Your SlideShare is downloading. ×
slides PDI 2007 leonardo
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Introducing the official SlideShare app

Stunning, full-screen experience for iPhone and Android

Text the download link to your phone

Standard text messaging rates apply

slides PDI 2007 leonardo

1,489
views

Published on

Published in: Technology

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,489
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
57
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Introdução ao Processamento Digital de Imagens Prof. Leonardo Vidal Batista DI/PPGI/PPGEM leonardo@di.ufpb.br leovidal@terra.com.br http://www.di.ufpb.br/leonardo
  • 2. Processamento Digital de Imagens  Modelagem matemática, análise, projeto e implementação (S&H) de sistemas voltados ao tratamento de informação pictórica, com fins estéticos, para torná-la mais adequada à interpretação ou aumentar eficiência de armazenamento e transmissão.
  • 3. PDI e áreas correlatas Dados Visão Computação Computacional Gráfica Imagens Processamento Digital de Imagens (sinais 2D) Processamento Digital de Sinais
  • 4. PDI x Visão Computacional
  • 5. Imagens digitais  TV digital  Câmeras digitais, celulares, scanners  DVDs  Sistemas de teleconferência  Transmissões via fax  Editoração eletrônica  Impressoras  Monitoramento da superfície terrestre e previsão climática por imagens de satélites  Detecção de movimento
  • 6. Imagens Digitais  Diagnóstico médico: ultrassonografia, angiografia, tomografia, ressonância magnética, contagem de células, etc  Identificação biométrica: reconhecimento de face, íris ou impressões digitais  Ciências forenses  Realce e restauração de imagens por computador  Instrumentação  Controle de qualidade  Granulometria de minérios
  • 7. Outros Sinais Digitais  Diagnóstico médico: eletrocardiograma, eletroencefalograma, eletromiograma, eletroretinograma, polisonograma, etc  Identificação biométrica por reconhecimento de voz  Síntese de voz  Áudio Digital  Telefonia  Suspensão ativa em automóveis  Mercado acionário
  • 8. Sinais Contínuos e Discretos Sinal analógico Sinal digital ... Amplitude 2q q 0 -q -2q ... Erros de quantização 0 Ta 2Ta 3Ta ... Tempo, espaço etc.
  • 9. Processamento Analógico de Sinais Processador Sinal analógico analógico Sinal analógico de entrada de saída
  • 10. Processamento Digital de Sinais Sinal Sinal analógico Conversor Processador digital A/D Digital Sinal Sinal analógico Conversor Processador Conversor analógico A/D Digital D/A
  • 11. Processamento Digital de Sinais  Alguns sinais são inerentemente digitais ou puramente matemáticos  Ex: Número de gols por rodada do campeonato brasileiro de futebol  Neste caso, não há necessidade de Conversão A/D  Ainda assim, pode haver necessidade de conversão D/A  Ex: texto -> voz sintetizada
  • 12. Processamento Digital de Sinais  Hardware, software, ou ambos  Maior flexibilidade  Menor custo  Menor tempo de desenvolvimento  Maior facilidade de distribuição  Sinais digitais podem ser armazenados e reproduzidos sem perda de qualidade  Mas alguns sistemas exigem uma etapa analógica!
  • 13. Processamento Digital de Sinais – Robustez a Ruído Sinal analógico original Sinal analógico corrompido – em geral, recuperação impossível mesmo para pequenas distorções
  • 14. Processamento Digital de Sinais – Robustez a Ruído Sinal digital corrompido – recuperação possível Sinal digital original mesmo com distorções substanciais, principalmente com uso de códigos corretores. „1‟ „1‟ „0‟ „0‟ Sinal digital recuperado com erro „1‟ „0‟
  • 15. Eliminação de ruído
  • 16. Detecção de Bordas
  • 17. Aguçamento
  • 18. Pseudo-cor
  • 19. Pseudo-cor
  • 20. Segmentação/Classificação
  • 21. Combinação de Imagens
  • 22. Metamorfose
  • 23. Warping (Deformação)
  • 24. Warping (Deformação)  Interpol faz apelo público para identificar pedófilo (http://noticias.terra.com.br/mundo/interna /0,,OI1971484-EI294,00.html)  As fotos haviam sido manipuladas digitalmente para disfarçar o rosto do pedófilo, mas especialistas em computação da Agência de Polícia Federal na Alemanha conseguiram reproduzir o rosto do suspeito de forma que seja identificável
  • 25. Warping (Deformação)  A imagem distorcida pôde ser recuperada por especialistas para que o homem fosse identificado
  • 26. Você confia em seu sistema visual?
  • 27. Você confia em seu sistema visual?
  • 28. Você confia em seu sistema visual?
  • 29. Você confia em seu sistema visual? http://www.echalk.co.uk/ amusements/OpticalIllusi ons/illusions.htm
  • 30. Você confia em seu sistema visual?
  • 31. Você confia em seu sistema visual?
  • 32. Você confia em seu sistema visual?
  • 33. Você confia em seu sistema visual?
  • 34. Você confia em seu sistema visual?
  • 35. Você confia em seu sistema visual?
  • 36. Você confia em seu sistema visual?
  • 37. Você confia em seu sistema visual?
  • 38. Você confia em seu sistema visual?
  • 39. A Faixa Visível do Espectro Eletromagnético  Luz: radiação eletromagnética  Freqüência f, comprimento de onda L  Faixa visível do espectro eletromagnético: 380 nm < L < 780 nm  Na faixa visível, o sistema visual humano (SVH) percebe comprimentos de onda diferentes como cores diferentes
  • 40. A Faixa Visível do Espectro Eletromagnético  Radiação monocromática: radiação em um único comprimento de onda  Cor espectral pura: radiação monocromática na faixa visível
  • 41. A Faixa Visível do Espectro Eletromagnético
  • 42. A Faixa Visível do Espectro Eletromagnético Denominação Usual da Cor Faixa do Espectro (nm) Violeta 380 – 440 Azul 440 – 490 Verde 490 – 565 Amarelo 565 – 590 Laranja 590 – 630 Vermelho 630 – 780
  • 43. A Estrutura do Olho Humano  Olho humano: aproximadamente esférico, diâmetro médio em torno de dois centímetros  A luz penetra no olho passando pela pupila e pelo cristalino e atingindo a retina  Imagem invertida do cenário externo sobre a retina  Cones e bastonetes convertem energia luminosa em impulsos elétricos que são transmitidos ao cérebro.
  • 44. A Estrutura do Olho Humano
  • 45. Bastonetes  75 a 150 milhões/olho, sobre toda a retina  Não são sensíveis às cores  Baixa resolução (conectados em grupos aos terminais nervosos)  Sensíveis à radiação de baixa intensidade na faixa visível  Visão geral e de baixa luminosidade  Objetos acinzentados sob baixa luminosidade
  • 46. Cones  6 a 7 milhões/olho, concentrados na fóvea  Sensíveis às cores  Alta resolução (um cone por terminal nervoso)  Pouco sensíveis a radiação de baixa intensidade na faixa visível  Visão específica, de alta luminosidade  Movimentamos os olhos para que a imagem do objeto de interesse recaia sobre a fóvea.
  • 47. Cones  Há três tipos de cones:  Cone sensível ao vermelho  Cone sensível ao verde  Cone sensível ao azul  Cores diversas obtidas por combinações destas cores primárias
  • 48. Cones Cone “Verde” Resposta Cone “Azul” Cone “Vermelho” 400 500 600 700 Comprimento de onda (nm)
  • 49. Sistema de Cores RGB  A cor de uma fonte de radiação na faixa visível é definida pela adição das cores espectrais emitidas – sistema aditivo  Combinação de radiações monocromáticas vermelho (R), verde (G) e azul (B)  Cores primárias da luz  Sistema de cores RGB
  • 50. Sistema RGB  Padronização da Comissão Internacional de Iluminação (CIE):  Azul: 435,8 nm  Verde: 546,1 nm  Vermelho: 700 nm
  • 51. Sistema RGB - Combinação de Cores Primárias  Cores secundárias da luz: magenta (M), cíano (C) e amarelo (Y): M = R + B C = B + G Y = G + R  Cor branca (W): W = R + G + B
  • 52. Espaço de Cores RGB  Cor no sistema RGB é um vetor em um espaço tridimensional: G R B
  • 53. Espaço de Cores RGB  Reta (i, i, i): reta acromática  Pontos na reta acromática: tonalidades de cinza ou níveis de cinza  Preto: (0, 0, 0) (ausência de luz)  Branco: (M, M, M), (M é a intensidade máxima de uma componente de cor)  Monitor de vídeo: Sistema RGB
  • 54. Sistema de Cores CMY  Cor de um objeto que não emite radiação própria depende dos pigmentos que absorvem radiação em determinadas faixas de freqüência e refletem outras  Absorção em proporções variáveis das componentes R, G e B da radiação incidente: sistema subtrativo
  • 55. CMY - Cores Primárias  Cores primárias dos pigmentos: absorvem uma cor primária da luz e refletem as outras duas C = W – R = G + B M = W – G = R + B Y = W – B = G + R
  • 56. CMY – Combinação de Cores Primárias  Cores secundárias: R = M + Y G = C + Y B = M + C  Preto (K): K = C + M + Y = W – R – G – B  Impressoras coloridas: CMY ou CMYK
  • 57. Processos Aditivo e Subtrativo
  • 58. Sistema de Cores YIQ  Transmissão de TV em cores: compatibilidade com TV P & B  Y: luminância (intensidade percebida, ou brilho)  I e Q: crominâncias
  • 59. Conversão YIQ-RGB  Conversão de RGB para YIQ:  Y = 0.299R + 0.587G + 0.114B  I = 0.596R – 0.274G –0.322B  Q = 0.211R – 0.523G + 0.312B  Conversão de YIQ para RGB :  R = 1.000 Y + 0.956 I + 0.621 Q  G = 1.000 Y – 0.272 I – 0.647 Q  B = 1.000 Y – 1.106 I + 1.703 Q
  • 60. Sistema de Cores HSI  Fisiologicamente, a retina humana opera no sistema RGB  A percepção subjetiva de cor é diferente  Atributos perceptivos das cores:  Matiz (hue) ou tonalidade  Saturação  Intensidade
  • 61. Sistema de Cores HSI  Matiz (H): determinada pelo comprimento de onda dominante; cor espectral mais próxima; denominação usual das cores  H é um ângulo: 0o = R; 120o = G; 240o = B  Saturação: pureza da cor quanto à adição de branco  S = 0: cor insaturada (nível de cinza)  S = 1: cor completamente saturada  Cores espectrais puras tem S = 1
  • 62. Sistema de Cores HSI  Também chamado HSB, HSV, HSL (B=Brightness; V=Value; L=Lightness), às vezes com pequenas diferenças na conversão para RGB.
  • 63. Conversão HSI-RGB  Algoritmos nas Notas de Aula
  • 64. Imagem monocromática y x
  • 65. Imagem monocromática  Função Ia(x,y)  (x, y): coordenadas espaciais  Ia(x,y): intensidade ou brilho da imagem em (x,y)
  • 66. Amostragem e Quantização  Digitalização: discretização espacial (amostragem) e de intensidade (quantização)
  • 67. Amostragem e Quantização Sinal analógico Sinal digital ... Amplitude 2q q 0 -q -2q ... Erros de quantização 0 T 2T 3T ... Tempo ou espaço
  • 68. Amostragem e Quantização - Parâmetros  T: período de amostragem (unidade de espaço ou tempo)  f = 1/T: freqüência de amostragem (amostras/unidade de espaço ou tempo)  q: passo de quantização  Sinal analógico: s(t), s(x)  Sinal digitalizado: s[nT], n inteiro não negativo, s[nT] {-Mq, ..., -2q, -q, 0, q, 2q, ..., (M-1)q}
  • 69. Amostragem e Quantização – Exemplo 1  Sinal analógico s(t): voltagem de saída de um sistema elétrico em função do tempo 40 20 Sinal analógico Volts 0 -20 -40 0 1 2 3 4 5 6 7 segundos
  • 70. Amostragem e Quantização – Exemplo 1  T = 0.5s, q = 0.5V, M = 64: s[0.5.n], n = 0, 1, 2, ...  s[0.5n]  {-32, -31.5..., -0.5, 0, 0.5 1,...,31, 31.5}  s[0]=9.5V,s[0.5]=8V,s[1]=-2V, s[1.5]= -10.5V, ...  Notação Simplificada:  s[n]  {-M,..., -2, -1, 0, 1, 2,..., M-1}  s[0]=19, s[1]=16, s[2]=-4, s[3]=-21,...  s[n] = {19, 16, -4, -21, ...}
  • 71. Amostragem e Quantização – Exemplo 2  Em um processo de digitalização foram colhidas N=10 amostras de um sinal de temperatura (graus Celsius) igualmente espaçadas ao longo de um segmento de reta unindo duas cidades A e B. A primeira amostra foi colhida na cidade A e a última na cidade B. O sinal digital resultante é s[n] = {12 12 13 13 14 13 14 14 15 14}  Perguntas: (a) Distância entre as cidades? (b) Valores de temperatura registrados? (c) Limites de temperatura registrável? (d) Qual o valor de s[5km]?
  • 72. Amostragem e Quantização – Solução do Exemplo 2  Precisamos conhecer f, q e M!  Dados: f = 0.1 amostra/km q = 2o Celsius M = 16;
  • 73. Amostragem e Quantização – Solução do Exemplo 2  T = 10 km/amostra  (a) Distância entre as cidades = (10-1)x10 = 90km  (b) Temperaturas em graus Celsius: {24 24 26 26 28 26 28 28 28 30}  (c) Limites de temperatura em graus Celsius: [-32, 30]  (d) s[5km]: no sinal digital s[nT] não há nT = 5km!
  • 74. Conversores Analógico- Digitais (ADC)  Conversor Analógico/Digital (Analog to Digital Converter - ADC): amostra, quantiza em L níveis e codifica em binário.  Um transdutor deve converter o sinal de entrada para tensão elétrica (V)  Códigos de b bits: L = 2b níveis de quantização  Exemplo: b = 8, L = 256  ADC de b bits
  • 75. Conversores Analógico- Digitais (ADC)  ADC unipolar: voltagem de entrada de 0 a Vref  ADC bipolar: voltagem de entrada de -Vref a Vref  Exemplo: ADC unipolar de 3 bits, Vref = 10 V  L = 23 = 8, Resolução de voltagem: 10/8 = 1,25V  Exemplo: ADC bipolar de 3 bits, Vref = 5 V  L = 23 = 8, Resolução de voltagem: 10/8 = 1,25V
  • 76. ADC Unipolar Bipolar Voltagem Código Voltagem Código [0,00, 1,25) 000 [-5,0, -3,75) 000 [1,25, 2,50) 001 [-3,75, -2,5) 001 [2,50, 3,75) 010 [-2,5, -1,25) 010 [3,75, 5,00) 011 [-1,25, 0,0) 011 [5,00, 6,25) 100 [0,00, 1,25) 100 [6,25, 7,50) 101 [1,25, 2,50) 101 [7,50, 8,75) 110 [2,50, 3,75) 110 [8,75, 10,0) 111 [3,75, 5,00) 111
  • 77. Conversores Analógico- Digitais (ADC)  O bit menos significativo (LSB) do código se altera em incrementos de 1,25V.  Resolução de voltagem: “valor” do LSB  Alguns parâmetros: fa, Vref, b, ...
  • 78. Amostragem e Quantização – Qualidade do Sinal 40 20 Sinal analógico Volts 0 -20 -40 0 1 2 3 4 5 6 7 segundos 40 40 f = 2 amostras/s Sinal analógico 20 (T = 0,5s), q = 1 20 reconstruído 0 0 -20 -20 -40 -40 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
  • 79. Amostragem e Quantização – Qualidade do Sinal 40 20 Sinal analógico Volts 0 -20 -40 0 1 2 3 4 5 6 7 segundos 40 f = 5 amostras/s 40 Sinal analógico (T = 0,2s), q = 1 20 20 reconstruído 0 0 -20 -20 -40 -40 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
  • 80. Amostragem e Quantização – Qualidade do Sinal 40 20 Sinal analógico Volts 0 -20 -40 0 1 2 3 4 5 6 7 segundos 40 40 f = 10 amostras/s Sinal analógico 20 (T = 0,1s), q = 1 20 reconstruído 0 0 -20 -20 -40 -40 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
  • 81. Amostragem e Quantização – Qualidade do Sinal 40 20 Sinal analógico Volts 0 -20 -40 0 1 2 3 4 5 6 7 segundos 40 40 f = 10 amostras/s Sinal analógico 20 (T = 0,1s), q = 16 20 reconstruído 0 0 -20 -20 -40 -40 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
  • 82. Notação simplificada para Imagens  f[i, j]  {0, 1, 2,..., M-1}  Tipicamente, M = 256
  • 83. Imagem digital monocromática 250 200 150 100 50 0 0 100 200 300 400 500 i=0 250 200 161 161 ... 142 150 161 161 ... 142 100   50  ... ... ... ...    0 0 50 100 150 200 250 300 350 163 163 ... 95  j = 266
  • 84. Resolução Espacial e de Contraste 256x256 / 256 níveis 256x256 / 64 níveis 256x256 / 2 níveis 32x32 / 256 níveis
  • 85. Imagens RGB Banda R Banda G Banda B Imagem RGB
  • 86. Imagens Digitais  Uma imagem é uma matriz bidimensional observada de forma pictórica.  Imagens de densidade demográfica, de raios x, de infravermelho, de temperaturas de uma área, etc.
  • 87. Scanners  Monocromáticos: fila de diodos fotossensíveis em um suporte que se desloca  Coloridos: fila de diodos fotossensíveis, recobertos por filtros R, G e B, em um suporte que se desloca  Lâmpada fluorescente branca ilumina o objeto  Diodos produzem carga elétrica proporcional à intensidade da luz refletida pelo objeto
  • 88. Scanners
  • 89. Scanners  Th: distância entre diodos no suporte  Tv: tamanho do passo do suporte  Th e Tv definem a resolução espacial  M: profundidade de cor ou resolução de contraste  Resolução espacial: pontos por polegada (dot per inch, dpi) (1 ponto = 1 sensor em scanner monocromático, 3 sensores em scanners RGB)  1 pol = 2,54 cm.
  • 90. Scanners  Ex: 300 x 300 dpi, digitalização de formato carta(8,5 x 11’’), no máximo  8,5x300=2550 diodos (mono) ou  3x2550=7650 diodos (cor)  Aumentar resolução vertical sem aumentar o número de sensores
  • 91. Scanners N pontos/polegada Movimento do braço: ... M passos/polegada
  • 92. Câmeras Digitais
  • 93. Câmeras Digitais  Sensor de imagem: matriz de diodos fotosensíveis cobertos por filtros R, G e B  Diodos produzem carga elétrica proporcional à intensidade da luz refletida pelo objeto  Resolução espacial de câmeras: número de pontos (ou pixels), RxC (1 ponto = 3 sensores)
  • 94. Câmeras Digitais ... ...
  • 95. Qualidade dos Sensores  S9500 – ISO 1600  EOS350D – ISO 1600
  • 96. Qualidade dos Sensores  EOS350D – ISO 1600  S9500 – ISO 1600
  • 97. Câmeras Digitais  Exemplo: Sony DSC V1: 1944 x 2592 pixels = 5Mpixels. Digitalizar papel em formato carta com imagem da folha ocupando todo o sensor. Resolução (em dpi)? Comparar com scanner de 300 x 300 dpi, em qualidade, número de sensores e preço. Comparar com scanner de 2400 x 2400 dpi.
  • 98. Câmeras Digitais  Solução:  1944 / 8,5 pol x 2592/11 pol = 228,7 dpi x = 235,6 dpi  Resolução espacial inferior à do scanner de 300 x 300 dpi, com 1944 x 2592 x 3 / 7650 = 1976 vezes mais sensores, 10 a 20 vezes mais caro, aberrações geométricas e de cor, etc.  Câmeras digitais têm escopo de aplicação maior e são mais rápidas  Scanner de 2400 x 2400 dpi = câmera de 500 Mpixels!
  • 99. Dispositivos Gráficos  Exemplo: câmera digital, 3000 x 2000 pontos (6 Mpixels), impressa em formato 15x10 cm, com o mesmo no. de pontos. Qual a resolução (dpi) no papel?
  • 100. Dispositivos Gráficos  Exemplo: câmera digital, 3000 x 2000 pontos (6 Mpixels). Imprimir em formato 15x10 cm, com o mesmo no. de pontos. Qual a resolução (dpi) no papel?  15x10 cm = 3,94 x 5,91 pol.  Resolução (dpi): 3000/5,91 = 2000/3,94 = 507x507 dpi
  • 101. Dispositivos Gráficos  Ex: foto 10x15cm, scanneada a 1200x1200 dpi, 24 bits/pixel. Tamanho em bytes?  Dimensões impressa em 1440x1440 dpi?  Dimensões impressa em 720 x 720 dpi?  Dimensões em tela de 14 pol., resolução 1024x768? Resolução em dpi da tela?  Dimensões em tela de 17 pol., resolução 1024x768? Resolução em dpi da tela?
  • 102. Dispositivos Gráficos  Solução:  Foto 10x15cm = 3,94 x 5,91 pol.  Tamanho em bytes: 3,94x1200 x 5,91x1200 pixels x 3 bytes/pixel = 4728 x 7092 x 3 = 100 milhões de bytes (96 MB)  Dimensões (pol) em impressora de 1440x1440 dpi: 4728/1440 x 7092/1440 = 3,3 x 4,9 pol.  Dimensões (pol.) em impressora de 720 x 720 dpi = 6,6 x 9,9 pol
  • 103. Dispositivos Gráficos  Solução:  Dimensões em tela de 14 pol., em resolução de 1024x768 pontos? Resolução em dpi da tela? x2 + y2 = 142 x/y = 3/4 x = 8,4 pol; y = 11,2 pol.  Res. = 1024/11,2 x 768/8,4 = 91,4 x 91,4 dpi.  Dimensões = 4728 / 91,4 x 7092 / 91,4 =51,73 x 77,59 pol = 131,39 x 197,09cm (apenas parte da imagem será visível)
  • 104. Dispositivos Gráficos  Solução:  Dimensões em tela de 17 pol., em resolução de 1024x768 pontos? Resolução em dpi da tela? y = 13,6 pol; x = 10,2 pol  Res. = 1024/13,6 x 768/10,2 = 75,3 x 75, 3 dpi (pior que no monitor de 14 pol)  Dimensões = 4728 / 75,3,4 x 7092 / 75,3 =62,79 x 94,18 pol = 159,49 x 239,22cm (apenas parte da imagem será visível)
  • 105. Monitor CRT  A e C: Placas aceleradoras e defletoras  D: tela com pontos de fósforos RGB  F: Máscara de sombra ou grade de abertura
  • 106. Monitor CRT
  • 107. Monitor RGB
  • 108. Monitor RGB Linha 0 Linha 1 Linha R-1
  • 109. Operações com Imagens  Espaço / freqüência  Locais / pontuais  Unárias / binárias / ... / n-árias
  • 110. Operações n-árias  Operação T sobre n imagens, f1, f2, ..., fn, produzindo imagem de saída g g = T[f1, f2, ..., fn]  Operações binárias: n = 2  Operações unárias ou filtros: n = 1 g = T[f]
  • 111. Operações Pontuais  g(i, j) depende do valor do pixel em (i’, j’) das imagens de entrada  Se (i, j) = (i’, j’) e operação unária:s = T(r) r, s: nível de cinza de f e g em (i, j) s s (0,0) m r (0,0) m r
  • 112. Operações Pontuais s s L-1 L-1 (r2, s2) (r1, s1) (0,0) (0,0) r L-1 r L-1
  • 113. Operações Locais  g(i, j) depende dos valores dos pixels das imagens de entrada em uma vizinhança de (i’, j’) f g j j i i Vizinhança de (i, j)
  • 114. Operações Locais  Exemplo: Filtro “Média” 1 g (i, j )  [ f (i  1, j  1)  f (i  1, j )  f (i  1, j  1)  9  f (i, j  1)  f (i, j )  f (i, j  1)   f (i  1, j  1)  f (i  1, j )  f (i  1, j  1)]  Operação sobre pixels da imagem original: resultado do filtro em um dado pixel não altera o resultado em outros pixels.  Primeira e última coluna/linha?
  • 115. Filtros de suavização  Média, Moda, Mediana, Gaussiano...  Vizinhança m x n
  • 116. Photoshop!
  • 117. Photoshop!
  • 118. Photoshop!
  • 119. Photoshop!
  • 120. Filtros de aguçamento e detecção de bordas  Efeito contrário ao de suavização: acentuam variações de intensidade entre pixels adjacentes.  Baseados no gradiente de funções bidimensionais.  Gradiente de f(x, y):  f   x   f 2 2 1 / 2      f  G[f(x, y)] = G[ f ( x, y )]         y     x      f       y 
  • 121. Filtros de detecção de bordas  g(i, j): aproximação discreta do módulo do vetor gradiente em f(i, j).  Aproximações usuais: g(i, j) = {[f(i,j)-f(i+1,j)]2 + [f(i,j)-f(i,j+1)]2}1/2 g(i, j) = |f(i,j)-f(i+1,j)| + |f(i,j)-f(i,j+1)| Gradiente de Roberts: g(i,j) = {[f(i,j)-f(i+1,j+1)]2+[f(i+1,j)-f(i,j+1)]2}1/2 g(i, j) = |f(i,j)-f(i+1,j+1)| + |f(i+1,j)-f(i,j+1)|
  • 122. Filtros de detecção de bordas Gradiente de Prewitt: g(i, j) = |f(i+1,j-1) + f(i+1, j) + f(i+1, j+1) - f(i-1, j-1) - f(i-1, j) - f(i-1, j+1)| +|f(i-1, j+1) + f(i, j+1) + f(i+1, j+1) - f(i-1, j-1) - f(i, j-1) - f(i+1, j-1)| Gradiente de Sobel: g(i, j) = |f(i+1, j-1) + 2f(i+1, j) + f(i+1, j+1) - f(i-1, j-1) - 2f(i-1, j) - f(i-1, j+1)| + |f(i-1, j+1) + f(i, j+1) + f(i+1, j+1) - f(i-1, j-1) - 2f(i, j-1) - f(i+1, j-1)|
  • 123. Gradiente de Roberts Limiares 15, 30 e 60
  • 124. Processamento de Histograma  Se o nível de cinza l ocorre nl vezes em imagem com n pixels, então nl P(l )  n  Histograma da imagem é uma representação gráfica de nl ou P(l)
  • 125. Histograma Histograma nl Imagem 7 6 1 0 0 3 3 5 4 0 0 3 3 3 3 1 1 1 3 3 2 1 0 0 1 2 3 l Imagem 3 x 5 (L = 4) e seu histograma
  • 126. Histograma  O histograma representa a distribuição estatística de níveis de cinza de uma imagem nl nl nl 0 255 l 0 255 l 0 255 l
  • 127. Histograma 10000 8000 6000 4000 2000 0 0 50 100 150 200 250
  • 128. Histograma 1500 1000 500 0 0 50 100 150 200 250
  • 129. Expansão de Histograma  Quando uma faixa reduzida de níveis de cinza é utilizada, a expansão de histograma pode produzir uma imagem mais rica. nl nl nl A B C l l l m0=0 m1 L-1 0 m0 m1 L-1 0 m0 m1=L-1
  • 130. Expansão de Histograma  Quando uma faixa reduzida de níveis de cinza é utilizada, a expansão de histograma pode produzir uma imagem mais rica:  r  rmin  s  T ( r )  round  r ( L  1)    max  rmin 
  • 131. Expansão de Histograma 1500 1000 500 0 0 50 100 150 200 250 1500 1000 500 0 0 50 100 150 200 250
  • 132. Expansão de Histograma  Expansão é ineficaz nos seguintes casos: nl nl nl A B C l l l 0 L-1 L-1 0 m0 m1 L-1 0 L-1
  • 133. Equalização de Histograma  Se a imagem apresenta pixels de valor 0 e L-1 (ou próximos a esses extremos) a expansão de histograma é ineficaz.  Nestas situações a equalização de histograma pode produzir bons resultados.  O objetivo da equalização de histograma é gerar uma imagem com uma distribuição de níveis de cinza uniforme.
  • 134. Equalização de Histograma  L 1 r  s  T (r )  round   nl   RC l 0  1500 1000 500 0 0 50 100 150 200 250 1500 1000 500 0 0 50 100 150 200 250
  • 135. Equalização de Histograma  Exemplo: imagem 64 x 64, L = 8 nl l nl 0 790 1200 1 1023 1000 2 850 800 3 656 600 4 329 400 5 245 200 6 122 0 7 81 0 1 2 3 4 5 6 7 l
  • 136. Equalização de Histograma  Exemplo (cont.):  r=0s = round(790 x 7 / 4096) = 1  r=1s = round(1813 x 7 / 4096) = 3  r=2s = round(2663 x 7 / 4096) = 5  r=3s = round(3319 x 7 / 4096) = 6  r=4s = round(3648 x 7 / 4096) = 6  r=5s = round(3893 x 7 / 4096) = 7  r=6s = round(4015 x 7 / 4096) = 7  r=7s = round(4096 x 7 / 4096) = 7
  • 137. Equalização de Histograma  Exemplo: imagem 64 x 64, L = 8 l nl nk 0 0 1 790 1200 1000 2 0 800 3 1023 600 4 0 400 5 850 200 6 985 0 7 448 0 1 2 3 4 5 6 7 k
  • 138. Equalização de Histograma nl Hist. Original nl Hist. Equal. (Ideal) nl Hist. Equal. (Real) 0 L-1 L-1 l 0 m0 m1 L-1 l 0 L-1 l
  • 139. Equalização de Histograma  Expansão de histograma é pontual ou local? E equalização de histograma?  O que ocorre quando uma imagem com um único nível passa pela operação de equalização de histograma?  Melhor fazer equalização seguido por expansão de histograma, o inverso, ou a ordem não importa?
  • 140. Equalização de Histograma Local  Para cada locação (i,j) de f • Calcular histograma na vizinhança de (i,j) • Calcular s = T(r) para equalização de histograma na vizinhança • G(i,j) = s
  • 141. Controle de contraste adaptativo  c  (i, j )  [ f (i, j )   (i, j )]; (i, j )  0 g (i, j )    (i, j )  f (i, j ); (i, j )  0 
  • 142. Controle de contraste adaptativo
  • 143. Filtros baseados na função gaussiana  Função gaussiana:  Derivada:  Derivada segunda:
  • 144. Filtros baseados na função gaussiana  Gaussiana, derivada e derivada segunda
  • 145. Filtros baseados na função gaussiana  A máscara é construída pela amostragem de G(x), G’(x) e G’’(x)  x = -5σ, ...-2, -1, 0, 1, 2..., 5σ
  • 146. Filtros gaussianos bidimensionais Com r = sqrt(x2 + y2)
  • 147. Pseudo-cor Nível de R G B cinza 0 15 20 30 1 15 25 40 ... L-1 200 0 0
  • 148. Outros filtros:  Curtose, máximo, mínimo etc.  Filtros de suavização + filtros de aguçamento  Laplaciano do Gaussiano (LoG)  “Emboss”  Aumento de saturação  Correção de gama  ...
  • 149. Filtros Lineares e Invariantes ao Deslocamento  Filtro linear: T [af1 + bf2] = aT [f1] + bT [f2] para constantes arbitrárias a e b.  Filtro invariante ao deslocamento: Se g[i, j] = T [f[i, j]] então g[i - a, j – b] = T [f[i - a, j – b]].  Se i e j são coordenadas espaciais: filtros espacialmente invariantes.
  • 150. Convolução  Convolução de s(t) e h(t):  g (t )  s (t ) * h (t )   s( )h(t   )d 
  • 151. Convolução  g (t )  s (t ) * h (t )   s( )h(t   )d  h ( ) s(t) t3  (0,0) t0 t1 t 0 t2 h (t   ) h (  ) -t3 -t2 0   -t3+t -t2+t
  • 152. Convolução  Observe que g(t) = 0 para t  [t0  t2 , t1  t3 ]
  • 153. Convolução Discreta Linear  Convolução linear entre s[n] e h[n]  g[n]  s[n ] * h[n]   s[ ]h[n   ]     Se s[n] e h[n] têm N0 e N1 amostras, respectivamente => extensão com zeros: N 1 g[n]  s[n] * h[n]   s[ ]h[n   ]  0 com N = N0 + N1 – 1.
  • 154. Convolução Discreta Linear 6 s ( ) 6 h ( ) 4 4 2 2 0 1 2 3 4 5  6 0 1 2 3 4 5  6 h (  ) 6 h(n   ) 4 4 2 2  -5 -4 -3 -2 -1 0 1 n 
  • 155. Convolução Discreta Linear 6 s ( ) 4 2 0 1 2 3 4 5  6 6 h (  ) 4  g[0] = 3 2 -5 -4 -3 -2 -1 0 1 
  • 156. Convolução Discreta Linear 6 s ( ) 4 2 0 1 2 3 4 5  6 6 h (1   ) 4  g[0] = 3 2   g[1] = 8 -5 -4 -3 -2 -1 0 1
  • 157. Convolução Discreta Linear 6 s[n] 6 h[n] 4 4 2 2 0 1 2 3 4 5 6 n 0 1 2 3 4 5 n 30 g[n] = s[n]* h[n] 20 10 0 1 2 3 4 5 6 7 8 9 10 11 n
  • 158. Convolução Discreta Linear s[n] Filtro g[n] h[n]  g[n]  s[n ] * h[n]   s[ ]h[n   ]   
  • 159. Impulso Unitário  Delta de Dirac ou (t) impulso unitário 1 contínuo  Duração = 0  Área = 1 0 t [n]  Delta de Kronecker ou impulso unitário 1 discreto 0 n
  • 160. Sinais = somatório de impulsos  Delta de Kronecker A[n-n0] A 0 n0 n s[n]  s[0] [n]  s[1] [n  1]  .... s[ N  1] [n  ( N  1)] N 1 s[n]   s[ ] [n   ]  0
  • 161. Resposta ao impulso  Resposta de um filtro a s[n]: N 1 N 1 g[ n]   s[ ]h[n   ]   h[ ]s[n   ]  0  0  Resposta de um filtro ao impulso N 1 N 1 g[ n]   [ ]h[n  ]   [n   ]h[ ]  0  0 N 1 h[n]   [n   ]h[ ]  0
  • 162. Resposta ao impulso  h[n]:  Resposta ao impulso  Máscara convolucional  Kernel do filtro  Vetor de coeficientes do filtro
  • 163. Filtros FIR  Finite Impulse Response N 1 y[n]   ak x[n  k ] k 0 ak  h[k ]
  • 164. Filtros IIR  Infinite Impulse Response N 1 M 1 y[n]   ak x[n  k ]   bk y[n  k ] k 0 k 1  Filtros recursivos
  • 165. Filtros IIR (exemplo)  Encontre a resposta ao impulso do seguinte sistema recursivo. Supor que o sistema está originalmente relaxado (y[n] = 0 para n < 0) y[n] = x[n] - x[n-1] – 0,5y[n-1]
  • 166. Filtros IIR (exemplo)  Exemplo:  y[n] = x[n] - x[n-1] – 0,5y[n-1]  y[0] = delta[0]–delta[-1]–0,5y[-1] = 1  y[1] = delta[1]–delta[0]–0,5y[0] = -1,5  y[2] = delta[2]–delta[1]–0,5y[1] = 0,75  y[3]= delta[3]–delta[2]–0,5y[2] = -0,325  y[n] = -0,5y[n-1], n > 1
  • 167. Filtros IIR (exemplo 2)  Exemplo: encontre a resposta ao impulso do seguinte sistema recursivo. Supor que o sistema está originalmente relaxado (y[n] = 0 para n < 0) y[n] - y[n-1] = x[n] - x[n-4]
  • 168. Filtros IIR (exemplo 2)  Exemplo (Solução)  y[n] = y[n-1] + x[n] - x[n-4]  y[0] = y[-1] + delta[0] - delta[-4] = 1  y[1] = y[0] + delta[1] - delta[-3] = 1  y[2] = y[1] + delta[2] - delta[-2] = 1  y[3] = y[2] + delta[3] - delta[-1] = 1  y[4] = y[3] + delta[4] - delta[0] = 0  y[5] = y[4] + delta[5] - delta[1] = 0  y[6] = y[7] = ... = 0
  • 169. Convolução Discreta Circular  Sinais s[n] e h[n] com N0 e N1 amostras, respectivamente => extensão com zeros: s[n ], 0  n  N 0 h[n ], 0  n  N1 s e [n ]   he [n ]   0, N 0  n  N 0, N1  n  N  Extensão periódica: considera-se que se[n] e he[n] são períodos de sp[n] e hp[n]  Convolução circular: N 1 g p [n]  s[n]  h[n]   s p [ ]h p [n   ]  0
  • 170. Convolução Circular x Linear  Fazendo-se N = N0 + N1 – 1 s[n]  h[n]  s[n] * h[n]
  • 171. Convolução de Imagens  f[i, j] (R0xC0) e h[i, j] (R1xC1): extensão por zeros R 1 C 1 g[i, j ]  f [i, j ] * h[i, j ]    f [ ,  ]h[i   , j   ]  0  0 R 1 C 1 g p [i, j ]  f [i, j ]  h[i, j ]    f p [ ,  ]h p [i   , j   ]  0   0  Iguais se R=R0+R1–1 e C=C0+C1–1
  • 172. Máscaras Convolucionais 1 1 1 1 0 -1 -1 -1 -1 0 0 0 1 0 -1 -1 8 -1 -1 -1 -1 1 0 -1 -1 -1 -1 1/9 1/9 1/9 0.025 0.1 0.025 1/9 1/9 1/9 0.1 0.5 0.1 1/9 1/9 1/9 0.025 0.1 0.025
  • 173. Operador de Bordas de Kirsch 5 5 5 -3 5 5 -3 -3 5 -3 0 -3 -3 0 5 -3 0 5 -3 -3 -3 -3 -3 -3 -3 -3 5 -3 -3 -3 -3 -3 -3 ... -3 0 5 -3 0 -3 -3 5 5 5 5 5  Filtragem sucessiva com cada máscara  Pixel de saída recebe o valor máximo
  • 174. Máscaras Convolucionais  Em geral:  Máscaras de integração somam para 1  Máscaras de diferenciação somam para 0
  • 175. Transformada z  Transformada z de x[n]:  Z{x[n]}  X [ z ]   x[n] z  n n   z: variável complexa
  • 176. Propriedades da Transformada z  Linearidade: Se x[n] = ax1[n] + bx2[n], (a e b: constantes arbitrárias), então: X [ z]  aX1[ z]  bX 2 [ z]
  • 177. Propriedades da Transformada z  Deslocamento: Z{x[n+k]} = zkX[z], k inteiro  Prova:  Z{x[n  k ]}   x[n  k ]z  n n    Fazendo m = n+k:   Z{x[n  k ]}   x[m]z  (n  k )  z k  x[m]z  n  z k X [ z ] m   m  
  • 178. Propriedades da Transformada z  Convolução:  y[n]  h[n] * x[n]   h[k ]x[n  k ]  Y [ z]  H [ z] X [ z] k    Se h[n] é a resposta ao impulso de um filtro, H[z] é a função de transferência do filtro
  • 179. Propriedades da Transformada z  Convolução (Prova)     n Z{h[n] * x[n]}     h[k ]x[n  k ] z n   k           h[k ]x[n  k ]z  n k   n       h[k ]z  k  x[n]z  n k   n    H [ z] X [ z]
  • 180. Função de Transferência  Equação de diferenças de um filtro N 1 M 1 y[n]   ak x[n  k ]   bk y[n  k ] k 0 k 1 M 1 N 1  bk y[n  k ]   ak x[n  k ] k 0 k 0 b0  1
  • 181. Função de Transferência  Transformada Z da Equação de diferenças M 1     N 1    Z   bk y[n  k ]  Z   a k x[n  k ]  k 0     k 0    M 1 N 1  bk Z{ y[n  k ]}   ak Z{ x[n  k ]} k 0 k 0 M 1 N 1  bk z  k Y [ z ]   ak z  k X [z ] k 0 k 0
  • 182. Função de Transferência  Aplicando a transformada z em ambos os lados e simplificando: N 1  ak z  k Y [ z] k 0 H [ z]   X [ z] M 1 1  bk z  k k 1  Pólos: raízes do denominador  Zeros: raízes do numerador  Pólos e zeros: estabilidade
  • 183. Função de Transferência  BIBO: Bounded-input, bounded- output  Sistemas BIBO-estáveis: sistemas causais tais que:   | h[k ] |   k 0
  • 184. Estimação da Resposta em Freqüência  Resposta em freq. a partir de H[z]  H [ z]   h[n]z  n n    H [ e j ]   h[n]e  jn , 0    2 n    Comparar com N 1 j 2un 1  F [u ]  N  s[n]e N n 0
  • 185. Estimação da Resposta em Freqüência  Exemplo: encontre a resposta em freqüência do filtro y[n] = (x[n] + x[n-1])/2 utilizando a transformada Z Y[z] = (X[z] + z-1X[z] )/2 = X[z](1+z-1)/2 H[z] = (1+z-1)/2 H[ejw] = (1+e-jw)/2 = e-jw/2 (ejw/2 + e-jw/2)/2 = e-jw/2cos(w/2)  |H[ejw]| = cos(w/2), -pi< w < pi
  • 186. Estimação da Resposta em Freqüência  Exemplo: encontre a resposta em freqüência do filtro y[n] = (x[n] - x[n-1])/2 utilizando a transformada Z Y[z] = (X[z] - z-1X[z] )/2 = X[z](1-z-1)/2 H[z] = (1-z-1)/2 H[ejw] = (1-e-jw)/2 = e-jw/2 (ejw/2 - e-jw/2)/2 = je-jw/2sen(w/2)  |H[ejw]| = |sen(w/2)|, -pi< w < pi
  • 187. Correlação  Convolução:  g[n]  s[n ] * h[n]   s[ ]h[n   ]     Correlação:  g[n]  s[n]  h[n]   s[ ]h[  n]     Quando um dos sinais é par, correlação = convolução
  • 188. Correlação  Exemplo: h[-1] = 3; h[0] = 7; h[1] = 5; s[0..15] = {3, 2, 4, 1, 3, 8, 4, 0, 3, 8, 0, 7, 7, 7, 1, 2}  Extensão com zeros
  • 189. Correlação  Exemplo: g[1]  s[0]h[1]  15 1 g[0]   s[ ]h[ ]  s[0]h[0]  s[1]h[1]  31  0 2 g[1]   s[ ]h[  1]  s[0]h[1]  s[1]h[0]  s[2]h[1]  43  0 3 g[2]   s[ ]h[  2]  s[1]h[1]  s[2]h[0]  s[3]h[1]  39  1 ...
  • 190. Correlação  Exemplo: g[0..15] = 31, 43, 39, 34, 64, 85, 52, 27, 61, 65, 59, 84, 105, 75, 38, 27  Observe que g[5] é elevado, pois é obtido centrando h em s[5] e calculando a correlação entre (3, 7, 5) e (3, 8, 4)  Mas g[12] é ainda maior, devido aos valores elevados de s[11..13]
  • 191. Correlação Normalizada  A correlação normalizada elimina a dependência dos valores absolutos dos sinais:   s[ ]h[  n] g[n]  s[n]  h[n]        ( s[ ]) 2  (h[  n]) 2      
  • 192. Correlação Normalizada  Resultado para o exemplo anterior:  g[0..15] = .??? .877 .934 .73 .81 .989 .64 .59 .78 .835 .61 .931 .95 .83 .57 .???  Valor máximo: g[5]
  • 193. Detecção e estimação Fonte: http://www.dspguide.com/ch7/3.htm
  • 194. Detecção e estimação  Gaivota, “filtro casado” (olho) e imagem de correlação normalizada (máximo no olho) Fonte: http://www.dca.fee.unicamp.br/dipcourse/html-dip/c6/s5/front-page.html
  • 195. Estimação Espectral  O cálculo direto do espectro de amplitudes e fases não é fidedigno  O espectro pode variar muito em diferentes seções de um mesmo sinal.  Variância é um indicador de qualidade  O problema pode ser causado por ruído, escassez de dados, comportamento não estacionário etc.
  • 196. Periodograma  O quadrado do módulo do espectro de amplitudes: densidade espectral de potência (PSD), ou espectro de potência  Periodograma: dividir sinal em K seções adjacentes (com ou sem intersecção) de mesmo tamanho; obter PSD de cada seção; obter média das PSDs  Variância se reduz por fator K1/2  Resolução espectral diminui
  • 197. Janelamento (windowing)  Todo sinal discreto obtido a partir de um sinal analógico é resultado da multiplicação de um sinal discreto de duração infinita por um pulso, ou janela, retangular: 1 0  n  N wn   0 caso contrário
  • 198. Janelamento (windowing)  A janela retangular pode gerar grandes descontinuidades na forma de onda original
  • 199. Janelamento (windowing)  Multiplicação no tempo equivale a convolução na freqüência (Fourier)  DFT da janela retangular: função sinc (sine cardinal, kernel de Dirichlet, função de amostragem): 1 x0  sinc( x)   sen x  x caso contrário 
  • 200. Janelamento (windowing)  A convolução com um sinc introduz distorções no espectro  Janelas mais “suaves” reduzem estas distorções, mas distorcem mais as amostras centrais-> Compromisso  Dezenas dessas janelas tem sido avaliadas e utilizadas em diversas aplicações
  • 201. Janela de Hamming   2n  0,54  0,46 cos  0nN wn    N 1 0 caso contrário 
  • 202. Janela de Hamming  Seno multiplicado por janela retangular e de Hamming
  • 203. Janela de Hamming  DFT de seno multiplicado por janela retangular e de Hamming
  • 204. Outras Janelas  Blackman-Harris, Dolph-Chebyshev, Kaiser-Bessel (superiores?)  Tukey, Poisson, Hanning etc
  • 205. Dissolve Cruzado  ht (i, j)= (1 - t) f(i, j) + t g(i, j)  t é um escalar no intervalo [0, 1]
  • 206. Dissolve Cruzado t = 0,3 t = 0,5 t = 0,7
  • 207. Dissolve Cruzado Não- Uniforme  ht(i, j)= [1 - t(i, j)] f(i, j) + t(i, j) g(i, j)  t é uma matriz com as mesmas dimensões de f e g cujos elementos assumem valores no intervalo [0, 1]
  • 208. Dissolve Cruzado Não- Uniforme t(i,j)=(i+j)/(R+C-2) t(i,j)=j/(C-1) t(i,j)=i/(R-1)
  • 209. Detecção de Movimento L  1, se | f1  f 2 | Lt g 0, caso contrario f1 f2 g
  • 210. Redução de Ruído por Média de Imagens  f[i, j] imagem sem ruído  nk(i, j) ruído de média m  gk[i,j] = f[i,j] + nk(i,j) M  1 g [i, j ]  g k [i, j ] M k 1
  • 211. Redução de Ruído por Média de Imagens M  1 g [i, j ]  ( f [i, j ]  nk (i, j )) M k 1 M  1 g [i, j ]  f [i, j ]  nk (i, j ) M k 1  Para M grande: g[i, j ]  f [i, j ]  m
  • 212. Operações Topológicas  Rígidas  Translação  Rebatimento  Rotação  Mudança de Escala  Não rígidas (Warping)
  • 213. Rotação  Rotação em torno de (ic, jc) i'  (i  ic ) cos   ( j  jc ) sen   ic j '  (i  ic ) sen   ( j  jc ) cos   jc
  • 214. Rotação e Rebatimento Imagem original Rebatimento pela Rotação de 90 diagonal graus em torno de (R/2,C/2)
  • 215. Ampliação (Zoom in)  Por replicação de pixels Original Ampliação por fator 3 10 10 10 10 10 10 10 10 20 30 10 10 10 10 10 10 10 10 10 10 10 10 20 20 20 30 30 30 20 20 20 30 30 30 20 20 20 30 30 30
  • 216. Ampliação (Zoom in)  Por interpolação bilinear Original Ampliação por fator 3 10 10 10 10 10 10 10 10 20 30 Interpolação nas linhas Passos de níveis de cinza: 20 23 27 30 33 37 10 a 10: 0 20 a 30: (30-20)/3 = 3,3
  • 217. Ampliação (Zoom in)  Por interpolação bilinear Original Ampliação por fator 3 10 10 10 10 10 10 10 10 20 30 13 14 16 17 18 19 Interpolação nas colunas 17 19 21 23 25 28 Passos de níveis de cinza: 20 23 27 30 33 37 10 a 20: (20-10)/3 = 3,3 10 a 23: (23-10)/3 = 4,3 23 27 33 37 41 46 10 a 27: (27-10)/3 = 5,7 27 32 38 43 48 55 ...
  • 218. Ampliação (Zoom in)  Exemplo: Ampliação por fator 10 Original Replicação Interpolação
  • 219. Redução (Zoom out)  Por eliminação de pixel  Por Média Original Redução por fator 3 10 10 10 10 10 10 14 18 13 14 16 17 18 19 28 41 17 19 21 23 25 28 20 23 27 30 33 37 23 27 33 37 41 46 27 32 38 43 48 55
  • 220. Reconstrução de Imagens  Zoom por fatores não inteiros  Ex: F = 3,75432  Operações elásticas, etc.  Técnicas mais avançadas devem ser utilizadas  Uma dessas técnicas é a reconstrução de imagens
  • 221. Reconstrução de imagens  Dados f(i,j), f(i,j+1), f(i+1,j), f(i+1,j+1) (i, j) (i, y) (i, j+1)  Reconstrução: Encontrar f(x,y), (x,y) x em [i, i+1] y em [j, j+1] (i+1, j) (i+1, y) (i+1, j+1)
  • 222. Reconstrução de imagens por interpolação bilinear  f(i, y) = f(i, j)+(y–j)[f(i, j+1)-f(i, j)]  f(i+1,y)=f(i+1,j)+(y–j)[f(i+1,j+1)-f(i+1, j)]  f(x, y) = f(i, y) + (x – i) [f(i+1, y) - f(i, y)] (i, j) (i, y) (i, j+1) (x,y) (i+1, j) (i+1, y) (i+1, j+1)
  • 223. Reconstrução de imagens  Ex: f(10.5, 15.2)=?  f(10, 15) = 10; f(10, 16) = 20; f(11,15) = 30; f(11, 16) = 30
  • 224. Reconstrução de imagens Solução: x = 10.5; y = 15.2 => i = 10; j = 15 f(i, y) = f(i, j)+(y–j)[f(i, j+1)-f(i, j)] f(10, 15.2)=f(10,15)+(15.2-15)*[f(10,16)-f(10,15) = 10 + 0.2*[20 – 10] = 12 f(i+1,y)=f(i+1,j)+(y–j)[f(i+1,j+1)-f(i+1, j)] f(11, 15.2)=f(11,15)+(15.2-15)*[f(11,16)-f(11,15) =30 + 0.2*[30 – 30] = 30 f(x, y) = f(i, y) + (x–i) [f(i+1, y) - f(i, y)] f(10.5, 15.2)=12+(10.5-10)*[30-12] =21
  • 225. Zoom por reconstrução de imagens Ex: Ampliação por fator 2.3 Passo para as coordenadas: 1/2.3 = 0.43 x = 0, 0.43, 0. 87, 1.30, 1.74, 2.17, 2.61, 3.04... y = 0, 0.43, 0. 87, 1.30, 1.74, 2.17, 2.61, 3.04... g(0,0) = f(0,0); g(0,1) = f(0, 0.43); g(0,2) = f(0, 0.87); g(0,3) = f(0, 1.30);... Ex: Redução por fator 2.3 x = 0, 2.3, 4.6, 6.9, 9.2, 11.5, 13.8... y = 0, 2.3, 4.6, 6.9, 9.2, 11.5, 13.8... g(0,0) = f(0,0); g(0,1) = f(0, 2.3); g(0,2) = f(0, 4.6); g(0,3) = f(0,6.9);...
  • 226. Operações Topológicas Não Rígidas (warping)  Warping = distorção  Zoom por fator F(i, j)  Rotação por ângulo teta(i,j)  Translação com deslocamento d(i,j)  Warping especificado pelo usuário
  • 227. Warping baseado em Campos  Entretenimento  Efeitos especiais, morphing  Correção de distorções óticas  Alinhamento de elementos correspondentes em duas ou mais imagens (registro)  Modelagem e visualização de deformações físicas
  • 228. Warping baseado em Campos 1. Características importantes da imagem são marcados por segmentos de reta orientados (vetores de referência) 2. Para cada vetor de referência, um vetor alvo é especificado, indicando a transformação que se pretende realizar
  • 229. Warping baseado em Campos 3. Para cada par de vetores referência-alvo, encontra-se o ponto X’ para onde um ponto X da imagem deve migrar, de forma que as relações espaciais entre X’ e o vetor alvo sejam idênticas àquelas entre X e o vetor de referência 4. Parâmetros para as relações espaciais : u e v
  • 230. Warping baseado em Campos
  • 231. Warping baseado em Campos  u: representa o deslocamento normalizado de P até O no sentido do vetor PQ (Normalizado: dividido pelo módulo de PQ)  |v|: distância de X à reta suporte de PQ
  • 232. Warping baseado em Campos  Se O=P, u = 0  Se O=Q, u = 1  Se O entre P e Q, 0<u<1;  Se O após Q, u>1  Se O antes de P, u<0
  • 233. Warping baseado em Campos  Encontrar u e v: norma, produto interno, vetores perpendiculares, projeção de um vetor sobre outro.  Vetores a = (x1, y1) e b = (x2, y2)  Norma de a: || a ||  x  y 2 1 2 1  Produto interno: a.b = x1x2 +y1y2
  • 234. Warping baseado em Campos  “Norma” da projeção de a sobre b (o sinal indica o sentido em relação a b) a a.b || c ||  || b || b c
  • 235. Warping baseado em Campos  Vetor b = (x2, y2) perpendicular a a = (x1, y1) e de norma igual à de a: b a  Perpendicularidade: x1x2 +y1y2 = 0  Mesma norma: x22 + y22 = x12 + y12
  • 236. Warping baseado em Campos  Soluções: x2 = y1, y2 = -x1 x2 = -y1, y2 = x1 b a b’
  • 237. Warping baseado em Campos  Parâmetro u: “norma” da projeção de PX sobre PQ, dividido pela norma de PQ PX .PQ u 2 || PQ ||
  • 238. Warping baseado em Campos  P = (xp,yp), Q = (xq, yq), X = (x,y) PX .PQ u 2 || PQ || u = (x - xp).(xq - xp) + (y -yp)(yq – yp) (xq-xp)2 + (yq-yp)2
  • 239. Warping baseado em Campos  Parâmetro v: distância de X à reta suporte de PQ PX .  PQ v || PQ ||  v: vetor perpendicular a v e de mesma norma que este.
  • 240. Warping baseado em Campos  PQ = (Xq-Xp, Yq-Yp) PQ1 = (Yq–Yp, Xp-Xq) PQ2 = (Yp–Yq, Xq-Xp)  Vamos usar PQ1
  • 241. Warping baseado em Campos  Parâmetro v: PX .  PQ v || PQ || v = (x-xp)(yq-yp) + (y-yp)(xp–xq) [(xq-xp)2 + (yq-yp)2]1/2
  • 242. Warping baseado em Campos  Cálculo de X’: v.  P ' Q' X '  P'u.P' Q' || P' Q' ||
  • 243. Warping baseado em Campos PX .PQ u 2 || PQ || PX .  PQ v || PQ || v.  P ' Q' X '  P'u.P' Q' || P' Q' ||
  • 244. Warping baseado em Campos  Quando há mais de um par de vetores referência-alvo, cada pixel sofre a influência de todos os pares de vetores  Será encontrado um ponto Xi’ diferente para cada par de vetores referência-alvo.  Os diferentes pontos para os quais o ponto X da imagem original seria levado por cada par de vetores referência-alvo são combinados por intermédio de uma média ponderada, produzindo o ponto X’ para onde X será efetivamente levado.
  • 245. Warping baseado em Campos
  • 246. Warping baseado em Campos  Peso da coordenada definida pelo i-ésimo par de vetores de referência-alvo: di: Distância entre X e o segmento PiQi li: ||Pi Qi|| a, b e p : Parâmetros não negativos
  • 247. Warping baseado em Campos  Relação inversa com a distância entre a reta e o ponto X  Parâmetro a : Aderência ao segmento  a = 0 (Peso infinito ou aderência máxima)
  • 248. Warping baseado em Campos  Parâmetro p controla a importância do tamanho do segmento  p = 0: independe do tamanho do segmento
  • 249. Warping baseado em Campos  Parâmetro b controla a forma como a influência decresce em função da distância  b = 0: peso independe da distância
  • 250. Warping baseado em Campos  Bons resultados são obtidos com: a entre 0 e 1 b=2 p = 0 ou p = 1.
  • 251. Warping baseado em Campos  Exemplo: P0 = (40, 10); Q0 = (20, 5) P0’ = (35, 15); Q0’ = (25, 20) 0 5 10 15 20 25 30 35 40 45 50 55 60 P1 = (20, 30); Q1 = (10, 35) 0 Q1‟ P1’ = (25, 50); Q1’ = (5, 40) 5 Q1 X = (20, 25) 10 u0 = [(20-40) (20-40) + (25- 15 10)(5-10)] / [(20-40)2+ X (5-10)2] = 0.76 20 Q0 P1 v0 = [(20-40) (5-10) + (25- 25 Q0‟ P1‟ 10)(40-20)] / [(20-40)2+ 30 (5-10)2]1/2 = 19.40 35 X0’ = (35, 10) + 0.76 (25-35, P0‟ 20-15) + 19.4 (20-15, 35- 40 P0 X0‟ 25) / [(25-35)2 + (20- 45 15)2]1/2 X0’ = (36.03, 31.17) 50
  • 252. Warping baseado em Campos  Exemplo (cont): u1 = [(20-20) (10-20) + (25-30)(35-30)] / [(10- 20)2+ (35-30)2] = - 0.2 0 5 10 15 20 25 30 35 40 45 50 55 60 v1 = [(20-20) (35-30) + 0 (25-30)(20-10)] / [(10- 5 Q1‟ 20)2+ (35-30)2]1/2 = - 10 Q1 4,47 15 X1’ = (25, 50) - 0.2 (5-25, X 40-50) -4,47 (40-50, 20 Q0 25-5) / [(25-5)2 + (40- 25 Q0‟ P1 50)2]1/2 P1‟ X1’ = (25, 50) + (4.6, 2) + 30 (2, -3.99) = (31.6, 35 X1‟ 48,01) 40 P0‟ X0‟ P0 45 50
  • 253. Warping baseado em Campos  Exemplo (cont): Dados a = 0.1; b = 2; p= 0 wi = 1/[0.1+di]2 d0 = v0 = 19.4 => w0 = 0 5 10 15 20 25 30 35 40 45 50 55 60 0.0026 0 5 Q1‟ d1 = distância de X a P1 = Q1 [(20-20)2 + (25-30)2]1/2 10 = 5 =>: w1 = 0.0384 15 X’ = [0.0026* (36.03, 20 Q0 X 31.17) + 0.0384*(31.6, P1 48,01)]/( 0.0026+ 25 Q0‟ P1‟ 0.0384) 30 X‟ X’ = (31.88, 46,94) X1‟ 35 P0‟ X0‟ 40 P0 45 50
  • 254. Morphing  Interpolação de formas e cores entre duas imagens distintas (f0 e fN-1)  Encontrar imagens f1, f2, ..., fN-2: transição gradual de f0 a fN-1  Efeitos especiais na publicidade e na indústria cinematográfica; realidade virtual; compressão de vídeo; etc.
  • 255. Morphing
  • 256. Morphing Warping de f0 cki f0 fN-1 ai bi “+” Warping de fN-1 cki
  • 257. Morphing ai c1i c2i c3i c4i c5i c6i c7i c8i c9i bi
  • 258. Morphing
  • 259. Técnicas no Domínio da Freqüência  Conversão ao domínio da freqüência: transformadas  Processamento e análise no domínio da freqüência  Fourier, Cosseno Discreta, Wavelets, etc.
  • 260. Cosseno Analógico  f: freqüência x(t )  A cos2ft     T=1/f: período A   : fase  A: amplitude  Gráfico para fase nula e A>0 T
  • 261. Uma Família de Funções Cosseno Analógicas xk (t )  Ak cos2f k t   k , k  0, 1, ..., N  1  fk: freqüência do k-ésimo cosseno  Tk =1/fk: período do k-ésimo cosseno   k : fase do k-ésimo cosseno  Ak: amplitude do k-ésimo cosseno
  • 262. Uma Família de Funções Cosseno Discretas x k [n]  Ak cos2f k n   k , n  0,1,...,N  1 k = 0,1,...N-1
  • 263. Uma Família de Funções Cosseno Discretas 1/ 2 2 Ak    ck X k N 1/2 1/2  para k  0 ck  1  para k  1, 2, ... N - 1 k 2N k fk  Tk  k  2N k 2N 1/ 2 2  (2n  1)k  x k [n ]    c k X k cos  , n  0,1,...,N  1 N  2N 
  • 264. Uma Família de Funções Cosseno Discretas 1/ 2 2  (2n  1)k  x k [n ]    c k X k cos  , n  0,1,...,N  1 N  2N   f0  0 1/ 2  2  1 1/ 2 k 0  x0[n]      X 0 , n  0,1,...,N  1  0  0  N  2 1 k  1  f1   T1  2 N (meio-período em N amostras) 2N N 1 2N k  N  1  f N 1   TN 1  2N N 1
  • 265. Uma Família de Funções Cosseno Discretas  xk[n] (N = 64, Xk = 10). 2 1 0 -1 -2 0 10 20 30 40 50 60 70 k=1 Meio-ciclo
  • 266. Uma Família de Funções Cosseno Discretas 2 1 k=2 0 1 ciclo -1 -2 0 10 20 30 40 50 60 70 2 1 k=3 0 1,5 ciclo -1 -2 0 10 20 30 40 50 60 70
  • 267. Uma Família de Funções Cosseno Discretas 2 k=32 1 16 ciclos 0 -1 -2 0 10 20 30 40 50 60 70 2 1 Para 0 visualização -1 -2 0 10 20 30 40 50 60 70
  • 268. Uma Família de Funções Cosseno Discretas 2 k=63 1 31,5 ciclos 0 -1 -2 0 10 20 30 40 50 60 70 2 1 Para 0 visualização -1 -2 0 10 20 30 40 50 60 70
  • 269. Uma Família de Funções Cosseno Discretas  Amostragem de um sinal periódico não necessariamente produz um sinal de mesmo período (ou mesmo periódico).
  • 270. Somando Cossenos Discretos  Criar um sinal x[n] somando-se os sinais xk[n], k = 0...N-1, amostra a amostra: N 1 x[n]   x k [n], n 0,1,...,N  1 k 0 1 / 2 N 1 2  (2n  1)k  x[n ]     ck X k cos  2 N , n  0,1,...,N  1 N k 0  
  • 271. Somando Cossenos Discretos  Exemplo:  N = 8; X0 = 10; X1 = 5; X2 = 8,5; X3 = 2; X4 = 1; X5 = 1,5; X6 = 0; X7 = 0,1. 5 1/ 2 11 4 x 0 [n ]    10 22 3 =3.5355 2 0 2 4 6 8
  • 272. Somando Cossenos Discretos  X1 = 5 4 5  (2n  1)  x1 [n ]  cos  2 2  16   0 =2.4520; 2.0787; 1.3889; -2 0.4877; -0.4877; -1.3889; -4 0 2 4 6 8 -2.0787; -2.4520 6 4 x0[n]+x1[n] 2 0 0 2 4 6 8
  • 273. Somando Cossenos Discretos  X2 = 8,5 8.5  (2n  1)2  x 2 [n ]  4 cos   2 2  16  0 = 3.9265; 1.6264; -1.6264; -2 -3.9265; -3.9265; -1.626; -4 0 2 4 6 8 1.6264; 3.9265 10 5 x0[n]+x1[n] +x2[n] 0 -5 0 2 4 6 8
  • 274. Somando Cossenos Discretos  X3 = 2 1 2  (2n  1)3  x 3 [n ]  cos   0.5 2  16  0 = 0.8315; -0.1951; -0.9808; -0.5 -0.5556; 0.5556; 0.9808; -1 0 2 4 6 8 0.1951; -0.8315 15 10 5 x0[n]+x1[n]+x2[n]+x3[n] 0 -5 0 2 4 6 8
  • 275. Somando Cossenos Discretos  X4 = 1 0.4 1  (2n  1)4  x 4 [n ]  cos     0.2 2 16 0 = 0.3536; -0.3536; -0.3536; -0.2 0.3536; 0.3536; -0.3536; -0.4 0 2 4 6 8 -0.3536; 0.3536 15 10 5 x0[n]+x1[n]+x2[n]+x3[n] 0 +x4[n] -5 0 2 4 6 8
  • 276. Somando Cossenos Discretos  X5 = 1,5 1 1.5  (2n  1)5  x 5 [n ]  cos     0.5 2 16 0 -0.5 = 0.4167 -0.7356 0.1463 0.6236 -0.6236 -0.1463 -1 0 2 4 6 8 0.7356 -0.4167 15 10 5 x0[n]+x1[n]+x2[n]+x3[n] 0 +x4[n]+x5[n] -5 0 2 4 6 8
  • 277. Somando Cossenos Discretos  X6 = 0 0  (2n  1)6  x 6 [n ]  cos  1 0.5 2  16   =0 0 -0.5 -1 0 2 4 6 8 15 10 5 x0[n]+x1[n]+x2[n]+x3[n] 0 +x4[n]+x5[n]+x6[n] -5 0 2 4 6 8
  • 278. Somando Cossenos Discretos  X7 = 0,1 0.1  (2n  1)7  x 7 [n ]  0.05 cos   2  16  0 = 0.0098; -0.0278; 0.0416; -0.0490’; 0.0490; -0.0416; -0.05 0 2 4 6 8 0.0278; -0.0098 15 10 5 x[n]=x0[n]+x1[n]+x2[n]+ 0 x3[n] +x4[n]+x5[n]+x6[n] -5 +x7[n] 0 2 4 6 8
  • 279. Somando Cossenos Discretos  X[k] é um sinal digital: X[k]= X0, X1,...XN-1  Exemplo: X[k]=10;5;8.5;2;1;1.5;0;0.1  Dado X[k] pode-se obter x[n]  X[k]: representação alternativa para x[n] X[k] x[n] 10 15 10 5 5 0 0 -5 0 2 4 6 8 0 2 4 6 8
  • 280. Somando Cossenos Discretos  xk[n]: cosseno componente de x[n], de freqüência fk = k/2N; ou  xk[n]: componente de freqüência fk = k/2N;  X[k]: Diretamente relacionado com a amplitude da componente de freqüência fk = k/2N  X[k] representa a importância da componente de freqüência fk = k/2N
  • 281. Transformada Cosseno Discreta (DCT)  DCT de x[n]: 1/ 2 N 1 2  (2n  1)k  X [k ]    ck  x[n] cos  , k  0,1,...,N  1 N n 0  2N   Transformada DCT inversa (IDCT) de X[k]: 1 / 2 N 1 2  (2n  1)k  x[n]     ck X [k ] cos  2 N , n  0,1,...,N  1 N k 0  
  • 282. Transformada Cosseno Discreta (DCT)  X[k]: coeficientes DCT  X: representação de x no domínio da freqüência  X[0]: coeficiente DC (Direct Current)  X[1]...X[N-1]: coeficientes AC (Alternate Current)  Complexidade  Algoritmos eficientes: FDCT
  • 283. DCT – Exemplo 1 g1 0.1 0 -0.1 -0.2 0 20 40 60 80 100 120 g3 g1+ g3 2 2 1 1 0 0 -1 -1 -2 -2 0 20 40 60 80 100 120 0 20 40 60 80 100 120
  • 284. DCT – Exemplo 1 (Cont.) g10 g1+g3+g10 2 2 1 1 0 0 -1 -1 -2 -2 0 20 40 60 80 100 120 0 20 40 60 80 100 120 g118 g1+g3+g10+g118 + 2 0.1 1 0 0 -0.1 -1 -2 -0.2 0 20 40 60 80 100 120 0 20 40 60 80 100 120
  • 285. DCT – Exemplo 2 60  1 π  f1[n]  29.99 cos 2 π n  40  2N 2N  20 0 -20 -40 -60 0 10 20 30 40 50 60 60  2 π  150 f1  f 2 f 2 [n]  48.54 cos 2 π n  40  2N 2N  100 20 50 0 -20 0 -40 -50 -60 - 0 10 20 30 40 50 60 0 10 20 30 40 50 60
  • 286. DCT – Exemplo 2 (Cont.) 60  3 π  150 f1  f 2  f 3 f 3 [n]  34.23 cos 2 π n  40  2N 2N  100 20 50 0 -20 0 -40 -50 -60 - 0 10 20 30 40 50 60 1000 10 20 30 40 50 60 60  4 π  150 f1  f 2  ...  f 4 f 4 [n]  -35.19 cos 2π n  40  2N 2N  100 20 50 0 -20 0 -40 -50 -60 - 0 10 20 30 40 50 60 0 10 20 30 40 50 60
  • 287. DCT – Exemplo 2 (Cont.) 150 60  5 π  f 1  f 2  ...  f 6 f 5 [n]  -34.55 cos 2π n  40  2N 2N  100 20 50 0 0 -20 -50 -40 - -60 100 0 10 20 30 40 50 60 0 10 20 30 40 50 60 150 60  6 π  f 1  f 2  ...  f 6 f 6 [n]  -33.29 cos 2 π n  40  2N 2N  100 20 50 0 0 -20 -50 -40 -60 - 100 0 10 20 30 40 50 60 0 10 20 30 40 50 60
  • 288. DCT – Exemplo 2 (Cont.) 200 60  7 π  f 1  f 2  ...  f 7 f 7 [n]  -63.42 cos 2π n  150 40  2N 2N  100 20 50 0 0 -20 -40 -50 -60 - 1000 10 20 30 40 50 60 0 10 20 30 40 50 60 60  8 π  f1  f 2  ...  f 8 f 8 [n]  -42.82 cos 2π n  200 40  2N 2N  150 20 100 0 50 -20 0 -40 -50 -60 - 0 10 20 30 40 50 60 100
  • 289. DCT – Exemplo 2 (Cont.) 60  9 π  f1  f 2  ...  f 9 f 9 [n]  -10.31cos 2 π n  200 40  2N 2N  150 20 100 0 50 -20 0 -40 -50 -60 - 0 10 20 30 40 50 60 1000 10 20 30 40 50 60 60  10 π  f1  f 2  ...  f10 f10 [n]  7.18 cos 2 π n  200 40  2N 2N  150 20 100 0 50 -20 0 -40 -50 -60 - 0 10 20 30 40 50 60 1000 10 20 30 40 50 60
  • 290. DCT – Exemplo 2 (Cont.) 600 60  20 π  f 1  f 2  ...  f 20 f 20 [n]  -62.24 cos 2π n  40  2N 2N  400 20 0 200 -20 0 -40 -60 - 0 10 20 30 40 50 60 2000 10 20 30 40 50 60 60  40 π  100 f1  f 2  ...  f 40 f 40 [n]  35.54 cos 2 π n  40  2N 2N  0 800 20 600 0 400 -20 200 -40 0 -60 - 200 0 10 20 30 40 50 60 0 10 20 30 40 50 60
  • 291. DCT – Exemplo 2 (Cont.) 60  60 π  120 f1  f 2  ...  f 60 f 60 [n]  -6.73 cos 2π n  0 40  2N 2N  100 0800 20 600 0 400 -20 200 -40 0 -60 - 0 10 20 30 40 50 60 2000 10 20 30 40 50 60 60  63 π  120 f1  f 2  ...  f 63 f 63 [n]  -1.51cos 2 π n   2N 2N  0 100 40 0800 20 600 0 400 -20 200 -40 0 -60 - 0 10 20 30 40 50 60 2000 10 20 30 40 50 60
  • 292. DCT – Exemplo 3 1250 1200 Sinal 1150 1100 eletrocardiográfico, 1050 2048 amostras 1000 950 900 850 0 500 1000 1500 2000 400 DCT do sinal 200 eletrocardiográfico 0 (sem termo DC) -200 -400 0 500 1000 1500 2000
  • 293. DCT – Exemplo 4 20 Onda Quadrada 10 0 -10 -20 0 10 20 30 40 50 60 60 40 DCT da Onda 20 Quadrada 0 -20 -40 -60 0 10 20 30 40 50 60
  • 294. Freqüências em Hz  Ta = 1/fa (Período de amostragem)  N amostras ---- (N-1)Ta segundos 1 1 fa f1  (adimensio nal)  f1   Hz 2N 2( N  1)Ta 2( N  1) fa fa f N 1  ( N  1)  Hz 2( N  1) 2
  • 295. Freqüências em Hz  Aumentar N melhora a resolução de freqüência.  Aumentar fa aumenta a freqüência máxima digitalizável, em Hz.  Dualidade com o domínio do tempo
  • 296. Freqüências em Hz  Sinal de ECG, N= 2048, fa=360Hz  Valores em Hz para k = 14, 70, 683 e 2047 14 70 683 2047
  • 297. Freqüências em Hz  f1 = fa/[2(N-1)] Hz = 360/(2x2047) = 0,087933561  f14 = 14f1 = 1,23 Hz  f70 = 70f1 = 6,16 Hz  f683 = 683f1 = 60,06 Hz  f2047 = 2047f1 = 180 Hz
  • 298. Freqüências em Hz  Observações  fa = 360 Hz <=> Ta = 0,002778 Hz  Tempo total para 2048 amostras = 5,69s  Um batimento cardíaco: aprox. 0,8 s  “Freqüência” Cardíaca: aprox. 1,25 bat./s = 1,25 Hz, ou 75 batimentos/min.  “Freqüência” Cardíaca aprox. igual a f14
  • 299. Freqüências em Hz  Onda quadrada, N = 64, fa = 1Hz  Valores em Hz para k = 7, 8, 9 e 63 60 40 20 0 -20 -40 -60 0 7 9 63
  • 300. Freqüências em Hz  f1 = fa/[2(N-1)] Hz = 1/(2x63) = 0,007936507  f7 = 7f1 = 0,0556 Hz  f8 = 8f1 = 0,0625 Hz  f9 = 9f1 = 0,0714 Hz  f63 = 63f1 = 0,5 Hz  Obs:  Período do sinal = 16 s  Freqüência da onda = 0,0625
  • 301. Freqüências e Conteúdo de Freqüência  Sinal periódico  Freqüência  Freqüências componentes  Sinal não-periódico:  Freqüências componentes
  • 302. Sinais analógicos senoidais  Representação em freqüência de um sinal analógico senoidal?  Sinal analógico senoidal, de freqüência f  fa mínimo para digitalização adequada?  Se f não é múltiplo de f1?
  • 303. Amostragem de Senóides  Cosseno com f=10Hz, fa=100Hz, N=26 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 0 0.05 0.1 0.15 0.2 0.25
  • 304. Amostragem de Senóides  DCT do cosseno com f = 10Hz, fa=100Hz, N=26 4 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 0 5 10 15 20 25 30 35 40 45 50
  • 305. Amostragem de Senóides  Vazamento de freqüência: mais de uma componente de freqüência para uma senóide  Minimizar vazamento de freqüência: aumentar N
  • 306. Amostragem de Senóides  Cosseno com f = 30Hz, fa=100Hz, N=26 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 0 0.05 0.1 0.15 0.2 0.25
  • 307. Amostragem de Senóides  DCT do cosseno com f = 30Hz, fa=100Hz, N=26 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 0 5 10 15 20 25 30 35 40 45 50
  • 308. Amostragem de Senóides  Cosseno com f = 48Hz, fa=100Hz, N=26 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 0 0.05 0.1 0.15 0.2 0.25
  • 309. Amostragem de Senóides  DCT do cosseno com f = 48Hz, fa=100Hz, N=26 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 0 5 10 15 20 25 30 35 40 45 50
  • 310. Amostragem de Senóides  Cosseno com f = 50Hz, fa=100Hz, N=26 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 0 0.05 0.1 0.15 0.2 0.25
  • 311. Amostragem de Senóides  DCT do cosseno com f = 50Hz, fa=100Hz, N=26 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 0 5 10 15 20 25 30 35 40 45 50
  • 312. Amostragem de Senóides  Cosseno com f = 52Hz, fa=100Hz, N=26 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 0 0.05 0.1 0.15 0.2 0.25
  • 313. Amostragem de Senóides  DCT do cosseno com f = 52Hz, fa=100Hz, N=26 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 0 5 10 15 20 25 30 35 40 45 50
  • 314. Amostragem de Senóides  Sinal digital obtido a partir do cosseno de 52Hz é idêntico ao obtido a partir do cosseno de 48 Hz 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 -0.2 -0.2 -0.4 -0.4 -0.6 -0.6 -0.8 -0.8 -1 -1 0 0.0 0.1 0.1 0.2 0.2 0 0.0 0.1 0.1 0.2 0.2
  • 315. Amostragem de Senóides  Cosseno com f = 70Hz, fa=100Hz, N=26 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 0 0.05 0.1 0.15 0.2 0.25
  • 316. Amostragem de Senóides  DCT do cosseno com f = 70Hz, fa=100Hz, N=26 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 0 5 10 15 20 25 30 35 40 45 50
  • 317. Amostragem de Senóides  Sinal digital obtido a partir do cosseno de 70Hz é idêntico ao obtido a partir do cosseno de 30 Hz 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 -0.2 -0.2 -0.4 -0.4 -0.6 -0.6 -0.8 -0.8 -1 -1 0 0.0 0.1 0.1 0.2 0.2 0 0.0 0.1 0.1 0.2 0.2 5 5 5 5 5 5
  • 318. Aliasing  Na DCT, a maior freqüência é fa/2  Aliasing: sinais senoidais de freqüência f > fa/2 são discretizados como sinais senoidais de freqüência fd < fa / 2 (fd=fa–f, para fa/2 < f < fa)
  • 319. Aliasing
  • 320. Teorema de Shannon- Nyquist  Sinal analógico com fmax Hz (componente)  Digitalizar com fa Hz, tal que: fa  f max  f a  2 f max 2  2fmax: Freq. de Nyquist
  • 321. Digitalização de áudio  Ouvido humano é sensível a freq. entre 20Hz e 22KHz (aprox.)  Digitalizar com 44KHz?  Sons podem ter freqüências componentes acima de 22KHz  Digitalização a 44KHz: aliasing.  Filtro passa-baixas com freqüência de corte em 22KHz = Filtro anti- aliasing
  • 322. Eliminação de pixels revisitada  Por que redução de imagens por eliminação de pixel deve ser evitada?  Sinal original digitalizado com fa =2fmax  No. de amostras do sinal digital reduzido pela metade por eliminação de amostras -> nova freqüência de amostragem f’a = fa/2 = fmax -> freqüência máxima do sinal analógico digitalizada sem aliasing = f’a/2 = fmax/2
  • 323. Eliminação de pixels revisitada  Por que redução de imagens (ou outros sinais) por eliminação de pixel (ou amostras) deve ser evitada?  Aliasing!  Usar filtro passa-baixas!
  • 324. Filtros no domínio da freqüência  Multiplicar o sinal no domínio da freq., S, pela função de transferência do filtro, H  Filtros:  Passa-baixas  Passa-altas  Passa-faixa  Corta-baixas  Corta-altas  Corta-faixa (faixa estreita: notch)
  • 325. Filtros no domínio da freq.  Ideais H Passa-baixas H Passa-altas (corta-altas) (corta-baixas) 1 1 fc N-1 fc N-1 H Passa-faixa H corta-faixa 1 1 fc1 fc2 N-1 fc1 fc2 N-1
  • 326. Filtros no domínio da freqüência  Combinação de filtros  Filtros não-ideais (corte suave, |H(fc)|=(1/2)1/2 ou |H(fc)|=1/2)
  • 327. DCT 2-D  Operação separável  Complexidade elevada N 1 N 1 1  (2m  1)k   (2n  1)l  X [k , l ]  ck cl   x[m, n] cos   cos  2 N  2N m 0 n 0  2N    1 N 1N 1  (2k  1)m   (2l  1)n  x[m, n]    ck cl X [k , l ] cos  2 N  cos  2 N  2 N k 0 l 0    
  • 328. DCT 2-D  Imagem “cosseno na vertical”, 256 x 256, 8 ciclos (k = 16) e sua DCT normalizada
  • 329. DCT 2-D  Imagem “cosseno na vertical”, 256 x 256, 16 ciclos (k = 32) e sua DCT normalizada
  • 330. DCT 2-D  Imagem “cosseno na horizontal x cosseno na vertical”, 256 x 256, 16 ciclos (k = 32) e sua DCT normalizada
  • 331. DCT 2-D  Imagem “cosseno na horizontal x cosseno na vertical”, 256 x 256, 8 x 16 ciclos e sua DCT normalizada
  • 332. DCT 2-D  Imagem “Lena” (256x256) e sua DCT normalizada
  • 333. DCT 2-D  Imagem “Lena” (256x256) e o log(DCT+1) normalizado
  • 334. Transformada de Fourier Discreta (DFT) N 1 j 2un 1   Direta: F [u ]  N  s[n]e N n 0 N 1 j 2un  Inversa: s[n ]   F [u]e N u 0 n, u = 0, 1, ..., N-1 j  1  Fórmula de Euler: e j  cos   j sen 
  • 335. Duas propriedades essenciais F [u  N ]  ? |F[-u]| = ?
  • 336. Duas propriedades essenciais  DFT é periódica de período N: F [u  N ]  F (u)  Espectro de Fourier é função par: |F[u]| = |F[-u]|
  • 337. Esboço do Espectro de Fourier |F[u]| u -N/2 N/2 N-1  u = 0, N, 2N,...: freq. 0  u = N/2, 3N/2,...: freq. máxima (N par)  u = (N-1)/2,...: freq. máxima (N ímpar)
  • 338. Freqüências em Hz  Ta = 1/fa (Período de amostragem)  N amostras ---- (N-1)Ta segundos 1 1 fa f1  (adimensio nal)  f1   Hz N ( N  1)Ta N  1 N  1 fa fa f( N 1) / 2   Hz 2 ( N  1) 2
  • 339. Fourier 2-D  Operação separável  Complexidade elevada C 1 R 1 1 F [u, v ]  RC   s[m, n]e  j 2 ( um / C  vn / R ) m 0n 0 C 1 R 1 s[m, n]    F [u, v]e j 2 ( um / C  vn / R ) u 0 v 0
  • 340. Exibição do Espectro de Fourier 2-D Flog[u, v] = round[(L - 1) log(1+|F[u, v]|)/Fmax2]
  • 341. Teorema da Convolução  Se g[m, n]  s[m, n]  h[m, n]  Então:  G[u,v] = H[u,v]F[u,v] onde G[u,v]: DFT de g[m,n] F[u,v]: DFT de s[m,n] H[u,v]: DFT de h[m,n]  H[u,v]: Função de transferência do filtro
  • 342. Filtros: espaço x freqüência  Projeto de filtro no domínio da freqüência (Fourier)  Método imediato: H[k], k = 0..N-1  Como filtrar sinais no domínio do tempo, em tempo real?  Convolução com h[n], n = 0..N-1 pode ser proibitiva para n grande  Encontrar ht[n], n = 0..M-1, com M < N, de modo a obter uma aproximação adequada para H[k].
  • 343. Filtros: espaço x freqüência  Para eficiência computacional e redução de custos, o número de coeficientes do filtro deve ser o menor possível  Projetar filtros relativamente imunes ao truncamento
  • 344. Questões do PosComp 2002  51. Histograma de uma imagem com K tons de cinza é :  a) Contagem dos pixels da imagem.  b) Contagem do número de tons de cinza que ocorreram na imagem.  c) Contagem do número de vezes que cada um dos K tons de cinza ocorreu na imagem.  d) Contagem do número de objetos encontrados na imagem.  e) Nenhuma alternativa acima.  52. filtro da mediana é :  a) Indicado para detectar bordas em imagens.  b) Indicado para atenuar ruído com preservação de bordas (i.é rápidas transições de nível em  imagens).  c) Indicado para detectar formas específicas em imagens.  d) Indicado para detectar tonalidades específicas em uma imagem.  e) Nenhuma das respostas acima.
  • 345. Questões do PosComp 2002  51. Histograma de uma imagem com K tons de cinza é :  a) Contagem dos pixels da imagem.  b) Contagem do número de tons de cinza que ocorreram na imagem.  c) Contagem do número de vezes que cada um dos K tons de cinza ocorreu na imagem.  d) Contagem do número de objetos encontrados na imagem.  e) Nenhuma alternativa acima.  52. filtro da mediana é :  a) Indicado para detectar bordas em imagens.  b) Indicado para atenuar ruído com preservação de bordas (i.é rápidas transições de nível em  imagens).  c) Indicado para detectar formas específicas em imagens.  d) Indicado para detectar tonalidades específicas em uma imagem.  e) Nenhuma das respostas acima.
  • 346. Questões do PosComp 2004  56) Considerando as declarações abaixo, é incorreto afirmar:  a) Filtros passa-altas são utilizados para detecção de bordas em imagens  b) A transformada discreta de Fourier nos permite obter uma representação de uma imagem no domínio freqüência  c) Filtragem no domínio espacial é realizada por meio de uma operação chamada “convolução”  d) Os filtros Gaussiano e Laplaciano são exemplos de filtro passa-baixas  e) O filtro da mediana pode ser utilizado para redução de ruído em uma imagem  58) Identifique a declaração incorreta:  a) As operações de ajuste de brilho e contraste são operações lineares  b) A equalização de histograma é uma transformação não-linear e específica para cada imagem  c) A transformação necessária para calcular o negativo de uma imagem pode ser aplicada simultaneamente (i.e., em paralelo) a todos pixels da imagem original  d) A equalização de histograma pode ser obtida a partir de um histograma cumulativo da imagem original  e) O objetivo da equalização de histograma é reduzir o constrastre nas regiões da imagem que correspondem à porção do histograma com maior concentração de pixels
  • 347. Questões do PosComp 2004  56) Considerando as declarações abaixo, é incorreto afirmar:  a) Filtros passa-altas são utilizados para detecção de bordas em imagens  b) A transformada discreta de Fourier nos permite obter uma representação de uma imagem no domínio freqüência  c) Filtragem no domínio espacial é realizada por meio de uma operação chamada “convolução”  d) Os filtros Gaussiano e Laplaciano são exemplos de filtro passa-baixas  e) O filtro da mediana pode ser utilizado para redução de ruído em uma imagem  58) Identifique a declaração incorreta:  a) As operações de ajuste de brilho e contraste são operações lineares  b) A equalização de histograma é uma transformação não-linear e específica para cada imagem  c) A transformação necessária para calcular o negativo de uma imagem pode ser aplicada simultaneamente (i.e., em paralelo) a todos pixels da imagem original  d) A equalização de histograma pode ser obtida a partir de um histograma cumulativo da imagem original  e) O objetivo da equalização de histograma é reduzir o constrastre nas regiões da imagem que correspondem à porção do histograma com maior concentração de pixels
  • 348. Questões do PosComp 2005  59. O processo de análise de imagens é uma seqüência de etapas que são iniciadas a partir da definição do problema. A seqüência correta destas etapas é:  (a) pré-processamento, aquisição, segmentação, representação, reconhecimento.  (b) aquisição, pré-processamento, segmentação, representação, reconhecimento.  (c) aquisição, pré-processamento, representação, segmentação, reconhecimento.  (d) aquisição, representação, pré-processamento, segmentação, reconhecimento.  (e) pré-processamento, aquisição, representação, segmentação, reconhecimento.  60. O termo imagem se refere a uma função bidimensional de intensidade de luz, denotada por f(x; y), onde o valor ou amplitude de f nas coordenadas espaciais (x; y) representa a intensidade (brilho) da imagem neste ponto. Para que uma imagem possa ser processada num computador, a função f(x; y) deve ser discretizada tanto espacialmente quanto em amplitude. Estes dois processos recebem as seguintes denominações, respectivamente:  (a) translação e escala.  (b) resolução e escala.  (c) resolução e ampliação.  (d) amostragem e quantização.  (e) resolução e quantização.
  • 349. Questões do PosComp 2005  59. O processo de análise de imagens é uma seqüência de etapas que são iniciadas a partir da definição do problema. A seqüência correta destas etapas é:  (a) pré-processamento, aquisição, segmentação, representação, reconhecimento.  (b) aquisição, pré-processamento, segmentação, representação, reconhecimento.  (c) aquisição, pré-processamento, representação, segmentação, reconhecimento.  (d) aquisição, representação, pré-processamento, segmentação, reconhecimento.  (e) pré-processamento, aquisição, representação, segmentação, reconhecimento.  60. O termo imagem se refere a uma função bidimensional de intensidade de luz, denotada por f(x; y), onde o valor ou amplitude de f nas coordenadas espaciais (x; y) representa a intensidade (brilho) da imagem neste ponto. Para que uma imagem possa ser processada num computador, a função f(x; y) deve ser discretizada tanto espacialmente quanto em amplitude. Estes dois processos recebem as seguintes denominações, respectivamente:  (a) translação e escala.  (b) resolução e escala.  (c) resolução e ampliação.  (d) amostragem e quantização.  (e) resolução e quantização.
  • 350. Questões do PosComp 2006  47. [TE] Considere os filtros espaciais da média (m) e Mediana (M) aplicados em imagens em níveis de cinza f e g. Qual par de termos ou expressões a seguir não está associado, respectivamente, a características gerais de m e M?  (a) m(f + g) = m(f) + m(g); M(f + g) != M(f) + M(g)  (b) ruído gaussiano; ruído impulsivo  (c) convolução; filtro estatístico da ordem  (d) preservação de pequenos componentes; não preservação de pequenos componentes  (e) filtragem com preservação de contornos; filtragem sem preservação de contornos  48. [TE] A convolução da máscara [-1 2 -1] com uma linha de uma imagem contendo uma seqüência de pixels do tipo [... 3 4 5 6 7 8 9 10 ...] resulta na transformação (sem considerar efeitos de borda):  (a) [...3 4 5 6 7 8 9 10...] e representa o filtro da média com 2-vizinhos mais próximos  (b) [...0 0 0 0 0 0 0 0...] e representa o laplaciano no espaço discreto  (c) [...0 0 0 0 0 0 0 0...] e representa uma erosão morfológica  (d) [...1 1 1 1 1 1 1 1...] e é equivalente a um filtro passa-baixas  (e) [...7 9 11 13 15 17 19...] e é equivalente a um filtro passa-altas
  • 351. Questões do PosComp 2006  47. [TE] Considere os filtros espaciais da média (m) e Mediana (M) aplicados em imagens em níveis de cinza f e g. Qual par de termos ou expressões a seguir não está associado, respectivamente, a características gerais de m e M?  (a) m(f + g) = m(f) + m(g); M(f + g) != M(f) + M(g)  (b) ruído gaussiano; ruído impulsivo  (c) convolução; filtro estatístico da ordem  (d) preservação de pequenos componentes; não preservação de pequenos componentes  (e) filtragem com preservação de contornos; filtragem sem preservação de contornos  48. [TE] A convolução da máscara [-1 2 -1] com uma linha de uma imagem contendo uma seqüência de pixels do tipo [... 3 4 5 6 7 8 9 10 ...] resulta na transformação (sem considerar efeitos de borda):  (a) [...3 4 5 6 7 8 9 10...] e representa o filtro da média com 2-vizinhos mais próximos  (b) [...0 0 0 0 0 0 0 0...] e representa o laplaciano no espaço discreto  (c) [...0 0 0 0 0 0 0 0...] e representa uma erosão morfológica  (d) [...1 1 1 1 1 1 1 1...] e é equivalente a um filtro passa-baixas  (e) [...7 9 11 13 15 17 19...] e é equivalente a um filtro passa-altas
  • 352. Questões do PosComp 2007  61. [TE] O realce de imagem tem como objetivo destacar detalhes finos procurando obter uma representação mais adequada do que a imagem original para uma determinada aplicação. Dessa forma, sobre as técnicas utilizadas no realce de imagens, é CORRETO afirmar que  (a) o melhor resultado obtido depende do filtro aplicado na imagem. Normalmente, o mais aplicado é o filtro da mediana.  (b) o melhor resultado é obtido com a aplicação de filtros passa- baixas, cujos parâmetros dependem do resultado desejado.  (c) a aplicação de filtros da média sempre oferece resultado adequado no realce de imagens.  (d) o resultado mais adequado no realce de imagens está associado à aplicação de filtro passa-altas e da interpretação subjetiva do observador que deverá ter conhecimento a priori da imagem original.  (e) o resultado mais adequado no realce de imagens está associado à aplicação de filtro passa-baixas e da interpretação subjetiva do observador que deverá ter conhecimento a priori da imagem original.  62 e 63
  • 353. Questões do PosComp 2007  61. [TE] O realce de imagem tem como objetivo destacar detalhes finos procurando obter uma representação mais adequada do que a imagem original para uma determinada aplicação. Dessa forma, sobre as técnicas utilizadas no realce de imagens, é CORRETO afirmar que  (a) o melhor resultado obtido depende do filtro aplicado na imagem. Normalmente, o mais aplicado é o filtro da mediana.  (b) o melhor resultado é obtido com a aplicação de filtros passa- baixas, cujos parâmetros dependem do resultado desejado.  (c) a aplicação de filtros da média sempre oferece resultado adequado no realce de imagens.  (d) o resultado mais adequado no realce de imagens está associado à aplicação de filtro passa-altas e da interpretação subjetiva do observador que deverá ter conhecimento a priori da imagem original.  (e) o resultado mais adequado no realce de imagens está associado à aplicação de filtro passa-baixas e da interpretação subjetiva do observador que deverá ter conhecimento a priori da imagem original.