45 50 55 60 0 5 Q1’ Q1 10 15 X 20 Q0 P1 25 Q 0’ P1’ 30 35 P0’ 40 X0’ P0 45 50
  • 90. Warping baseado em Campos 0 5 10 15 20 25 30 35 40 45 50 55 60 0 5 Q1’ Q1 10 15 X 20 Q0 P1 25 Q0’ P1’ 30 35 X1’ P0’ 40 X0’ P0 45 50
  • 91. Warping baseado em Campos 0 5 10 15 20 25 30 35 40 45 50 55 60 0 5 Q1’ Q1 10 15 X 20 Q0 P1 25 Q 0’ P1’ 30 X’ 35 X1’ P0’ 40 X0’ P0 45 50
  • 92. Warping baseado em Campos  http://sites.google.com/site/joserap haelmarques/arquivos/PDI_Warping N.jnlp  http://sites.google.com/site/joserap haelmarques/arquivos/PDI_Warping N_FixSize.jnlp
  • 93. Morphing  Interpolação de formas e cores entre duas imagens distintas (f0 e fN-1)  Encontrar imagens f1, f2, ..., fN-2: transição gradual de f0 a fN-1  Efeitos especiais na publicidade e na indústria cinematográfica; realidade virtual; compressão de vídeo; etc.
  • 94. Morphing Inicial Warping Final
  • 95. Morphing Warping I Inicial Final Warping F
  • 96. Morphing Warping I Inicial Final Warping F
  • 97. Morphing Inicial Warping Final
  • 98. Morphing
  • 99. Morphing
  • 100. Morphing ai c1i c2i c3i c4i c5i c6i c7i c8i c9i bi
  • 101. Morphing Inicial 0 Warping 1 Warping 2 Warping 3 Final 4
  • 102. Morphing Warping 1 I Warping 2 I Warping 3 I Inicial 0 Final 4 Warping 1 F Warping 2 F Warping 3 F
  • 103. Morphing  Exemplo:  http://www.youtube.com/watch?v= wZurRt0TidI
  • 104. Convolução  Convolução de s(t) e h(t):  g (t )  s (t ) * h (t )   s( )h(t   )d 
  • 105. Convolução  g (t )  s (t ) * h (t )   s( )h(t   )d  h ( ) s(t) t3  (0,0) t0 t1 t 0 t2 h (t   ) h (  ) -t3 -t2 0   -t3+t -t2+t
  • 106. Convolução  Observe que g(t) = 0 para t  [t0  t2 , t1  t3 ]
  • 107. Convolução Discreta Linear  Convolução linear entre s[n] e h[n]  g[n]  s[n ] * h[n]   s[ ]h[n   ]     Se s[n] e h[n] têm N0 e N1 amostras, respectivamente => extensão com zeros: N 1 g[n]  s[n] * h[n]   s[ ]h[n   ]  0 com N = N0 + N1 – 1.
  • 108. Convolução Discreta Linear 6 s ( ) 6 h ( ) 4 4 2 2 0 1 2 3 4 5  6 0 1 2 3 4 5  6 h (  ) 6 h(n   ) 4 4 2 2  -5 -4 -3 -2 -1 0 1 n 
  • 109. Convolução Discreta Linear 6 s ( ) 4 2 0 1 2 3 4 5  6 6 h (  ) 4  g[0] = 3 2 -5 -4 -3 -2 -1 0 1 
  • 110. Convolução Discreta Linear 6 s ( ) 4 2 0 1 2 3 4 5  6 6 h (1   ) 4  g[0] = 3 2   g[1] = 8 -5 -4 -3 -2 -1 0 1
  • 111. Convolução Discreta Linear 6 s[n] 6 h[n] 4 4 2 2 0 1 2 3 4 5 6 n 0 1 2 3 4 5 n 30 g[n] = s[n]* h[n] 20 10 0 1 2 3 4 5 6 7 8 9 10 11 n
  • 112. Convolução Discreta Linear s[n] Filtro g[n] h[n]  g[n]  s[n ] * h[n]   s[ ]h[n   ]   
  • 113. Impulso Unitário  Delta de Dirac ou (t) impulso unitário 1 contínuo  Duração = 0  Área = 1 0 t [n]  Delta de Kronecker ou impulso unitário 1 discreto 0 n
  • 114. Sinais = somatório de impulsos  Delta de Kronecker A[n-n0] A 0 n0 n s[n]  s[0] [n]  s[1] [n  1]  .... s[ N  1] [n  ( N  1)] N 1 s[n]   s[ ] [n   ]  0
  • 115. Resposta ao impulso  Resposta de um filtro a s[n]: N 1 N 1 g[ n]   s[ ]h[n   ]   h[ ]s[n   ]  0  0  Resposta de um filtro ao impulso N 1 N 1 g[ n]   [ ]h[n  ]   [n   ]h[ ]  0  0 N 1 h[n]   [n   ]h[ ]  0
  • 116. Resposta ao impulso  h[n]:  Resposta ao impulso  Máscara convolucional  Kernel do filtro  Vetor de coeficientes do filtro
  • 117. Convolução Discreta Circular  Sinais s[n] e h[n] com N0 e N1 amostras, respectivamente => extensão com zeros: s[n ], 0  n  N 0 h[n ], 0  n  N1 s e [n ]   he [n ]   0, N 0  n  N 0, N1  n  N  Extensão periódica: considera-se que se[n] e he[n] são períodos de sp[n] e hp[n]  Convolução circular: N 1 g p [n]  s[n]  h[n]   s p [ ]h p [n   ]  0
  • 118. Convolução Circular x Linear  Fazendo-se N = N0 + N1 – 1 s[n]  h[n]  s[n] * h[n]
  • 119. Convolução de Imagens  f[i, j] (R0xC0) e h[i, j] (R1xC1): extensão por zeros R 1 C 1 g[i, j ]  f [i, j ] * h[i, j ]    f [ ,  ]h[i   , j   ]  0  0 R 1 C 1 g p [i, j ]  f [i, j ]  h[i, j ]    f p [ ,  ]h p [i   , j   ]  0   0  Iguais se R=R0+R1–1 e C=C0+C1–1
  • 120. Máscaras Convolucionais 1 1 1 1 0 -1 -1 -1 -1 0 0 0 1 0 -1 -1 8 -1 -1 -1 -1 1 0 -1 -1 -1 -1 1/9 1/9 1/9 0.025 0.1 0.025 1/9 1/9 1/9 0.1 0.5 0.1 1/9 1/9 1/9 0.025 0.1 0.025
  • 121. Operador de Bordas de Kirsch 5 5 5 -3 5 5 -3 -3 5 -3 0 -3 -3 0 5 -3 0 5 -3 -3 -3 -3 -3 -3 -3 -3 5 -3 -3 -3 -3 -3 -3 ... -3 0 5 -3 0 -3 -3 5 5 5 5 5  Filtragem sucessiva com cada máscara  Pixel de saída recebe o valor máximo
  • 122. Máscaras Convolucionais  Em geral:  Máscaras de integração somam para 1  Máscaras de diferenciação somam para 0
  • 123. Correlação  Convolução:  g[n]  s[n ] * h[n]   s[ ]h[n   ]     Correlação:  g[n]  s[n]  h[n]   s[ ]h[  n]     Quando um dos sinais é par, correlação = convolução
  • 124. Correlação  Exemplo: h[-1] = 3; h[0] = 7; h[1] = 5; s[0..15] = {3, 2, 4, 1, 3, 8, 4, 0, 3, 8, 0, 7, 7, 7, 1, 2}  Extensão com zeros
  • 125. Correlação  Exemplo: g[1]  s[0]h[1]  15 1 g[0]   s[ ]h[ ]  s[0]h[0]  s[1]h[1]  31  0 2 g[1]   s[ ]h[  1]  s[0]h[1]  s[1]h[0]  s[2]h[1]  43  0 3 g[2]   s[ ]h[  2]  s[1]h[1]  s[2]h[0]  s[3]h[1]  39  1 ...
  • 126. Correlação  Exemplo: g[0..15] = 31, 43, 39, 34, 64, 85, 52, 27, 61, 65, 59, 84, 105, 75, 38, 27  Observe que g[5] é elevado, pois é obtido centrando h em s[5] e calculando a correlação entre (3, 7, 5) e (3, 8, 4)  Mas g[12] é ainda maior, devido aos valores elevados de s[11..13]
  • 127. Correlação Normalizada  A correlação normalizada elimina a dependência dos valores absolutos dos sinais:   s[ ]h[  n] g[n]  s[n]  h[n]        ( s[ ]) 2  (h[  n]) 2      
  • 128. Correlação Normalizada  Resultado para o exemplo anterior:  g[0..15] = .??? .877 .934 .73 .81 .989 .64 .59 .78 .835 .61 .931 .95 .83 .57 .???  Valor máximo: g[5]
  • 129. Técnicas no Domínio da Freqüência  Conversão ao domínio da freqüência: transformadas  Processamento e análise no domínio da freqüência  Fourier, Cosseno Discreta, Wavelets, etc.
  • 130. Cosseno Analógico  f: freqüência x(t )  A cos2ft     T=1/f: período A   : fase  A: amplitude  Gráfico para fase nula e A>0 T
  • 131. Uma Família de Funções Cosseno Analógicas xk (t )  Ak cos2f k t   k , k  0, 1, ..., N  1  fk: freqüência do k-ésimo cosseno  Tk =1/fk: período do k-ésimo cosseno   k : fase do k-ésimo cosseno  Ak: amplitude do k-ésimo cosseno
  • 132. Uma Família de Funções Cosseno Discretas x k [n]  Ak cos2f k n   k , n  0,1,...,N  1 k = 0,1,...N-1
  • 133. Uma Família de Funções Cosseno Discretas 1/ 2 2 Ak    ck X k N 1/2 1/2  para k  0 ck  1  para k  1, 2, ... N - 1 k 2N k fk  Tk  k  2N k 2N 1/ 2 2  (2n  1)k  x k [n ]    c k X k cos  , n  0,1,...,N  1 N  2N 
  • 134. Uma Família de Funções Cosseno Discretas 1/ 2 2  (2n  1)k  x k [n ]    c k X k cos  , n  0,1,...,N  1 N  2N   f0  0 1/ 2  2  1 1/ 2 k 0  x0[n]      X 0 , n  0,1,...,N  1  0  0  N  2 1 k  1  f1   T1  2 N (meio-período em N amostras) 2N N 1 2N k  N  1  f N 1   TN 1  2N N 1
  • 135. Uma Família de Funções Cosseno Discretas  xk[n] (N = 64, Xk = 10). 2 1 0 -1 -2 0 10 20 30 40 50 60 70 k=1 Meio-ciclo
  • 136. Uma Família de Funções Cosseno Discretas 2 1 k=2 0 1 ciclo -1 -2 0 10 20 30 40 50 60 70 2 1 k=3 0 1,5 ciclo -1 -2 0 10 20 30 40 50 60 70
  • 137. Uma Família de Funções Cosseno Discretas 2 k=32 1 16 ciclos 0 -1 -2 0 10 20 30 40 50 60 70 2 1 Para 0 visualização -1 -2 0 10 20 30 40 50 60 70
  • 138. Uma Família de Funções Cosseno Discretas 2 k=63 1 31,5 ciclos 0 -1 -2 0 10 20 30 40 50 60 70 2 1 Para 0 visualização -1 -2 0 10 20 30 40 50 60 70
  • 139. Uma Família de Funções Cosseno Discretas  Amostragem de um sinal periódico não necessariamente produz um sinal de mesmo período (ou mesmo periódico).
  • 140. Somando Cossenos Discretos  Criar um sinal x[n] somando-se os sinais xk[n], k = 0...N-1, amostra a amostra: N 1 x[n]   x k [n], n 0,1,...,N  1 k 0 1 / 2 N 1 2  (2n  1)k  x[n ]     ck X k cos  2 N , n  0,1,...,N  1 N k 0  
  • 141. Somando Cossenos Discretos  Exemplo:  N = 8; X0 = 10; X1 = 5; X2 = 8,5; X3 = 2; X4 = 1; X5 = 1,5; X6 = 0; X7 = 0,1. 5 1/ 2 11 4 x 0 [n ]    10 22 3 =3.5355 2 0 2 4 6 8
  • 142. Somando Cossenos Discretos  X1 = 5 4 5  (2n  1)  x1 [n ]  cos  2 2  16   0 =2.4520; 2.0787; 1.3889; -2 0.4877; -0.4877; -1.3889; -4 0 2 4 6 8 -2.0787; -2.4520 6 4 x0[n]+x1[n] 2 0 0 2 4 6 8
  • 143. Somando Cossenos Discretos  X2 = 8,5 8.5  (2n  1)2  x 2 [n ]  4 cos   2 2  16  0 = 3.9265; 1.6264; -1.6264; -2 -3.9265; -3.9265; -1.626; -4 0 2 4 6 8 1.6264; 3.9265 10 5 x0[n]+x1[n] +x2[n] 0 -5 0 2 4 6 8
  • 144. Somando Cossenos Discretos  X3 = 2 1 2  (2n  1)3  x 3 [n ]  cos   0.5 2  16  0 = 0.8315; -0.1951; -0.9808; -0.5 -0.5556; 0.5556; 0.9808; -1 0 2 4 6 8 0.1951; -0.8315 15 10 5 x0[n]+x1[n]+x2[n]+x3[n] 0 -5 0 2 4 6 8
  • 145. Somando Cossenos Discretos  X4 = 1 0.4 1  (2n  1)4  x 4 [n ]  cos     0.2 2 16 0 = 0.3536; -0.3536; -0.3536; -0.2 0.3536; 0.3536; -0.3536; -0.4 0 2 4 6 8 -0.3536; 0.3536 15 10 5 x0[n]+x1[n]+x2[n]+x3[n] 0 +x4[n] -5 0 2 4 6 8
  • 146. Somando Cossenos Discretos  X5 = 1,5 1 1.5  (2n  1)5  x 5 [n ]  cos     0.5 2 16 0 -0.5 = 0.4167 -0.7356 0.1463 0.6236 -0.6236 -0.1463 -1 0 2 4 6 8 0.7356 -0.4167 15 10 5 x0[n]+x1[n]+x2[n]+x3[n] 0 +x4[n]+x5[n] -5 0 2 4 6 8
  • 147. Somando Cossenos Discretos  X6 = 0 0  (2n  1)6  x 6 [n ]  cos  1 0.5 2  16   =0 0 -0.5 -1 0 2 4 6 8 15 10 5 x0[n]+x1[n]+x2[n]+x3[n] 0 +x4[n]+x5[n]+x6[n] -5 0 2 4 6 8
  • 148. Somando Cossenos Discretos  X7 = 0,1 0.1  (2n  1)7  x 7 [n ]  0.05 cos   2  16  0 = 0.0098; -0.0278; 0.0416; -0.0490’; 0.0490; -0.0416; -0.05 0 2 4 6 8 0.0278; -0.0098 15 10 5 x[n]=x0[n]+x1[n]+x2[n]+ 0 x3[n] +x4[n]+x5[n]+x6[n] -5 +x7[n] 0 2 4 6 8
  • 149. Somando Cossenos Discretos  X[k] é um sinal digital: X[k]= X0, X1,...XN-1  Exemplo: X[k]=10;5;8.5;2;1;1.5;0;0.1  Dado X[k] pode-se obter x[n]  X[k]: representação alternativa para x[n] X[k] x[n] 10 15 10 5 5 0 0 -5 0 2 4 6 8 0 2 4 6 8
  • 150. Somando Cossenos Discretos  xk[n]: cosseno componente de x[n], de freqüência fk = k/2N; ou  xk[n]: componente de freqüência fk = k/2N;  X[k]: Diretamente relacionado com a amplitude da componente de freqüência fk = k/2N  X[k] representa a importância da componente de freqüência fk = k/2N
  • 151. Transformada Cosseno Discreta (DCT)  DCT de x[n]: 1/ 2 N 1 2  (2n  1)k  X [k ]    ck  x[n] cos  , k  0,1,...,N  1 N n 0  2N   Transformada DCT inversa (IDCT) de X[k]: 1 / 2 N 1 2  (2n  1)k  x[n]     ck X [k ] cos  2 N , n  0,1,...,N  1 N k 0  
  • 152. Transformada Cosseno Discreta (DCT)  X[k]: coeficientes DCT  X: representação de x no domínio da freqüência  X[0]: coeficiente DC (Direct Current)  X[1]...X[N-1]: coeficientes AC (Alternate Current)  Complexidade  Algoritmos eficientes: FDCT
  • 153. DCT – Exemplo 1 g1 0.1 0 -0.1 -0.2 0 20 40 60 80 100 120 g3 g1+ g3 2 2 1 1 0 0 -1 -1 -2 -2 0 20 40 60 80 100 120 0 20 40 60 80 100 120
  • 154. DCT – Exemplo 1 (Cont.) g10 g1+g3+g10 2 2 1 1 0 0 -1 -1 -2 -2 0 20 40 60 80 100 120 0 20 40 60 80 100 120 g118 g1+g3+g10+g118 + 2 0.1 1 0 0 -0.1 -1 -2 -0.2 0 20 40 60 80 100 120 0 20 40 60 80 100 120
  • 155. DCT – Exemplo 2 60  1 π  f1[n]  29.99 cos 2 π n  40  2N 2N  20 0 -20 -40 -60 0 10 20 30 40 50 60 60  2 π  150 f1  f 2 f 2 [n]  48.54 cos 2 π n  40  2N 2N  100 20 50 0 -20 0 -40 -50 -60 - 0 10 20 30 40 50 60 0 10 20 30 40 50 60
  • 156. DCT – Exemplo 2 (Cont.) 60  3 π  150 f1  f 2  f 3 f 3 [n]  34.23 cos 2 π n  40  2N 2N  100 20 50 0 -20 0 -40 -50 -60 - 0 10 20 30 40 50 60 1000 10 20 30 40 50 60 60  4 π  150 f1  f 2  ...  f 4 f 4 [n]  -35.19 cos 2π n  40  2N 2N  100 20 50 0 -20 0 -40 -50 -60 - 0 10 20 30 40 50 60 0 10 20 30 40 50 60
  • 157. DCT – Exemplo 2 (Cont.) 150 60  5 π  f 1  f 2  ...  f 6 f 5 [n]  -34.55 cos 2π n  40  2N 2N  100 20 50 0 0 -20 -50 -40 - -60 100 0 10 20 30 40 50 60 0 10 20 30 40 50 60 150 60  6 π  f 1  f 2  ...  f 6 f 6 [n]  -33.29 cos 2 π n  40  2N 2N  100 20 50 0 0 -20 -50 -40 -60 - 100 0 10 20 30 40 50 60 0 10 20 30 40 50 60
  • 158. DCT – Exemplo 2 (Cont.) 200 60  7 π  f 1  f 2  ...  f 7 f 7 [n]  -63.42 cos 2π n  150 40  2N 2N  100 20 50 0 0 -20 -40 -50 -60 - 1000 10 20 30 40 50 60 0 10 20 30 40 50 60 60  8 π  f1  f 2  ...  f 8 f 8 [n]  -42.82 cos 2π n  200 40  2N 2N  150 20 100 0 50 -20 0 -40 -50 -60 - 0 10 20 30 40 50 60 100
  • 159. DCT – Exemplo 2 (Cont.) 60  9 π  f1  f 2  ...  f 9 f 9 [n]  -10.31cos 2 π n  200 40  2N 2N  150 20 100 0 50 -20 0 -40 -50 -60 - 0 10 20 30 40 50 60 1000 10 20 30 40 50 60 60  10 π  f1  f 2  ...  f10 f10 [n]  7.18 cos 2 π n  200 40  2N 2N  150 20 100 0 50 -20 0 -40 -50 -60 - 0 10 20 30 40 50 60 1000 10 20 30 40 50 60
  • 160. DCT – Exemplo 2 (Cont.) 600 60  20 π  f 1  f 2  ...  f 20 f 20 [n]  -62.24 cos 2π n  40  2N 2N  400 20 0 200 -20 0 -40 -60 - 0 10 20 30 40 50 60 2000 10 20 30 40 50 60 60  40 π  100 f1  f 2  ...  f 40 f 40 [n]  35.54 cos 2 π n  40  2N 2N  0 800 20 600 0 400 -20 200 -40 0 -60 - 200 0 10 20 30 40 50 60 0 10 20 30 40 50 60
  • 161. DCT – Exemplo 2 (Cont.) 60  60 π  120 f1  f 2  ...  f 60 f 60 [n]  -6.73 cos 2π n  0 40  2N 2N  100 0800 20 600 0 400 -20 200 -40 0 -60 - 0 10 20 30 40 50 60 2000 10 20 30 40 50 60 60  63 π  120 f1  f 2  ...  f 63 f 63 [n]  -1.51cos 2 π n   2N 2N  0 100 40 0800 20 600 0 400 -20 200 -40 0 -60 - 0 10 20 30 40 50 60 2000 10 20 30 40 50 60
  • 162. DCT – Exemplo 3 1250 1200 Sinal 1150 1100 eletrocardiográfico, 1050 2048 amostras 1000 950 900 850 0 500 1000 1500 2000 400 DCT do sinal 200 eletrocardiográfico 0 (sem termo DC) -200 -400 0 500 1000 1500 2000
  • 163. DCT – Exemplo 4 20 Onda Quadrada 10 0 -10 -20 0 10 20 30 40 50 60 60 40 DCT da Onda 20 Quadrada 0 -20 -40 -60 0 10 20 30 40 50 60
  • 164. Freqüências em Hz  Ta = 1/fa (Período de amostragem)  N amostras ---- (N-1)Ta segundos 1 1 fa f1  (adimensio nal)  f1   Hz 2N 2( N  1)Ta 2( N  1) fa fa f N 1  ( N  1)  Hz 2( N  1) 2
  • 165. Freqüências em Hz  Aumentar N melhora a resolução de freqüência.  Aumentar fa aumenta a freqüência máxima digitalizável, em Hz.  Dualidade com o domínio do tempo
  • 166. Freqüências em Hz  Sinal de ECG, N= 2048, fa=360Hz  Valores em Hz para k = 14, 70, 683 e 2047 14 70 683 2047
  • 167. Freqüências em Hz  f1 = fa/[2(N-1)] Hz = 360/(2x2047) = 0,087933561  f14 = 14f1 = 1,23 Hz  f70 = 70f1 = 6,16 Hz  f683 = 683f1 = 60,06 Hz  f2047 = 2047f1 = 180 Hz
  • 168. Freqüências em Hz  Observações  fa = 360 Hz <=> Ta = 0,002778 Hz  Tempo total para 2048 amostras = 5,69s  Um batimento cardíaco: aprox. 0,8 s  “Freqüência” Cardíaca: aprox. 1,25 bat./s = 1,25 Hz, ou 75 batimentos/min.  “Freqüência” Cardíaca aprox. igual a f14
  • 169. Freqüências em Hz  Onda quadrada, N = 64, fa = 1Hz  Valores em Hz para k = 7, 8, 9 e 63 60 40 20 0 -20 -40 -60 0 7 9 63
  • 170. Freqüências em Hz  f1 = fa/[2(N-1)] Hz = 1/(2x63) = 0,007936507  f7 = 7f1 = 0,0556 Hz  f8 = 8f1 = 0,0625 Hz  f9 = 9f1 = 0,0714 Hz  f63 = 63f1 = 0,5 Hz  Obs:  Período do sinal = 16 s  Freqüência da onda = 0,0625
  • 171. Freqüências e Conteúdo de Freqüência  Sinal periódico  Freqüência  Freqüências componentes  Sinal não-periódico:  Freqüências componentes
  • 172. Sinais analógicos senoidais  Representação em freqüência de um sinal analógico senoidal?  Sinal analógico senoidal, de freqüência f  fa mínimo para digitalização adequada?  Se f não é múltiplo de f1?
  • 173. Amostragem de Senóides  Cosseno com f=10Hz, fa=100Hz, N=26 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 0 0.05 0.1 0.15 0.2 0.25
  • 174. Amostragem de Senóides  DCT do cosseno com f = 10Hz, fa=100Hz, N=26 4 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 0 5 10 15 20 25 30 35 40 45 50
  • 175. Amostragem de Senóides  Vazamento de freqüência: mais de uma componente de freqüência para uma senóide  Minimizar vazamento de freqüência: aumentar N
  • 176. Amostragem de Senóides  Cosseno com f = 30Hz, fa=100Hz, N=26 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 0 0.05 0.1 0.15 0.2 0.25
  • 177. Amostragem de Senóides  DCT do cosseno com f = 30Hz, fa=100Hz, N=26 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 0 5 10 15 20 25 30 35 40 45 50
  • 178. Amostragem de Senóides  Cosseno com f = 48Hz, fa=100Hz, N=26 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 0 0.05 0.1 0.15 0.2 0.25
  • 179. Amostragem de Senóides  DCT do cosseno com f = 48Hz, fa=100Hz, N=26 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 0 5 10 15 20 25 30 35 40 45 50
  • 180. Amostragem de Senóides  Cosseno com f = 50Hz, fa=100Hz, N=26 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 0 0.05 0.1 0.15 0.2 0.25
  • 181. Amostragem de Senóides  DCT do cosseno com f = 50Hz, fa=100Hz, N=26 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 0 5 10 15 20 25 30 35 40 45 50
  • 182. Amostragem de Senóides  Cosseno com f = 52Hz, fa=100Hz, N=26 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 0 0.05 0.1 0.15 0.2 0.25
  • 183. Amostragem de Senóides  DCT do cosseno com f = 52Hz, fa=100Hz, N=26 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 0 5 10 15 20 25 30 35 40 45 50
  • 184. Amostragem de Senóides  Sinal digital obtido a partir do cosseno de 52Hz é idêntico ao obtido a partir do cosseno de 48 Hz 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 -0.2 -0.2 -0.4 -0.4 -0.6 -0.6 -0.8 -0.8 -1 -1 0 0.0 0.1 0.1 0.2 0.2 0 0.0 0.1 0.1 0.2 0.2
  • 185. Amostragem de Senóides  Cosseno com f = 70Hz, fa=100Hz, N=26 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 0 0.05 0.1 0.15 0.2 0.25
  • 186. Amostragem de Senóides  DCT do cosseno com f = 70Hz, fa=100Hz, N=26 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 0 5 10 15 20 25 30 35 40 45 50
  • 187. Amostragem de Senóides  Sinal digital obtido a partir do cosseno de 70Hz é idêntico ao obtido a partir do cosseno de 30 Hz 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 -0.2 -0.2 -0.4 -0.4 -0.6 -0.6 -0.8 -0.8 -1 -1 0 0.0 0.1 0.1 0.2 0.2 0 0.0 0.1 0.1 0.2 0.2 5 5 5 5 5 5
  • 188. Aliasing  Na DCT, a maior freqüência é fa/2  Aliasing: sinais senoidais de freqüência f > fa/2 são discretizados como sinais senoidais de freqüência fd < fa / 2 (fd=fa–f, para fa/2 < f < fa)
  • 189. Aliasing
  • 190. Teorema de Shannon- Nyquist  Sinal analógico com fmax Hz (componente)  Digitalizar com fa Hz, tal que: fa  f max  f a  2 f max 2  2fmax: Freq. de Nyquist
  • 191. Digitalização de áudio  Ouvido humano é sensível a freq. entre 20Hz e 22KHz (aprox.)  Digitalizar com 44KHz?  Sons podem ter freqüências componentes acima de 22KHz  Digitalização a 44KHz: aliasing.  Filtro passa-baixas com freqüência de corte em 22KHz = Filtro anti- aliasing
  • 192. Eliminação de pixels revisitada  Por que redução de imagens por eliminação de pixel deve ser evitada?  Sinal original digitalizado com fa =2fmax  No. de amostras do sinal digital reduzido pela metade por eliminação de amostras -> nova freqüência de amostragem f’a = fa/2 = fmax -> freqüência máxima do sinal analógico digitalizada sem aliasing = f’a/2 = fmax/2
  • 193. Eliminação de pixels revisitada  Por que redução de imagens (ou outros sinais) por eliminação de pixel (ou amostras) deve ser evitada?  Aliasing!  Usar filtro passa-baixas!
  • 194. Filtros no domínio da freqüência  Multiplicar o sinal no domínio da freq., S, pela função de transferência do filtro, H  Filtros:  Passa-baixas  Passa-altas  Passa-faixa  Corta-baixas  Corta-altas  Corta-faixa (faixa estreita: notch)
  • 195. Filtros no domínio da freq.  Ideais H Passa-baixas H Passa-altas (corta-altas) (corta-baixas) 1 1 fc N-1 fc N-1 H Passa-faixa H corta-faixa 1 1 fc1 fc2 N-1 fc1 fc2 N-1
  • 196. Filtros no domínio da freqüência  Combinação de filtros  Filtros não-ideais (corte suave, |H(fc)|=(1/2)1/2 ou |H(fc)|=1/2)
  • 197. DCT 2-D  Operação separável  Complexidade elevada N 1 N 1 1  (2m  1)k   (2n  1)l  X [k , l ]  ck cl   x[m, n] cos   cos  2 N  2N m 0 n 0  2N    1 N 1N 1  (2k  1)m   (2l  1)n  x[m, n]    ck cl X [k , l ] cos  2 N  cos  2 N  2 N k 0 l 0    
  • 198. DCT 2-D  Imagem “cosseno na vertical”, 256 x 256, 8 ciclos (k = 16) e sua DCT normalizada
  • 199. DCT 2-D  Imagem “cosseno na vertical”, 256 x 256, 16 ciclos (k = 32) e sua DCT normalizada
  • 200. DCT 2-D  Imagem “cosseno na horizontal x cosseno na vertical”, 256 x 256, 16 ciclos (k = 32) e sua DCT normalizada
  • 201. DCT 2-D  Imagem “cosseno na horizontal x cosseno na vertical”, 256 x 256, 8 x 16 ciclos e sua DCT normalizada
  • 202. DCT 2-D  Imagem “Lena” (256x256) e sua DCT normalizada
  • 203. DCT 2-D  Imagem “Lena” (256x256) e o log(DCT+1) normalizado
  • 204. Transformada de Fourier Discreta (DFT) N 1 j 2un 1   Direta: F [u ]  N  s[n]e N n 0 N 1 j 2un  Inversa: s[n ]   F [u]e N u 0 n, u = 0, 1, ..., N-1 j  1  Fórmula de Euler: e j  cos   j sen 
  • 205. Duas propriedades essenciais F [u  N ]  ? |F[-u]| = ?
  • 206. Duas propriedades essenciais  DFT é periódica de período N: F [u  N ]  F (u)  Espectro de Fourier é função par: |F[u]| = |F[-u]|
  • 207. Esboço do Espectro de Fourier |F[u]| u -N/2 N/2 N-1  u = 0, N, 2N,...: freq. 0  u = N/2, 3N/2,...: freq. máxima (N par)  u = (N-1)/2,...: freq. máxima (N ímpar)
  • 208. Freqüências em Hz  Ta = 1/fa (Período de amostragem)  N amostras ---- (N-1)Ta segundos 1 1 fa f1  (adimensio nal)  f1   Hz N ( N  1)Ta N  1 N  1 fa fa f( N 1) / 2   Hz 2 ( N  1) 2
  • 209. Fourier 2-D  Operação separável  Complexidade elevada C 1 R 1 1 F [u, v ]  RC   s[m, n]e  j 2 ( um / C  vn / R ) m 0n 0 C 1 R 1 s[m, n]    F [u, v]e j 2 ( um / C  vn / R ) u 0 v 0
  • 210. Exibição do Espectro de Fourier 2-D Flog[u, v] = round[(L - 1) log(1+|F[u, v]|)/Fmax2]
  • 211. Teorema da Convolução  Se g[m, n]  s[m, n]  h[m, n]  Então:  G[u,v] = H[u,v]F[u,v] onde G[u,v]: DFT de g[m,n] F[u,v]: DFT de s[m,n] H[u,v]: DFT de h[m,n]  H[u,v]: Função de transferência do filtro
  • 212. Filtros: espaço x freqüência  Projeto de filtro no domínio da freqüência (Fourier)  Método imediato: H[k], k = 0..N-1  Como filtrar sinais no domínio do tempo, em tempo real?  Convolução com h[n], n = 0..N-1 pode ser proibitiva para n grande  Encontrar ht[n], n = 0..M-1, com M < N, de modo a obter uma aproximação adequada para H[k].
  • 213. Filtros: espaço x freqüência  Para eficiência computacional e redução de custos, o número de coeficientes do filtro deve ser o menor possível  Projetar filtros relativamente imunes ao truncamento
  • 214. Questões do PosComp 2002  51. Histograma de uma imagem com K tons de cinza é :  a) Contagem dos pixels da imagem.  b) Contagem do número de tons de cinza que ocorreram na imagem.  c) Contagem do número de vezes que cada um dos K tons de cinza ocorreu na imagem.  d) Contagem do número de objetos encontrados na imagem.  e) Nenhuma alternativa acima.  52. filtro da mediana é :  a) Indicado para detectar bordas em imagens.  b) Indicado para atenuar ruído com preservação de bordas (i.é rápidas transições de nível em  imagens).  c) Indicado para detectar formas específicas em imagens.  d) Indicado para detectar tonalidades específicas em uma imagem.  e) Nenhuma das respostas acima.
  • 215. Questões do PosComp 2002  51. Histograma de uma imagem com K tons de cinza é :  a) Contagem dos pixels da imagem.  b) Contagem do número de tons de cinza que ocorreram na imagem.  c) Contagem do número de vezes que cada um dos K tons de cinza ocorreu na imagem.  d) Contagem do número de objetos encontrados na imagem.  e) Nenhuma alternativa acima.  52. filtro da mediana é :  a) Indicado para detectar bordas em imagens.  b) Indicado para atenuar ruído com preservação de bordas (i.é rápidas transições de nível em  imagens).  c) Indicado para detectar formas específicas em imagens.  d) Indicado para detectar tonalidades específicas em uma imagem.  e) Nenhuma das respostas acima.
  • 216. Questões do PosComp 2004  56) Considerando as declarações abaixo, é incorreto afirmar:  a) Filtros passa-altas são utilizados para detecção de bordas em imagens  b) A transformada discreta de Fourier nos permite obter uma representação de uma imagem no domínio freqüência  c) Filtragem no domínio espacial é realizada por meio de uma operação chamada “convolução”  d) Os filtros Gaussiano e Laplaciano são exemplos de filtro passa-baixas  e) O filtro da mediana pode ser utilizado para redução de ruído em uma imagem  58) Identifique a declaração incorreta:  a) As operações de ajuste de brilho e contraste são operações lineares  b) A equalização de histograma é uma transformação não-linear e específica para cada imagem  c) A transformação necessária para calcular o negativo de uma imagem pode ser aplicada simultaneamente (i.e., em paralelo) a todos pixels da imagem original  d) A equalização de histograma pode ser obtida a partir de um histograma cumulativo da imagem original  e) O objetivo da equalização de histograma é reduzir o constrastre nas regiões da imagem que correspondem à porção do histograma com maior concentração de pixels
  • 217. Questões do PosComp 2004  56) Considerando as declarações abaixo, é incorreto afirmar:  a) Filtros passa-altas são utilizados para detecção de bordas em imagens  b) A transformada discreta de Fourier nos permite obter uma representação de uma imagem no domínio freqüência  c) Filtragem no domínio espacial é realizada por meio de uma operação chamada “convolução”  d) Os filtros Gaussiano e Laplaciano são exemplos de filtro passa-baixas  e) O filtro da mediana pode ser utilizado para redução de ruído em uma imagem  58) Identifique a declaração incorreta:  a) As operações de ajuste de brilho e contraste são operações lineares  b) A equalização de histograma é uma transformação não-linear e específica para cada imagem  c) A transformação necessária para calcular o negativo de uma imagem pode ser aplicada simultaneamente (i.e., em paralelo) a todos pixels da imagem original  d) A equalização de histograma pode ser obtida a partir de um histograma cumulativo da imagem original  e) O objetivo da equalização de histograma é reduzir o constrastre nas regiões da imagem que correspondem à porção do histograma com maior concentração de pixels
  • 218. Questões do PosComp 2005  59. O processo de análise de imagens é uma seqüência de etapas que são iniciadas a partir da definição do problema. A seqüência correta destas etapas é:  (a) pré-processamento, aquisição, segmentação, representação, reconhecimento.  (b) aquisição, pré-processamento, segmentação, representação, reconhecimento.  (c) aquisição, pré-processamento, representação, segmentação, reconhecimento.  (d) aquisição, representação, pré-processamento, segmentação, reconhecimento.  (e) pré-processamento, aquisição, representação, segmentação, reconhecimento.  60. O termo imagem se refere a uma função bidimensional de intensidade de luz, denotada por f(x; y), onde o valor ou amplitude de f nas coordenadas espaciais (x; y) representa a intensidade (brilho) da imagem neste ponto. Para que uma imagem possa ser processada num computador, a função f(x; y) deve ser discretizada tanto espacialmente quanto em amplitude. Estes dois processos recebem as seguintes denominações, respectivamente:  (a) translação e escala.  (b) resolução e escala.  (c) resolução e ampliação.  (d) amostragem e quantização.  (e) resolução e quantização.
  • 219. Questões do PosComp 2005  59. O processo de análise de imagens é uma seqüência de etapas que são iniciadas a partir da definição do problema. A seqüência correta destas etapas é:  (a) pré-processamento, aquisição, segmentação, representação, reconhecimento.  (b) aquisição, pré-processamento, segmentação, representação, reconhecimento.  (c) aquisição, pré-processamento, representação, segmentação, reconhecimento.  (d) aquisição, representação, pré-processamento, segmentação, reconhecimento.  (e) pré-processamento, aquisição, representação, segmentação, reconhecimento.  60. O termo imagem se refere a uma função bidimensional de intensidade de luz, denotada por f(x; y), onde o valor ou amplitude de f nas coordenadas espaciais (x; y) representa a intensidade (brilho) da imagem neste ponto. Para que uma imagem possa ser processada num computador, a função f(x; y) deve ser discretizada tanto espacialmente quanto em amplitude. Estes dois processos recebem as seguintes denominações, respectivamente:  (a) translação e escala.  (b) resolução e escala.  (c) resolução e ampliação.  (d) amostragem e quantização.  (e) resolução e quantização.
  • 220. Questões do PosComp 2006  47. [TE] Considere os filtros espaciais da média (m) e Mediana (M) aplicados em imagens em níveis de cinza f e g. Qual par de termos ou expressões a seguir não está associado, respectivamente, a características gerais de m e M?  (a) m(f + g) = m(f) + m(g); M(f + g) != M(f) + M(g)  (b) ruído gaussiano; ruído impulsivo  (c) convolução; filtro estatístico da ordem  (d) preservação de pequenos componentes; não preservação de pequenos componentes  (e) filtragem com preservação de contornos; filtragem sem preservação de contornos  48. [TE] A convolução da máscara [-1 2 -1] com uma linha de uma imagem contendo uma seqüência de pixels do tipo [... 3 4 5 6 7 8 9 10 ...] resulta na transformação (sem considerar efeitos de borda):  (a) [...3 4 5 6 7 8 9 10...] e representa o filtro da média com 2-vizinhos mais próximos  (b) [...0 0 0 0 0 0 0 0...] e representa o laplaciano no espaço discreto  (c) [...0 0 0 0 0 0 0 0...] e representa uma erosão morfológica  (d) [...1 1 1 1 1 1 1 1...] e é equivalente a um filtro passa-baixas  (e) [...7 9 11 13 15 17 19...] e é equivalente a um filtro passa-altas
  • 221. Questões do PosComp 2006  47. [TE] Considere os filtros espaciais da média (m) e Mediana (M) aplicados em imagens em níveis de cinza f e g. Qual par de termos ou expressões a seguir não está associado, respectivamente, a características gerais de m e M?  (a) m(f + g) = m(f) + m(g); M(f + g) != M(f) + M(g)  (b) ruído gaussiano; ruído impulsivo  (c) convolução; filtro estatístico da ordem  (d) preservação de pequenos componentes; não preservação de pequenos componentes  (e) filtragem com preservação de contornos; filtragem sem preservação de contornos  48. [TE] A convolução da máscara [-1 2 -1] com uma linha de uma imagem contendo uma seqüência de pixels do tipo [... 3 4 5 6 7 8 9 10 ...] resulta na transformação (sem considerar efeitos de borda):  (a) [...3 4 5 6 7 8 9 10...] e representa o filtro da média com 2-vizinhos mais próximos  (b) [...0 0 0 0 0 0 0 0...] e representa o laplaciano no espaço discreto  (c) [...0 0 0 0 0 0 0 0...] e representa uma erosão morfológica  (d) [...1 1 1 1 1 1 1 1...] e é equivalente a um filtro passa-baixas  (e) [...7 9 11 13 15 17 19...] e é equivalente a um filtro passa-altas
  • 222. Questões do PosComp 2007  61. [TE] O realce de imagem tem como objetivo destacar detalhes finos procurando obter uma representação mais adequada do que a imagem original para uma determinada aplicação. Dessa forma, sobre as técnicas utilizadas no realce de imagens, é CORRETO afirmar que  (a) o melhor resultado obtido depende do filtro aplicado na imagem. Normalmente, o mais aplicado é o filtro da mediana.  (b) o melhor resultado é obtido com a aplicação de filtros passa- baixas, cujos parâmetros dependem do resultado desejado.  (c) a aplicação de filtros da média sempre oferece resultado adequado no realce de imagens.  (d) o resultado mais adequado no realce de imagens está associado à aplicação de filtro passa-altas e da interpretação subjetiva do observador que deverá ter conhecimento a priori da imagem original.  (e) o resultado mais adequado no realce de imagens está associado à aplicação de filtro passa-baixas e da interpretação subjetiva do observador que deverá ter conhecimento a priori da imagem original.  62 e 63
  • 223. Questões do PosComp 2007  61. [TE] O realce de imagem tem como objetivo destacar detalhes finos procurando obter uma representação mais adequada do que a imagem original para uma determinada aplicação. Dessa forma, sobre as técnicas utilizadas no realce de imagens, é CORRETO afirmar que  (a) o melhor resultado obtido depende do filtro aplicado na imagem. Normalmente, o mais aplicado é o filtro da mediana.  (b) o melhor resultado é obtido com a aplicação de filtros passa- baixas, cujos parâmetros dependem do resultado desejado.  (c) a aplicação de filtros da média sempre oferece resultado adequado no realce de imagens.  (d) o resultado mais adequado no realce de imagens está associado à aplicação de filtro passa-altas e da interpretação subjetiva do observador que deverá ter conhecimento a priori da imagem original.  (e) o resultado mais adequado no realce de imagens está associado à aplicação de filtro passa-baixas e da interpretação subjetiva do observador que deverá ter conhecimento a priori da imagem original.