SlideShare a Scribd company logo
1 of 19
UNIT –V
LINEAR SYSTEMS WITH RANDOM INPUTS
PART – A
1. Define a system. When is it called a linear system?
A system is a functional relationship between the input
( )tx and the output
( )ty . The functional relationship is written as ( ) ( )[ ]txfty = .
If ( ) ( )[ ] ( )[ ] ( )[ ]tXfatXfatXatXaf 22112211 ±=± , then f is called a
linear system.
2. Write a note on linear system.
If ( ) ( )[ ] ( )[ ] ( )[ ]tXfatXfatXatXaf 22112211 ±=± , then f is called
a linear system.
If ( ) ( )[ ]htXfhtY +=+ where ( ) ( )[ ]tXftY = , then f is called a
time – invariant
system or ( )tX and ( )tY are said to form a time invariant system.
If the output ( )1tY at a given time 1tt = depends only on ( )1tX
and not on any other
past or future values of ( )tX , then the system f is called a
memoryless system.
If the value of the output ( )tY at 1tt = depends only on the past
values of the input
( ) 1, tttX ≤ . (ie) ( ) ( )[ ]11 ; tttXftY ≤= , then the system is called a
casual system.
3. State the properties of linear system.
The properties of linear system are
(i) If a system is such that its input ( )tX and its output ( )tY
are related by a convolution integral, then the system is a
linear time invariant system.
(ii) If the input to a time-invariant, stable linear system is a
WSS process, the output will also be a WSS process.
(iii) The power spectral densities of the input and output
processes in the system are connected by the relation
( ) ( ) ( )ωωω XXYY SHS 2
= , where ( )ωH is the Fourier transform
of unit impulse response function ( )th .
140
4. Define system weighting function.
If the output ( )tY of a system is expressed as the convolution
of the input ( )tX
and a function ( )th (ie) ( ) ( ) ( )∫
∞
∞−
−= ,duutXuhtY then ( )th is called
the system
weighting function.
5. What is unit impulse response of a system? Why is it called so?
If a system is of the form ( ) ( ) ( )∫
∞
∞−
−= ,duutXuhtY then the
system weighting
function ( )th is also called unit impulse response of the system.
It is called so because the response (output) ( )tY will be ( )th ,
when the input
( )tX = the unit impulse function ( )tδ .
6. If the input of a linear system is a Gaussian random process,
comment about the
output random process.
If the input of a linear system is a Gaussian random process,
then the output will
also be a Gaussian random process.
7. If the input ( )tX of the system ( ) ( ) ( )∫
∞
∞−
−= duutXuhtY is the unit
impulse function,
prove that ( ) ( )thtY = .
Given ( ) ( ) ( )∫
∞
∞−
−= duutXuhtY
Put ( ) ( )ttX δ=
Therefore ( ) ( )ututX −=− δ
( ) ( ) ( )∫
∞
∞−
−= duutuhtY δ
( ) ( )∫
∞
∞−
−= duuuth δ [ by the property of convolution ]
( ) ( )thth =−= 0 .
8. If a system is defined as ( ) ( )∫
∞
−
−=
0
1
dueutX
T
tY T
u
, find its unit
impulse function.
141
Given ( ) ( )∫
∞
−
−=
0
1
dueutX
T
tY T
u
( )∫
∞
−
−=
0
1
duutXe
T
T
u
The unit impulse function ( )





≥
=
−
elsewhere
te
Tth
T
t
,0
0,
1
.
9. If ( ){ }tX and ( ){ }tY in the system ( ) ( ) ( )∫
∞
∞−
−= duutXuhtY are WSS
processes, how are
their autocorrelation functions related?
( ) ( ) ( )τττ hRR XYYY
*
=
( ) ( ) ( )τττ −= hRR XXXY
*
, where * denotes convolution.
10. If the input and output of the system ( ) ( ) ( )∫
∞
∞−
−= duutXuhtY are
WSS processes, how
are their power spectral densities related?
( ) ( ) ( ) 2
ωωω HSS XXTT = , where ( )ωH is the Fourier
transform of ( ).th
11. Define the power transfer function or system function of the
system.
The power transfer function or system function of the
system is the Fourier
transform of the unit impulse function of the system.
12. If the system function of a convolution type of linear system is
given by
( )





>
≤
=
ctfor
ctfor
cth
0
2
1
. Find the relation between power spectral density
functions of
the input and output processes.
142
( ) ( )[ ] ( ) ∫∫ −
−
∞
∞−
−
===
c
c
titi
dte
c
dteththFH ωω
ω
2
1
( ) dtt
c
idtt
c
dttit
c
c
c
c
c
c
c
∫∫∫ −−−
−=−= ωωωω sin
2
1
cos
2
1
sincos
2
1
( )0
2
1
cos2
2
1
0
c
idtt
c
c
−= ∫ ω [since the first and second
integrand are even
and odd functions]
[ ]
ω
ω
ω
ωω
ω
c
c
c
c
t
c
c
sin
0sin
1sin1
0
=−=





=
( ) ( ) ( ) ( )ω
ω
ω
ωωω XXXXYY S
c
c
SHS 22
2
2 sin
== .
13. What is thermal noise? By what type of random processes is it
represented?
Thermal noise is the noise because of the random motion
of free electrons in
conducting media such as a resistor. It is represented by
Gaussian random
processes.
14. Why is thermal noise called white noise?
( )ωNNS is a constant for all values of ω (ie) ( )ωNNS
contains all frequencies in
equal amount. White noise is called so in analogy to white light
which consists of
all colour.
15. Define white noise.
Let ( )tX be a sample function of a WSS noise process,
then ( ){ }TttX ∈, is
called the white noise if the power density spectrum of
( ){ }TttX ∈, is constant at
all frequencies . (ie) ( )
2
0N
SNN =ω where 0N is a real positive
constant.
143
16. If the power spectral density of white noise is
2
0N
, find its
autocorrelation function.
( ) ( ) ( ) ττδττδτδ τωτω
de
N
de
NN
F ii
∫∫
∞
∞−
−
∞
∞−
−
==





222
000
( )
22
000 N
e
N
==
Therefore ( ) ( )τδτ
22
001 NN
FRNN =





= −
.
17. If the input to a linear time invariant system is white noise
( ){ }tN , what is power
spectral density function of the output?
If the input to a linear time invariant system is white
noise ( ){ }tN , then the
power spectral density of the output ( )ωYYS is given by
( ) ( ) ( ) ( ) 202
2
ωωωω H
N
HSS XXYY == .
where ( ){ }tY is the output process and ( )ωH is the power
transfer function.
18. Find the average power or the mean square value of the white
noise ( ){ }tN ?
Average power = ( )[ ] ( )02
NNRtNE =
( ) ( )
( )∫∫
∞
∞−
∞
∞−
== ωωωω dSdeS NNNN
0
∞→= ∫
∞
∞−
ωd
N
2
0
19. A wide sense stationary noise process ( )tN has an autocorrelation
function
( ) ∞<<∞−=
−
ττ
τ
,
3
ePRNN with P as a constant. Find its power
density spectrum.
( ) ( ) ( ) τωτωττττω ττωττω
diePdeePdeRS ii
NNNN sincos
33
−=== ∫∫∫
∞
∞−
−
∞
∞−
−−
∞
∞−
−








−= ∫∫
∞
∞−
−
∞
∞−
−
τωτττω ττ
deideP sincos
33
144
( )0cos2
0
3
ideP −= ∫
∞
−
τωττ
[since the first and
second integrand are
even and odd
functions]
( )
( )
∞
−∞
−






+−
+−
== ∫
0
22
3
0
3
sincos3
3
2cos2 ωτωωτ
ω
τωτ
τ
τ e
PdeP
( ) 22
9
6
03
9
1
02
ωω +
=





+−
+
−=
P
P .
20. Define band limited white noise.
Noise having a non-zero and constant spectral density over
a finite frequency
band and zero elsewhere is called band limited white noise.
If ( ){ }tN is a band limited white noise, then
( )





≤
=
elsewhere
N
S
B
NN
,0
,
2
0
ωω
ω .
21. State a few properties of band limited white noise.
Properties of band limited white noise are
(i) ( )[ ] B
N
tNE ω
π2
02
=
(ii) ( ) 





=
τω
τω
π
ω
τ
B
BB
NN
N
R
sin
2
0
(iii) ( )tN and 





+
B
k
tN
ω
π
are independent, where k is
a non-zero integer.
22. Find the autocorrelation function of the band-limited white noise.
( ) ( ) ( ) ττωτω
π
ω
π
ωω
π
τ
ω
ω
ω
ω
ωττω
di
N
de
N
deSR
B
B
B
B
ii
NNNN sincos
22
1
22
1
2
1 00
+=== ∫∫∫ −−
∞
∞−
145
( )








+=








+= ∫∫∫ −−
0cos2
4
sincos
4 0
00
id
N
did
N BB
B
B
B
ωω
ω
ω
ω
ωωτ
π
ωωτωωτ
π
146
[since the first and second integrand are even and odd functions]
[ ]
B
BB
B
NNN B
ωτ
ωτ
π
ω
ωτ
τπτ
ωτ
π
ω
sin
2
0sin
2
sin
2
00
0
0
=−=





= .
23. Find the average power of the band – limited white noise.
Average power ( )[ ] ( )02
NNRtNE ==






=
→
B
BBN
ωτ
ωτ
π
ω
τ
sin
lim
2 0
0
( ) 





==
→
1
sin
limsin1
2 0
0
θ
θ
π
ω
θ
ce
N B
π
ω
2
0 BN
= .
147
PART – B
1. Show that if ( ){ }tX is a WSS process then the output ( ){ }tY is a WSS
process.
Solution: ( ) ( ) ( )∫
∞
∞−
−= duutXuhtY
( )[ ] ( ) ( )[ ]∫
∞
∞−
−= duutXEuhtYE
( )∫
∞
∞−
= duuhxµ [ since ( ){ }tX is a WSS process ]
= a finite constant independent of t
( ) ( ) ( )[ ]2121 , tYtYEttRYY =
( ) ( ) ( ) ( )








−−= ∫ ∫
∞
∞−
∞
∞−
21221121 duduutXutXuhuhE
( ) ( ) ( ) ( )[ ]∫ ∫
∞
∞−
∞
∞−
−−= 21221121 duduutXutXEuhuh
( ) ( ) ( )∫ ∫
∞
∞−
∞
∞−
−−= 21221121 , duduututRuhuh XX
( ) ( ) ( ) ( )[ ]∫ ∫
∞
∞−
∞
∞−
−−−= 21212121 duduuuttRuhuh XX [ since ( ){ }tX is
a WSS ]
Since the R.H.S of the above equation is a function of ( )21 tt − ,
so will be the L.H.S.
Therefore, ( )21 ,ttRYY will be a function of ( )21 tt − .
Therefore, ( ){ }tY is a WSS process.
2. For a linear system with random input ( )tx , the impulse response
( )th and output ( )ty , obtain the cross correlation function ( )τXYR
and the output autocorrelation function ( )τYYR .
Solution: (1) Let ( ) ( ) ( )∫
∞
∞−
−= ααα dhtXtY
Therefore, ( ) ( ) ( ) ( ) ( )∫
∞
∞−
−+=+ αααττ dhtXtXtYtX
( ) ( )[ ] ( ) ( )[ ] ( )∫
∞
∞−
−+=+ αααττ dhtXtXEtYtXE
( ) ( ) ( )∫
∞
∞−
+= αααττ dhRR XXXY
Putting βα −= when ∞=∞−= βα ,
βα dd −= when ∞−=∞= βα ,
148
( ) ( ) ( )( )∫
∞−
∞
−−−= βββττ dhRR XXXY
( ) ( ) ( )∫
∞−
∞
−−−= βββττ dhRR XXXY
( ) ( ) ( )∫
∞
∞−
−−= βββττ dhRR XXXY
( ) ( ) ( )τττ −= hRR XXXY *
(2) ( ) ( ) ( ) ( ) ( )∫
∞
∞−
−−=− αατατ dhtYtXtYtY
( ) ( )[ ] ( ) ( )[ ] ( )∫
∞
∞−
−−=− αατατ dhtYtXEtYtYE
( ) ( ) ( ) αααττ dhRR XYYY −=
Assuming that ( ){ }tX and ( ){ }tY are jointly WSS
Therefore, ( ) ( ) ( )τττ hRR XYYY *= .
3. For a linear system with random input ( )tX , the impulse response
( )th and output ( )tY , obtain the power spectrum ( )ωYYS and cross
power spectrum ( )ωXYS .
Solution: By the previous problem, we have
( ) ( ) ( )τττ −= hRR XXXY * ----------------(1)
( ) ( ) ( )τττ hRR XYYY *= -----------------(2)
Taking Fourier transform of equations (1) and (2) , we have
( )[ ] ( )[ ] ( )[ ]τττ −= hFRFRF XXXY .
( ) ( ) ( )ωωω *.HSS XXXY = --------------(3)
where ( )ωH is the Fourier transform of unit impulse response
function ( )th
and ( )ω*H is the conjugate of ( )ωH .
and ( )[ ] ( )[ ] ( )[ ]τττ hFRFRF XYYY .=
( ) ( ) ( )ωωω HSS XYYY .= ------------------(4)
Inserting (3) in(4), we have
( ) ( ) ( ) ( )ωωωω HHSS XXYY *.=
( ) ( ) 2
ωω HS XX=
Therefore, ( ) ( ) ( ) 2
ωωω HSS XXYY = .
149
4. Show that ( ) ( ) ( ) 2
ωωω HSS XXYY = where ( )ωXXS and ( )ωYYS are the
power spectral density functions of the input ( )tX and the output
( )tY and ( )ωH is the system transfer function.
Solution: ( ) ( ) ( )[ ]ττ −= tYtYERYY
( ) ( ) ( ) ( )








−−−= ∫ ∫
∞
∞−
∞
∞−
dvvtXvhduutXuhE τ.
( ) ( ) ( ) ( )








−−−= ∫ ∫
∞
∞−
∞
∞−
dvduvhuhvtXutXE τ
( ) ( )[ ] ( ) ( )∫ ∫
∞
∞−
∞
∞−
−−−= dvduvhuhvtXutXE τ
If ( ){ }tX is WSS, then
( ) ( )( ) ( ) ( )∫ ∫
∞
∞−
∞
∞−
−−= dvduvhuhvuRR XXYY ττ
The above integral is a two fold convolution of autocorrelation with
impulse
response ( )th
Therefore, ( ) ( ) ( ) ( )ththRR XXYY −= **ττ
Taking Fourier transform on both sides, we have
( )[ ] ( )[ ] ( )[ ] ( )[ ]thFthFRFRF XXYY −= ..ττ
( ) ( ) ( )[ ] ( )[ ]thFthFSS XXYY −= ..ωω --------------------------
(1)
( ) ( )[ ]thFH =ω
( ) ( )∫
∞
∞−
−
= dtethH ti ω
ω
---------------------------------------(2)
( ) ( )∫
∞
∞−
= dtethH ti ω
ω*
Putting st −= when ∞=∞−= st ,
dsdt −= when ∞−=∞= st ,
( ) ( ) ( )∫
∞−
∞
−
−−= dseshH si ω
ω*
( ) ( )∫
∞−
∞
−
−−= dseshH si ω
ω*
( ) ( )∫
∞
∞−
−
−= dseshH si ω
ω*
( )[ ]thF −= ---------------------------------(3)
Inserting (2) and (3) in (1), we have
( ) ( ) ( ) ( )ωωωω *.. HHSS XXYY =
( ) ( ) ( ) 2
. ωωω HSS XXYY = .
150
5. A system has an impulse response function ( ) ( ),tUeth tβ−
= find the
power spectral
density of the output ( )tY corresponding to the input ( )tX .
Solution: Given ( ) ( )tUeth tβ−
=
0, ≥= −
te tβ
where ( )



<
>
=
0,0
0,1
t
t
tU
( ) ( )[ ] ∫
∞
−−
==
0
dteethFH tit ωβ
ω
( )
∫
∞
+−
=
0
dte ti ωβ
( )
( )
∞+−






+−
=
0
ωβ
ωβ
i
e tii
( )
ωβωβ ii +
=−
+
−=
1
10
1
( )
ωβ
ω
i
H
−
=
1
*
( ) ( ) ( )ωωω *
2
HHH =
22
11
.
1
ωβωβωβ +
=
−+
=
ii
Therefore, ( ) ( ) ( ) 2
. ωωω HSS XXYY =
( ) ( ) 22
1
.
ωβ
ωω
+
= XXYY SS .
6. ( )tX is the input voltage to a circuit and ( )tY is the output voltage.
( ){ }tX is a stationary
random process with 0=xµ and ( ) τα
τ −
= eRXX . Find ( )ωµ YYy S, and
( )τYYR if the
power transfer function is ( )
WLiR
R
H
+
=ω .
Solution: ( ) ( ) ( )∫
∞
∞−
−= duutXuhtY
( )[ ] ( ) ( )








−= ∫
∞
∞−
duutXuhEtYE
( )[ ] ( ) ( )[ ]∫
∞
∞−
−= duutXEuhtYE
( ) ( )∫
∞
∞−
= duuh 0 [ since 0=xµ is given ]
( )[ ] 0=tYE
151
Therefore, ( )[ ] 0== tYEyµ .
( ) ( ) ( ) 2
. ωωω HSS XXYY = where ( ) ( )[ ]τω XXXX RFS =
( ) ( )∫
∞
∞−
−
= ττω τω
deRS i
XXXX
( )∫∫
∞
∞−
−
∞
∞−
−−
−== ττωτωτ τατωτα
diedee i
sincos.
∫∫
∞
∞−
−
∞
∞−
−
−= ττωττω τατα
deide sincos
( )0cos2
0
ide −= ∫
∞
−
ττωτα
[since the first and
second integrand
are even and
odd functions]
∫
∞
−
=
0
cos2 ττωτα
de
( )
( )
∞
−






+−
+−
=
0
22
sincos2 τωωτωα
ωα
τα
e
( ) 2222
2
0
1
02
ωα
α
α
ωα +
=





+−
+
−=
( ) 22
2
ωα
α
ω
+
=XXS
( )
2
22
2
LWiR
R
SYY
++
=
ωα
α
ω
( ) 222
2
22
.
2
WLR
R
SYY
++
=
ωα
α
ω
( )
( )( )22222
2
2
WLR
R
SYY
++
=
ωα
α
ω
( ) ( )[ ]ωτ YYYY SFR 1−
=
7. A wide sense stationary random process ( )tX with autocorrelation
function
( ) τα
τ −
= eARXX where A and α are real positive constants is
applied to the
152
input of an linearly time invariant system with impulse response
( ) 0, >= −
teth tb
where b is a real positive constant. Find the
spectral density of
the output ( )tY of the system.
Solution: ( ) ( )∫
∞
∞−
−
= ττω τω
deRS i
XXXX
( ) ∫
∞
∞−
−−
= τω τωτα
deeAS i
XX
( )∫
∞
∞−
−
−= ττωτωτα
dieA sincos








−= ∫ ∫
∞
∞−
∞
∞−
−−
ττωττω τατα
deideA sincos
( )





−= ∫
∞
−
0
0cos2 ideA ττωτα
∫
∞
−
=
0
cos2 ττωτα
deA
( )
( )
∞
−






−−
+−
=
0
22
sincos2 τωωτωα
ωα
τα
e
A
( )





+−
+
−= 0
1
02 22
α
ωα
A
( ) 22
2
ωα
α
ω
+
=
A
S XX
( ) ( )[ ]thFH =ω
( ) ( )∫
∞
∞−
−
= dtethH ti ω
ω
( ) ∫
∞
−−
=
0
dteeH titb ω
ω
( )
∫
∞
+−
=
0
dte tib ω
( )
( )
∞+−






+−
=
0
ω
ω
ib
e tib
( )10
1
−
+
−=
ωib
ωib +
=
1
( ) 22
2 11
ωω
ω
+
=
+
=
bib
H .
( ) ( ) ( ) 2
. ωωω HSS XXYY =
153
2222
1
.
2
ωωα
α
++
=
b
A
( )
( )( )2222
2
b
A
SYY
++
=
ωαω
α
ω .
8. Establish the spectral representation theorem.
Solution: Let ( )tX be a signal and define
( )
( )




<<−
=
otherwise
T
t
T
tX
tXT
,0
22
,
Represent ( )tXT in a Fourier series ( complex form )
( ) ∑
∞
∞−
= tni
nT ectX 0ω
where ( )∫
−
−
==
2
2
0
2
,
1 0
T
T
tni
Tn
T
wheredtetX
T
c
π
ωω
( )∫
−
−
=
2
2
0
1
T
T
tni
n dtetX
T
c ω
( )0
1
ωniX
T
= [ taking the envelope ( )ωiX of nc ]
Therefore, ( ) ( )∑
∞
∞−
= tni
T eniX
T
tX 0
0
1 ω
ω
( ) ( )∑
∞
∞−






= tni
T eniXtX 0
0
0
2
1 ω
ω
ω
π
( ) ( ) 00 .
2
1 0
ωω
π
ω
∑
∞
∞−
= tni
T eniXtX
As ∞→T , ( ) ( )tXtXT →
Therefore, ( ) ( )∫
∞
∞−
= ωω
π
ω
deiXtX ti
2
1
-----------------------(1)
and equivalently, ( by Fourier integral theorem )
( ) ( )∫
∞
∞−
−
= dtetXiX ti ω
ω -------------------------(2)
( )ωiX is usually called as spectrum of the aperiodic signal ( )tx
154
9. Show that in an input – output system the energy of a signal is equal
to the energy
of the spectrum.
Solution: Energy of a signal ( )∫
∞
∞−
= dttX
2
( ) ( )∫
∞
∞−
= dttXtX *
( ) ( )∫ ∫
∞
∞−
∞
∞−
−








= dtdeiXtX ti
ωω
π
ω
*
2
1
[ by equation (1) of problem 8 above ]
( ) ( )∫ ∫
∞
∞−
∞
∞−
−








= dttXdeiX ti
ωω
π
ω
*
2
1
( ) ( )∫ ∫
∞
∞−
∞
∞−
−








= ωω
π
ω
diXdtetX ti
*
2
1
[ by changing
the
order of integration ]
( ) ( )∫
∞
∞−
= ωωω
π
diXiX *
2
1
[ by equation (2) of problem 8 above ]
( )∫
∞
∞−
= ωω
π
diX
2
2
1
= Energy of the spectrum.
10. If ( ){ }tX is a band limited process such that ( ) 0=ωXXS , when σω> ,
prove
that ( ) ( )[ ] ( )002 22
XXXXXX RRR τστ ≤− .
Solution: ( ) ( )∫
∞
∞−
= ωω
π
τ ωτ
deSR i
XXXX
2
1
( ) ( ) ( )∫
∞
∞−
+= ωωτωτω
π
τ diSR XXXX sincos.
2
1
( ) ( ) ωωτω
π
ωωτω
π
dSdS XXXX sin
2
1
cos
2
1
∫∫
∞
∞−
∞
∞−
+=
( ) ( )0
2
1
cos
2
1
π
ωωτω
π
+= ∫
∞
∞−
dS XX
155
[ since ( )ωXXS is an even function and therefore the first integrand is
even and the second is an odd function ].
( ) ( ) ( )
∫
∞
∞−
= ωω
π
deSR XXXX
0
2
1
0
( ) ωω
π
dS XX∫
∞
∞−
=
2
1
( ) ( ) ( ) ( )∫∫
∞
∞−
∞
∞−
−=− ωωτω
π
ωω
π
τ dSdSRR XXXXXXXX cos
2
1
2
1
0
( ) ( ) ( ) ( )∫
∞
∞−
−=− ωωτω
π
τ dSRR XXXXXX cos1
2
1
0
( ) ( ) ( ) ( )∫−
−=−
σ
σ
ωωτω
π
τ dSRR XXXXXX cos1
2
1
0 [since ( ){ }tX is band
limited ]
( ) ( ) ( )∫−






=−
σ
σ
ω
ωτ
ω
π
τ dSRR XXXXXX
2
sin2
2
1
0 2
-----------------------(1)
From trigonometry, 0sin ≤θ
22
sin θθ ≤
22
sin2
22
2 ωτωτ
≤





---------------------------
(2)
Inserting (2) in (1) , we have
( ) ( ) ( )∫−






≤−
σ
σ
ω
ωτ
ω
π
τ dSRR XXXXXX
22
1
0
22
( )∫−
≤
σ
σ
ωω
π
τσ
dS XX
4
22
( )∫
∞
∞−
≤ ωω
π
τσ
dS XX
4
22
( )∫
∞
∞−
≤ ωω
π
τσ
dS XX
2
1
2
22
( )0
2
22
XXR
τσ
≤
( ) ( ) ( )0
2
0
22
XXXXXX RRR
τσ
τ ≤−
( ) ( )[ ] ( )002 22
XXXXXX RRR τστ ≤−
156
11. If ( ) ( ) ( )tNtAtY ++= θω0cos , where A is a constant, θ is a random
variable
with a uniform distribution in ( )ππ,− and ( ){ }tN is a band limited
Gaussian
white noise with a power spectral density ( )




<−
=
elsewhere
for
N
S B
NN
,0
,
2
0
0
ωωω
ω .
Find the power spectral density of ( ){ }tY . Assume that ( )tN and θ
are
independent.
Solution: Given ( ) ( ) ( )tNtAtY ++= θω0cos
Since θ is uniformly distributed in ( )ππ,− , the density function
is given by
( ) πθπ
π
θ <<−= ,
2
1
f
( ) ( ) ( )[ ]2121 , tYtYEttRYY =
( ) ( )( ) ( ) ( )( )[ ]220110 coscos tNtAtNtAE ++++= θωθω
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]211202102010
2
coscoscoscos tNtNtNtAtNtAttAE +++++++= θωθωθωθω
( ) ( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ 11202102010
2
coscoscoscos NtNEtNEtAEtNEtAEttEA +++++++= θωθωθωθω
( since ( )tN and θ are independent )
( ) ( )[ ] ( )[ ]( ) ( )[ ]( ) ( )2120102010
2
,0cos0coscoscos ttRtAEtAEttEA NN+++++++= θωθωθωθω
( ) ( ) ( ) ( ) ( )212010
2
21 ,coscos, ttRdfttAttR NNYY +++= ∫−
θθθωθω θ
π
π
( ) ( ) ( ) ( )212010
2
21 ,
2
1
coscos2
2
, ttRdtt
A
ttR NNYY +++= ∫−
θ
π
θωθω
π
π
( ) ( ) ( )[ ] ( )2120102010
2
21 ,coscos
4
, ttRdtttt
A
ttR NNYY +−−+++++= ∫−
π
π
θθωθωθωθω
π
( ) ( )( ) ( )( ) ( )21210210
2
21 ,cos2cos
4
, ttRdttdtt
A
ttR NNYY +








−+++= ∫∫ −−
π
π
π
π
θωθθω
π
( )
( )( )
( )( ) ( )21210
210
2
21 ,cos
2
2sin
4
, ttRdtt
ttA
ttR NNYY +








−+




 ++
= ∫−−
π
π
π
π
θω
θω
π
157
( ) ( )( ) ( )( )( ) ( )( )( ) ( )21210210210
2
21 ,cossinsin
2
1
4
, ttRtttttt
A
ttR NNYY +



−++−+= −
π
πθωωω
π
( ) ( )( )[ ] ( )21210
2
21 ,cos2
4
, ttRtt
A
ttR NNYY +−= ωπ
π
( ) ( ) ( )21210
2
21 ,cos
2
, ttRtt
A
ttR NNYY +−= ω
( ) ( )ττωτ NNYY R
A
R += 0
2
cos
2
Taking Fourier transform on both sides , we have
( )[ ] [ ] ( )[ ]ττωτ NNYY RFF
A
RF += 0
2
cos
2
( ) ( ) ( )[ ] ( )ωωωδωωδπω NNYY S
A
S +++−= 00
2
2
where [ ] ( ) ( )[ ]pppF ++−= ωδωδπτcos .
158

More Related Content

What's hot

Term paper inna_tarasyan
Term paper inna_tarasyanTerm paper inna_tarasyan
Term paper inna_tarasyanInna Таrasyan
 
2 backlash simulation
2 backlash simulation2 backlash simulation
2 backlash simulationSolo Hermelin
 
Signals and Systems Formula Sheet
Signals and Systems Formula SheetSignals and Systems Formula Sheet
Signals and Systems Formula SheetHaris Hassan
 
Clarke fourier theory(62s)
Clarke   fourier theory(62s)Clarke   fourier theory(62s)
Clarke fourier theory(62s)apsitachi
 
Fuzzy calculation
Fuzzy calculationFuzzy calculation
Fuzzy calculationAmir Rafati
 
Calculus of variation problems
Calculus of variation   problemsCalculus of variation   problems
Calculus of variation problemsSolo Hermelin
 
Stereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment DistributionStereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment Distributionmathsjournal
 
Stability Result of Iterative procedure in normed space
Stability Result of Iterative procedure in normed spaceStability Result of Iterative procedure in normed space
Stability Result of Iterative procedure in normed spaceKomal Goyal
 
Numerical Methods
Numerical MethodsNumerical Methods
Numerical MethodsTeja Ande
 
How to Solve a Partial Differential Equation on a surface
How to Solve a Partial Differential Equation on a surfaceHow to Solve a Partial Differential Equation on a surface
How to Solve a Partial Differential Equation on a surfacetr1987
 
Inner product space
Inner product spaceInner product space
Inner product spaceSheharBano31
 
4 matched filters and ambiguity functions for radar signals-2
4 matched filters and ambiguity functions for radar signals-24 matched filters and ambiguity functions for radar signals-2
4 matched filters and ambiguity functions for radar signals-2Solo Hermelin
 
Natalini nse slide_giu2013
Natalini nse slide_giu2013Natalini nse slide_giu2013
Natalini nse slide_giu2013Madd Maths
 
2 classical field theories
2 classical field theories2 classical field theories
2 classical field theoriesSolo Hermelin
 
11.0003www.iiste.org call for paper.common fixed point theorem for compatible...
11.0003www.iiste.org call for paper.common fixed point theorem for compatible...11.0003www.iiste.org call for paper.common fixed point theorem for compatible...
11.0003www.iiste.org call for paper.common fixed point theorem for compatible...Alexander Decker
 
3.common fixed point theorem for compatible mapping of type a -21-24
3.common fixed point theorem for compatible mapping of type a -21-243.common fixed point theorem for compatible mapping of type a -21-24
3.common fixed point theorem for compatible mapping of type a -21-24Alexander Decker
 
Adaptive dynamic programming for control
Adaptive dynamic programming for controlAdaptive dynamic programming for control
Adaptive dynamic programming for controlSpringer
 

What's hot (20)

Term paper inna_tarasyan
Term paper inna_tarasyanTerm paper inna_tarasyan
Term paper inna_tarasyan
 
Matrices ii
Matrices iiMatrices ii
Matrices ii
 
2 backlash simulation
2 backlash simulation2 backlash simulation
2 backlash simulation
 
Signals and Systems Formula Sheet
Signals and Systems Formula SheetSignals and Systems Formula Sheet
Signals and Systems Formula Sheet
 
Further Generalizations of Enestrom-Kakeya Theorem
Further Generalizations of Enestrom-Kakeya TheoremFurther Generalizations of Enestrom-Kakeya Theorem
Further Generalizations of Enestrom-Kakeya Theorem
 
Clarke fourier theory(62s)
Clarke   fourier theory(62s)Clarke   fourier theory(62s)
Clarke fourier theory(62s)
 
Fuzzy calculation
Fuzzy calculationFuzzy calculation
Fuzzy calculation
 
Calculus of variation problems
Calculus of variation   problemsCalculus of variation   problems
Calculus of variation problems
 
Stereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment DistributionStereographic Circular Normal Moment Distribution
Stereographic Circular Normal Moment Distribution
 
Nokton theory-en
Nokton theory-enNokton theory-en
Nokton theory-en
 
Stability Result of Iterative procedure in normed space
Stability Result of Iterative procedure in normed spaceStability Result of Iterative procedure in normed space
Stability Result of Iterative procedure in normed space
 
Numerical Methods
Numerical MethodsNumerical Methods
Numerical Methods
 
How to Solve a Partial Differential Equation on a surface
How to Solve a Partial Differential Equation on a surfaceHow to Solve a Partial Differential Equation on a surface
How to Solve a Partial Differential Equation on a surface
 
Inner product space
Inner product spaceInner product space
Inner product space
 
4 matched filters and ambiguity functions for radar signals-2
4 matched filters and ambiguity functions for radar signals-24 matched filters and ambiguity functions for radar signals-2
4 matched filters and ambiguity functions for radar signals-2
 
Natalini nse slide_giu2013
Natalini nse slide_giu2013Natalini nse slide_giu2013
Natalini nse slide_giu2013
 
2 classical field theories
2 classical field theories2 classical field theories
2 classical field theories
 
11.0003www.iiste.org call for paper.common fixed point theorem for compatible...
11.0003www.iiste.org call for paper.common fixed point theorem for compatible...11.0003www.iiste.org call for paper.common fixed point theorem for compatible...
11.0003www.iiste.org call for paper.common fixed point theorem for compatible...
 
3.common fixed point theorem for compatible mapping of type a -21-24
3.common fixed point theorem for compatible mapping of type a -21-243.common fixed point theorem for compatible mapping of type a -21-24
3.common fixed point theorem for compatible mapping of type a -21-24
 
Adaptive dynamic programming for control
Adaptive dynamic programming for controlAdaptive dynamic programming for control
Adaptive dynamic programming for control
 

Viewers also liked

Active and Passive
Active and PassiveActive and Passive
Active and PassiveBabu Rao
 
Unit iii analytic functions
Unit  iii  analytic functionsUnit  iii  analytic functions
Unit iii analytic functionsBabu Rao
 
The Eight Secrets of Successful Speaking
The Eight Secrets of Successful SpeakingThe Eight Secrets of Successful Speaking
The Eight Secrets of Successful SpeakingBabu Rao
 
Unit ii vector calculus
Unit ii vector calculusUnit ii vector calculus
Unit ii vector calculusBabu Rao
 
Unit v laplace transform(formula)
Unit v laplace transform(formula)Unit v laplace transform(formula)
Unit v laplace transform(formula)Babu Rao
 
The Ten Commandments of Writing
The Ten Commandments of WritingThe Ten Commandments of Writing
The Ten Commandments of WritingBabu Rao
 
The Advisory Board Company
The Advisory Board CompanyThe Advisory Board Company
The Advisory Board CompanyBabu Rao
 
Unit ii rpq
Unit ii rpqUnit ii rpq
Unit ii rpqBabu Rao
 
Formulas de transformada de laplace
Formulas de transformada de laplaceFormulas de transformada de laplace
Formulas de transformada de laplaceAlejandro Bernardo
 
Vocabulary
VocabularyVocabulary
VocabularyBabu Rao
 
Using Laplace Transforms to Solve Differential Equations
Using Laplace Transforms to Solve Differential EquationsUsing Laplace Transforms to Solve Differential Equations
Using Laplace Transforms to Solve Differential EquationsGeorge Stevens
 
Eece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transformEece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transformSandilya Sridhara
 
Unit iv complex integration
Unit iv complex integrationUnit iv complex integration
Unit iv complex integrationBabu Rao
 
How to Introduce
How to IntroduceHow to Introduce
How to IntroduceBabu Rao
 
Reading Comprehension
Reading ComprehensionReading Comprehension
Reading ComprehensionBabu Rao
 
Presentation on laplace transforms
Presentation on laplace transformsPresentation on laplace transforms
Presentation on laplace transformsHimel Himo
 
The rules of changing voice
The rules of changing voiceThe rules of changing voice
The rules of changing voiceMd. Abdul Kader
 

Viewers also liked (20)

Active and Passive
Active and PassiveActive and Passive
Active and Passive
 
Unit iii analytic functions
Unit  iii  analytic functionsUnit  iii  analytic functions
Unit iii analytic functions
 
The Eight Secrets of Successful Speaking
The Eight Secrets of Successful SpeakingThe Eight Secrets of Successful Speaking
The Eight Secrets of Successful Speaking
 
Resume
ResumeResume
Resume
 
Unit ii vector calculus
Unit ii vector calculusUnit ii vector calculus
Unit ii vector calculus
 
Unit v laplace transform(formula)
Unit v laplace transform(formula)Unit v laplace transform(formula)
Unit v laplace transform(formula)
 
The Ten Commandments of Writing
The Ten Commandments of WritingThe Ten Commandments of Writing
The Ten Commandments of Writing
 
The Advisory Board Company
The Advisory Board CompanyThe Advisory Board Company
The Advisory Board Company
 
Unit ii rpq
Unit ii rpqUnit ii rpq
Unit ii rpq
 
Formulas de transformada de laplace
Formulas de transformada de laplaceFormulas de transformada de laplace
Formulas de transformada de laplace
 
Vocabulary
VocabularyVocabulary
Vocabulary
 
Using Laplace Transforms to Solve Differential Equations
Using Laplace Transforms to Solve Differential EquationsUsing Laplace Transforms to Solve Differential Equations
Using Laplace Transforms to Solve Differential Equations
 
Eece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transformEece 301 note set 14 fourier transform
Eece 301 note set 14 fourier transform
 
Unit iv complex integration
Unit iv complex integrationUnit iv complex integration
Unit iv complex integration
 
mathematics formulas
mathematics formulasmathematics formulas
mathematics formulas
 
How to Introduce
How to IntroduceHow to Introduce
How to Introduce
 
Chapter 5 (maths 3)
Chapter 5 (maths 3)Chapter 5 (maths 3)
Chapter 5 (maths 3)
 
Reading Comprehension
Reading ComprehensionReading Comprehension
Reading Comprehension
 
Presentation on laplace transforms
Presentation on laplace transformsPresentation on laplace transforms
Presentation on laplace transforms
 
The rules of changing voice
The rules of changing voiceThe rules of changing voice
The rules of changing voice
 

Similar to Unit v rpq1

Lecture5 Signal and Systems
Lecture5 Signal and SystemsLecture5 Signal and Systems
Lecture5 Signal and Systemsbabak danyal
 
5. fourier properties
5. fourier properties5. fourier properties
5. fourier propertiesskysunilyadav
 
Digital signal processing
Digital signal processingDigital signal processing
Digital signal processingchitra raju
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformSimen Li
 
Comparison Theorems for SDEs
Comparison Theorems for SDEs Comparison Theorems for SDEs
Comparison Theorems for SDEs Ilya Gikhman
 
Lecture - 4.pdf
Lecture - 4.pdfLecture - 4.pdf
Lecture - 4.pdfnath479500
 
Determine if each system is1. memoryless2. Invertible3. Causal.pdf
Determine if each system is1. memoryless2. Invertible3. Causal.pdfDetermine if each system is1. memoryless2. Invertible3. Causal.pdf
Determine if each system is1. memoryless2. Invertible3. Causal.pdffashionfolionr
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical SystemPurnima Pandit
 
Unit 2 signal &amp;system
Unit 2 signal &amp;systemUnit 2 signal &amp;system
Unit 2 signal &amp;systemsushant7dare
 
Convolution problems
Convolution problemsConvolution problems
Convolution problemsPatrickMumba7
 
cab2602ff858c51113591d17321a80fc_MITRES_6_007S11_hw04.pdf
cab2602ff858c51113591d17321a80fc_MITRES_6_007S11_hw04.pdfcab2602ff858c51113591d17321a80fc_MITRES_6_007S11_hw04.pdf
cab2602ff858c51113591d17321a80fc_MITRES_6_007S11_hw04.pdfTsegaTeklewold1
 
cab2602ff858c51113591d17321a80fc_MITRES_6_007S11_hw04.pdf
cab2602ff858c51113591d17321a80fc_MITRES_6_007S11_hw04.pdfcab2602ff858c51113591d17321a80fc_MITRES_6_007S11_hw04.pdf
cab2602ff858c51113591d17321a80fc_MITRES_6_007S11_hw04.pdfTsegaTeklewold1
 

Similar to Unit v rpq1 (20)

Lecture5 Signal and Systems
Lecture5 Signal and SystemsLecture5 Signal and Systems
Lecture5 Signal and Systems
 
Ch07 1
Ch07 1Ch07 1
Ch07 1
 
Lecture 5: The Convolution Sum
Lecture 5: The Convolution SumLecture 5: The Convolution Sum
Lecture 5: The Convolution Sum
 
5. fourier properties
5. fourier properties5. fourier properties
5. fourier properties
 
Lcs2
Lcs2Lcs2
Lcs2
 
Digital signal processing
Digital signal processingDigital signal processing
Digital signal processing
 
Circuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace TransformCircuit Network Analysis - [Chapter4] Laplace Transform
Circuit Network Analysis - [Chapter4] Laplace Transform
 
Comparison Theorems for SDEs
Comparison Theorems for SDEs Comparison Theorems for SDEs
Comparison Theorems for SDEs
 
Ch07 7
Ch07 7Ch07 7
Ch07 7
 
Lecture - 4.pdf
Lecture - 4.pdfLecture - 4.pdf
Lecture - 4.pdf
 
lecture3_2.pdf
lecture3_2.pdflecture3_2.pdf
lecture3_2.pdf
 
Determine if each system is1. memoryless2. Invertible3. Causal.pdf
Determine if each system is1. memoryless2. Invertible3. Causal.pdfDetermine if each system is1. memoryless2. Invertible3. Causal.pdf
Determine if each system is1. memoryless2. Invertible3. Causal.pdf
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical System
 
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systemsAdaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
 
RVSP UNIT-VI.pptx
RVSP UNIT-VI.pptxRVSP UNIT-VI.pptx
RVSP UNIT-VI.pptx
 
Ch07 8
Ch07 8Ch07 8
Ch07 8
 
Unit 2 signal &amp;system
Unit 2 signal &amp;systemUnit 2 signal &amp;system
Unit 2 signal &amp;system
 
Convolution problems
Convolution problemsConvolution problems
Convolution problems
 
cab2602ff858c51113591d17321a80fc_MITRES_6_007S11_hw04.pdf
cab2602ff858c51113591d17321a80fc_MITRES_6_007S11_hw04.pdfcab2602ff858c51113591d17321a80fc_MITRES_6_007S11_hw04.pdf
cab2602ff858c51113591d17321a80fc_MITRES_6_007S11_hw04.pdf
 
cab2602ff858c51113591d17321a80fc_MITRES_6_007S11_hw04.pdf
cab2602ff858c51113591d17321a80fc_MITRES_6_007S11_hw04.pdfcab2602ff858c51113591d17321a80fc_MITRES_6_007S11_hw04.pdf
cab2602ff858c51113591d17321a80fc_MITRES_6_007S11_hw04.pdf
 

More from Babu Rao

Phrasal verb
Phrasal verbPhrasal verb
Phrasal verbBabu Rao
 
Unit iv rpq
Unit iv rpqUnit iv rpq
Unit iv rpqBabu Rao
 
Unit iii rpq
Unit iii rpqUnit iii rpq
Unit iii rpqBabu Rao
 
Unit i rpq
Unit i rpqUnit i rpq
Unit i rpqBabu Rao
 
The Ten Commandments of Writing
The Ten Commandments of WritingThe Ten Commandments of Writing
The Ten Commandments of WritingBabu Rao
 
Business Communication
Business CommunicationBusiness Communication
Business CommunicationBabu Rao
 
Effective Communication
Effective CommunicationEffective Communication
Effective CommunicationBabu Rao
 
Presentation
PresentationPresentation
PresentationBabu Rao
 
Job Interview
Job InterviewJob Interview
Job InterviewBabu Rao
 
Literary Personalities
Literary PersonalitiesLiterary Personalities
Literary PersonalitiesBabu Rao
 
Technical english vocabulary
Technical english   vocabularyTechnical english   vocabulary
Technical english vocabularyBabu Rao
 
Grammatical Forms
Grammatical Forms Grammatical Forms
Grammatical Forms Babu Rao
 
Jataka tales 02
Jataka tales 02Jataka tales 02
Jataka tales 02Babu Rao
 
Jataka tales 01
Jataka tales 01Jataka tales 01
Jataka tales 01Babu Rao
 
Industrial Visit Report
Industrial Visit ReportIndustrial Visit Report
Industrial Visit ReportBabu Rao
 

More from Babu Rao (17)

Proverbs
ProverbsProverbs
Proverbs
 
Phrasal verb
Phrasal verbPhrasal verb
Phrasal verb
 
Unit iv rpq
Unit iv rpqUnit iv rpq
Unit iv rpq
 
Unit iii rpq
Unit iii rpqUnit iii rpq
Unit iii rpq
 
Unit i rpq
Unit i rpqUnit i rpq
Unit i rpq
 
The Ten Commandments of Writing
The Ten Commandments of WritingThe Ten Commandments of Writing
The Ten Commandments of Writing
 
Business Communication
Business CommunicationBusiness Communication
Business Communication
 
Effective Communication
Effective CommunicationEffective Communication
Effective Communication
 
Presentation
PresentationPresentation
Presentation
 
Job Interview
Job InterviewJob Interview
Job Interview
 
Literary Personalities
Literary PersonalitiesLiterary Personalities
Literary Personalities
 
Report
ReportReport
Report
 
Technical english vocabulary
Technical english   vocabularyTechnical english   vocabulary
Technical english vocabulary
 
Grammatical Forms
Grammatical Forms Grammatical Forms
Grammatical Forms
 
Jataka tales 02
Jataka tales 02Jataka tales 02
Jataka tales 02
 
Jataka tales 01
Jataka tales 01Jataka tales 01
Jataka tales 01
 
Industrial Visit Report
Industrial Visit ReportIndustrial Visit Report
Industrial Visit Report
 

Recently uploaded

Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...DhatriParmar
 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxMichelleTuguinay1
 
Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfPrerana Jadhav
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptxmary850239
 
Multi Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP ModuleMulti Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP ModuleCeline George
 
How to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseHow to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseCeline George
 
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxkarenfajardo43
 
MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdfMr Bounab Samir
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSMae Pangan
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research DiscourseAnita GoswamiGiri
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...Nguyen Thanh Tu Collection
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Projectjordimapav
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Association for Project Management
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptxDhatriParmar
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQuiz Club NITW
 
Mental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young mindsMental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young mindsPooky Knightsmith
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17Celine George
 

Recently uploaded (20)

Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
 
Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdf
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx
 
Multi Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP ModuleMulti Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP Module
 
How to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseHow to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 Database
 
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
 
MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdf
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHS
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research Discourse
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Project
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
 
Mental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young mindsMental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young minds
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17
 

Unit v rpq1

  • 1. UNIT –V LINEAR SYSTEMS WITH RANDOM INPUTS PART – A 1. Define a system. When is it called a linear system? A system is a functional relationship between the input ( )tx and the output ( )ty . The functional relationship is written as ( ) ( )[ ]txfty = . If ( ) ( )[ ] ( )[ ] ( )[ ]tXfatXfatXatXaf 22112211 ±=± , then f is called a linear system. 2. Write a note on linear system. If ( ) ( )[ ] ( )[ ] ( )[ ]tXfatXfatXatXaf 22112211 ±=± , then f is called a linear system. If ( ) ( )[ ]htXfhtY +=+ where ( ) ( )[ ]tXftY = , then f is called a time – invariant system or ( )tX and ( )tY are said to form a time invariant system. If the output ( )1tY at a given time 1tt = depends only on ( )1tX and not on any other past or future values of ( )tX , then the system f is called a memoryless system. If the value of the output ( )tY at 1tt = depends only on the past values of the input ( ) 1, tttX ≤ . (ie) ( ) ( )[ ]11 ; tttXftY ≤= , then the system is called a casual system. 3. State the properties of linear system. The properties of linear system are (i) If a system is such that its input ( )tX and its output ( )tY are related by a convolution integral, then the system is a linear time invariant system. (ii) If the input to a time-invariant, stable linear system is a WSS process, the output will also be a WSS process. (iii) The power spectral densities of the input and output processes in the system are connected by the relation ( ) ( ) ( )ωωω XXYY SHS 2 = , where ( )ωH is the Fourier transform of unit impulse response function ( )th . 140
  • 2. 4. Define system weighting function. If the output ( )tY of a system is expressed as the convolution of the input ( )tX and a function ( )th (ie) ( ) ( ) ( )∫ ∞ ∞− −= ,duutXuhtY then ( )th is called the system weighting function. 5. What is unit impulse response of a system? Why is it called so? If a system is of the form ( ) ( ) ( )∫ ∞ ∞− −= ,duutXuhtY then the system weighting function ( )th is also called unit impulse response of the system. It is called so because the response (output) ( )tY will be ( )th , when the input ( )tX = the unit impulse function ( )tδ . 6. If the input of a linear system is a Gaussian random process, comment about the output random process. If the input of a linear system is a Gaussian random process, then the output will also be a Gaussian random process. 7. If the input ( )tX of the system ( ) ( ) ( )∫ ∞ ∞− −= duutXuhtY is the unit impulse function, prove that ( ) ( )thtY = . Given ( ) ( ) ( )∫ ∞ ∞− −= duutXuhtY Put ( ) ( )ttX δ= Therefore ( ) ( )ututX −=− δ ( ) ( ) ( )∫ ∞ ∞− −= duutuhtY δ ( ) ( )∫ ∞ ∞− −= duuuth δ [ by the property of convolution ] ( ) ( )thth =−= 0 . 8. If a system is defined as ( ) ( )∫ ∞ − −= 0 1 dueutX T tY T u , find its unit impulse function. 141
  • 3. Given ( ) ( )∫ ∞ − −= 0 1 dueutX T tY T u ( )∫ ∞ − −= 0 1 duutXe T T u The unit impulse function ( )      ≥ = − elsewhere te Tth T t ,0 0, 1 . 9. If ( ){ }tX and ( ){ }tY in the system ( ) ( ) ( )∫ ∞ ∞− −= duutXuhtY are WSS processes, how are their autocorrelation functions related? ( ) ( ) ( )τττ hRR XYYY * = ( ) ( ) ( )τττ −= hRR XXXY * , where * denotes convolution. 10. If the input and output of the system ( ) ( ) ( )∫ ∞ ∞− −= duutXuhtY are WSS processes, how are their power spectral densities related? ( ) ( ) ( ) 2 ωωω HSS XXTT = , where ( )ωH is the Fourier transform of ( ).th 11. Define the power transfer function or system function of the system. The power transfer function or system function of the system is the Fourier transform of the unit impulse function of the system. 12. If the system function of a convolution type of linear system is given by ( )      > ≤ = ctfor ctfor cth 0 2 1 . Find the relation between power spectral density functions of the input and output processes. 142
  • 4. ( ) ( )[ ] ( ) ∫∫ − − ∞ ∞− − === c c titi dte c dteththFH ωω ω 2 1 ( ) dtt c idtt c dttit c c c c c c c ∫∫∫ −−− −=−= ωωωω sin 2 1 cos 2 1 sincos 2 1 ( )0 2 1 cos2 2 1 0 c idtt c c −= ∫ ω [since the first and second integrand are even and odd functions] [ ] ω ω ω ωω ω c c c c t c c sin 0sin 1sin1 0 =−=      = ( ) ( ) ( ) ( )ω ω ω ωωω XXXXYY S c c SHS 22 2 2 sin == . 13. What is thermal noise? By what type of random processes is it represented? Thermal noise is the noise because of the random motion of free electrons in conducting media such as a resistor. It is represented by Gaussian random processes. 14. Why is thermal noise called white noise? ( )ωNNS is a constant for all values of ω (ie) ( )ωNNS contains all frequencies in equal amount. White noise is called so in analogy to white light which consists of all colour. 15. Define white noise. Let ( )tX be a sample function of a WSS noise process, then ( ){ }TttX ∈, is called the white noise if the power density spectrum of ( ){ }TttX ∈, is constant at all frequencies . (ie) ( ) 2 0N SNN =ω where 0N is a real positive constant. 143
  • 5. 16. If the power spectral density of white noise is 2 0N , find its autocorrelation function. ( ) ( ) ( ) ττδττδτδ τωτω de N de NN F ii ∫∫ ∞ ∞− − ∞ ∞− − ==      222 000 ( ) 22 000 N e N == Therefore ( ) ( )τδτ 22 001 NN FRNN =      = − . 17. If the input to a linear time invariant system is white noise ( ){ }tN , what is power spectral density function of the output? If the input to a linear time invariant system is white noise ( ){ }tN , then the power spectral density of the output ( )ωYYS is given by ( ) ( ) ( ) ( ) 202 2 ωωωω H N HSS XXYY == . where ( ){ }tY is the output process and ( )ωH is the power transfer function. 18. Find the average power or the mean square value of the white noise ( ){ }tN ? Average power = ( )[ ] ( )02 NNRtNE = ( ) ( ) ( )∫∫ ∞ ∞− ∞ ∞− == ωωωω dSdeS NNNN 0 ∞→= ∫ ∞ ∞− ωd N 2 0 19. A wide sense stationary noise process ( )tN has an autocorrelation function ( ) ∞<<∞−= − ττ τ , 3 ePRNN with P as a constant. Find its power density spectrum. ( ) ( ) ( ) τωτωττττω ττωττω diePdeePdeRS ii NNNN sincos 33 −=== ∫∫∫ ∞ ∞− − ∞ ∞− −− ∞ ∞− −         −= ∫∫ ∞ ∞− − ∞ ∞− − τωτττω ττ deideP sincos 33 144
  • 6. ( )0cos2 0 3 ideP −= ∫ ∞ − τωττ [since the first and second integrand are even and odd functions] ( ) ( ) ∞ −∞ −       +− +− == ∫ 0 22 3 0 3 sincos3 3 2cos2 ωτωωτ ω τωτ τ τ e PdeP ( ) 22 9 6 03 9 1 02 ωω + =      +− + −= P P . 20. Define band limited white noise. Noise having a non-zero and constant spectral density over a finite frequency band and zero elsewhere is called band limited white noise. If ( ){ }tN is a band limited white noise, then ( )      ≤ = elsewhere N S B NN ,0 , 2 0 ωω ω . 21. State a few properties of band limited white noise. Properties of band limited white noise are (i) ( )[ ] B N tNE ω π2 02 = (ii) ( )       = τω τω π ω τ B BB NN N R sin 2 0 (iii) ( )tN and       + B k tN ω π are independent, where k is a non-zero integer. 22. Find the autocorrelation function of the band-limited white noise. ( ) ( ) ( ) ττωτω π ω π ωω π τ ω ω ω ω ωττω di N de N deSR B B B B ii NNNN sincos 22 1 22 1 2 1 00 +=== ∫∫∫ −− ∞ ∞− 145
  • 7. ( )         +=         += ∫∫∫ −− 0cos2 4 sincos 4 0 00 id N did N BB B B B ωω ω ω ω ωωτ π ωωτωωτ π 146
  • 8. [since the first and second integrand are even and odd functions] [ ] B BB B NNN B ωτ ωτ π ω ωτ τπτ ωτ π ω sin 2 0sin 2 sin 2 00 0 0 =−=      = . 23. Find the average power of the band – limited white noise. Average power ( )[ ] ( )02 NNRtNE ==       = → B BBN ωτ ωτ π ω τ sin lim 2 0 0 ( )       == → 1 sin limsin1 2 0 0 θ θ π ω θ ce N B π ω 2 0 BN = . 147
  • 9. PART – B 1. Show that if ( ){ }tX is a WSS process then the output ( ){ }tY is a WSS process. Solution: ( ) ( ) ( )∫ ∞ ∞− −= duutXuhtY ( )[ ] ( ) ( )[ ]∫ ∞ ∞− −= duutXEuhtYE ( )∫ ∞ ∞− = duuhxµ [ since ( ){ }tX is a WSS process ] = a finite constant independent of t ( ) ( ) ( )[ ]2121 , tYtYEttRYY = ( ) ( ) ( ) ( )         −−= ∫ ∫ ∞ ∞− ∞ ∞− 21221121 duduutXutXuhuhE ( ) ( ) ( ) ( )[ ]∫ ∫ ∞ ∞− ∞ ∞− −−= 21221121 duduutXutXEuhuh ( ) ( ) ( )∫ ∫ ∞ ∞− ∞ ∞− −−= 21221121 , duduututRuhuh XX ( ) ( ) ( ) ( )[ ]∫ ∫ ∞ ∞− ∞ ∞− −−−= 21212121 duduuuttRuhuh XX [ since ( ){ }tX is a WSS ] Since the R.H.S of the above equation is a function of ( )21 tt − , so will be the L.H.S. Therefore, ( )21 ,ttRYY will be a function of ( )21 tt − . Therefore, ( ){ }tY is a WSS process. 2. For a linear system with random input ( )tx , the impulse response ( )th and output ( )ty , obtain the cross correlation function ( )τXYR and the output autocorrelation function ( )τYYR . Solution: (1) Let ( ) ( ) ( )∫ ∞ ∞− −= ααα dhtXtY Therefore, ( ) ( ) ( ) ( ) ( )∫ ∞ ∞− −+=+ αααττ dhtXtXtYtX ( ) ( )[ ] ( ) ( )[ ] ( )∫ ∞ ∞− −+=+ αααττ dhtXtXEtYtXE ( ) ( ) ( )∫ ∞ ∞− += αααττ dhRR XXXY Putting βα −= when ∞=∞−= βα , βα dd −= when ∞−=∞= βα , 148
  • 10. ( ) ( ) ( )( )∫ ∞− ∞ −−−= βββττ dhRR XXXY ( ) ( ) ( )∫ ∞− ∞ −−−= βββττ dhRR XXXY ( ) ( ) ( )∫ ∞ ∞− −−= βββττ dhRR XXXY ( ) ( ) ( )τττ −= hRR XXXY * (2) ( ) ( ) ( ) ( ) ( )∫ ∞ ∞− −−=− αατατ dhtYtXtYtY ( ) ( )[ ] ( ) ( )[ ] ( )∫ ∞ ∞− −−=− αατατ dhtYtXEtYtYE ( ) ( ) ( ) αααττ dhRR XYYY −= Assuming that ( ){ }tX and ( ){ }tY are jointly WSS Therefore, ( ) ( ) ( )τττ hRR XYYY *= . 3. For a linear system with random input ( )tX , the impulse response ( )th and output ( )tY , obtain the power spectrum ( )ωYYS and cross power spectrum ( )ωXYS . Solution: By the previous problem, we have ( ) ( ) ( )τττ −= hRR XXXY * ----------------(1) ( ) ( ) ( )τττ hRR XYYY *= -----------------(2) Taking Fourier transform of equations (1) and (2) , we have ( )[ ] ( )[ ] ( )[ ]τττ −= hFRFRF XXXY . ( ) ( ) ( )ωωω *.HSS XXXY = --------------(3) where ( )ωH is the Fourier transform of unit impulse response function ( )th and ( )ω*H is the conjugate of ( )ωH . and ( )[ ] ( )[ ] ( )[ ]τττ hFRFRF XYYY .= ( ) ( ) ( )ωωω HSS XYYY .= ------------------(4) Inserting (3) in(4), we have ( ) ( ) ( ) ( )ωωωω HHSS XXYY *.= ( ) ( ) 2 ωω HS XX= Therefore, ( ) ( ) ( ) 2 ωωω HSS XXYY = . 149
  • 11. 4. Show that ( ) ( ) ( ) 2 ωωω HSS XXYY = where ( )ωXXS and ( )ωYYS are the power spectral density functions of the input ( )tX and the output ( )tY and ( )ωH is the system transfer function. Solution: ( ) ( ) ( )[ ]ττ −= tYtYERYY ( ) ( ) ( ) ( )         −−−= ∫ ∫ ∞ ∞− ∞ ∞− dvvtXvhduutXuhE τ. ( ) ( ) ( ) ( )         −−−= ∫ ∫ ∞ ∞− ∞ ∞− dvduvhuhvtXutXE τ ( ) ( )[ ] ( ) ( )∫ ∫ ∞ ∞− ∞ ∞− −−−= dvduvhuhvtXutXE τ If ( ){ }tX is WSS, then ( ) ( )( ) ( ) ( )∫ ∫ ∞ ∞− ∞ ∞− −−= dvduvhuhvuRR XXYY ττ The above integral is a two fold convolution of autocorrelation with impulse response ( )th Therefore, ( ) ( ) ( ) ( )ththRR XXYY −= **ττ Taking Fourier transform on both sides, we have ( )[ ] ( )[ ] ( )[ ] ( )[ ]thFthFRFRF XXYY −= ..ττ ( ) ( ) ( )[ ] ( )[ ]thFthFSS XXYY −= ..ωω -------------------------- (1) ( ) ( )[ ]thFH =ω ( ) ( )∫ ∞ ∞− − = dtethH ti ω ω ---------------------------------------(2) ( ) ( )∫ ∞ ∞− = dtethH ti ω ω* Putting st −= when ∞=∞−= st , dsdt −= when ∞−=∞= st , ( ) ( ) ( )∫ ∞− ∞ − −−= dseshH si ω ω* ( ) ( )∫ ∞− ∞ − −−= dseshH si ω ω* ( ) ( )∫ ∞ ∞− − −= dseshH si ω ω* ( )[ ]thF −= ---------------------------------(3) Inserting (2) and (3) in (1), we have ( ) ( ) ( ) ( )ωωωω *.. HHSS XXYY = ( ) ( ) ( ) 2 . ωωω HSS XXYY = . 150
  • 12. 5. A system has an impulse response function ( ) ( ),tUeth tβ− = find the power spectral density of the output ( )tY corresponding to the input ( )tX . Solution: Given ( ) ( )tUeth tβ− = 0, ≥= − te tβ where ( )    < > = 0,0 0,1 t t tU ( ) ( )[ ] ∫ ∞ −− == 0 dteethFH tit ωβ ω ( ) ∫ ∞ +− = 0 dte ti ωβ ( ) ( ) ∞+−       +− = 0 ωβ ωβ i e tii ( ) ωβωβ ii + =− + −= 1 10 1 ( ) ωβ ω i H − = 1 * ( ) ( ) ( )ωωω * 2 HHH = 22 11 . 1 ωβωβωβ + = −+ = ii Therefore, ( ) ( ) ( ) 2 . ωωω HSS XXYY = ( ) ( ) 22 1 . ωβ ωω + = XXYY SS . 6. ( )tX is the input voltage to a circuit and ( )tY is the output voltage. ( ){ }tX is a stationary random process with 0=xµ and ( ) τα τ − = eRXX . Find ( )ωµ YYy S, and ( )τYYR if the power transfer function is ( ) WLiR R H + =ω . Solution: ( ) ( ) ( )∫ ∞ ∞− −= duutXuhtY ( )[ ] ( ) ( )         −= ∫ ∞ ∞− duutXuhEtYE ( )[ ] ( ) ( )[ ]∫ ∞ ∞− −= duutXEuhtYE ( ) ( )∫ ∞ ∞− = duuh 0 [ since 0=xµ is given ] ( )[ ] 0=tYE 151
  • 13. Therefore, ( )[ ] 0== tYEyµ . ( ) ( ) ( ) 2 . ωωω HSS XXYY = where ( ) ( )[ ]τω XXXX RFS = ( ) ( )∫ ∞ ∞− − = ττω τω deRS i XXXX ( )∫∫ ∞ ∞− − ∞ ∞− −− −== ττωτωτ τατωτα diedee i sincos. ∫∫ ∞ ∞− − ∞ ∞− − −= ττωττω τατα deide sincos ( )0cos2 0 ide −= ∫ ∞ − ττωτα [since the first and second integrand are even and odd functions] ∫ ∞ − = 0 cos2 ττωτα de ( ) ( ) ∞ −       +− +− = 0 22 sincos2 τωωτωα ωα τα e ( ) 2222 2 0 1 02 ωα α α ωα + =      +− + −= ( ) 22 2 ωα α ω + =XXS ( ) 2 22 2 LWiR R SYY ++ = ωα α ω ( ) 222 2 22 . 2 WLR R SYY ++ = ωα α ω ( ) ( )( )22222 2 2 WLR R SYY ++ = ωα α ω ( ) ( )[ ]ωτ YYYY SFR 1− = 7. A wide sense stationary random process ( )tX with autocorrelation function ( ) τα τ − = eARXX where A and α are real positive constants is applied to the 152
  • 14. input of an linearly time invariant system with impulse response ( ) 0, >= − teth tb where b is a real positive constant. Find the spectral density of the output ( )tY of the system. Solution: ( ) ( )∫ ∞ ∞− − = ττω τω deRS i XXXX ( ) ∫ ∞ ∞− −− = τω τωτα deeAS i XX ( )∫ ∞ ∞− − −= ττωτωτα dieA sincos         −= ∫ ∫ ∞ ∞− ∞ ∞− −− ττωττω τατα deideA sincos ( )      −= ∫ ∞ − 0 0cos2 ideA ττωτα ∫ ∞ − = 0 cos2 ττωτα deA ( ) ( ) ∞ −       −− +− = 0 22 sincos2 τωωτωα ωα τα e A ( )      +− + −= 0 1 02 22 α ωα A ( ) 22 2 ωα α ω + = A S XX ( ) ( )[ ]thFH =ω ( ) ( )∫ ∞ ∞− − = dtethH ti ω ω ( ) ∫ ∞ −− = 0 dteeH titb ω ω ( ) ∫ ∞ +− = 0 dte tib ω ( ) ( ) ∞+−       +− = 0 ω ω ib e tib ( )10 1 − + −= ωib ωib + = 1 ( ) 22 2 11 ωω ω + = + = bib H . ( ) ( ) ( ) 2 . ωωω HSS XXYY = 153
  • 15. 2222 1 . 2 ωωα α ++ = b A ( ) ( )( )2222 2 b A SYY ++ = ωαω α ω . 8. Establish the spectral representation theorem. Solution: Let ( )tX be a signal and define ( ) ( )     <<− = otherwise T t T tX tXT ,0 22 , Represent ( )tXT in a Fourier series ( complex form ) ( ) ∑ ∞ ∞− = tni nT ectX 0ω where ( )∫ − − == 2 2 0 2 , 1 0 T T tni Tn T wheredtetX T c π ωω ( )∫ − − = 2 2 0 1 T T tni n dtetX T c ω ( )0 1 ωniX T = [ taking the envelope ( )ωiX of nc ] Therefore, ( ) ( )∑ ∞ ∞− = tni T eniX T tX 0 0 1 ω ω ( ) ( )∑ ∞ ∞−       = tni T eniXtX 0 0 0 2 1 ω ω ω π ( ) ( ) 00 . 2 1 0 ωω π ω ∑ ∞ ∞− = tni T eniXtX As ∞→T , ( ) ( )tXtXT → Therefore, ( ) ( )∫ ∞ ∞− = ωω π ω deiXtX ti 2 1 -----------------------(1) and equivalently, ( by Fourier integral theorem ) ( ) ( )∫ ∞ ∞− − = dtetXiX ti ω ω -------------------------(2) ( )ωiX is usually called as spectrum of the aperiodic signal ( )tx 154
  • 16. 9. Show that in an input – output system the energy of a signal is equal to the energy of the spectrum. Solution: Energy of a signal ( )∫ ∞ ∞− = dttX 2 ( ) ( )∫ ∞ ∞− = dttXtX * ( ) ( )∫ ∫ ∞ ∞− ∞ ∞− −         = dtdeiXtX ti ωω π ω * 2 1 [ by equation (1) of problem 8 above ] ( ) ( )∫ ∫ ∞ ∞− ∞ ∞− −         = dttXdeiX ti ωω π ω * 2 1 ( ) ( )∫ ∫ ∞ ∞− ∞ ∞− −         = ωω π ω diXdtetX ti * 2 1 [ by changing the order of integration ] ( ) ( )∫ ∞ ∞− = ωωω π diXiX * 2 1 [ by equation (2) of problem 8 above ] ( )∫ ∞ ∞− = ωω π diX 2 2 1 = Energy of the spectrum. 10. If ( ){ }tX is a band limited process such that ( ) 0=ωXXS , when σω> , prove that ( ) ( )[ ] ( )002 22 XXXXXX RRR τστ ≤− . Solution: ( ) ( )∫ ∞ ∞− = ωω π τ ωτ deSR i XXXX 2 1 ( ) ( ) ( )∫ ∞ ∞− += ωωτωτω π τ diSR XXXX sincos. 2 1 ( ) ( ) ωωτω π ωωτω π dSdS XXXX sin 2 1 cos 2 1 ∫∫ ∞ ∞− ∞ ∞− += ( ) ( )0 2 1 cos 2 1 π ωωτω π += ∫ ∞ ∞− dS XX 155
  • 17. [ since ( )ωXXS is an even function and therefore the first integrand is even and the second is an odd function ]. ( ) ( ) ( ) ∫ ∞ ∞− = ωω π deSR XXXX 0 2 1 0 ( ) ωω π dS XX∫ ∞ ∞− = 2 1 ( ) ( ) ( ) ( )∫∫ ∞ ∞− ∞ ∞− −=− ωωτω π ωω π τ dSdSRR XXXXXXXX cos 2 1 2 1 0 ( ) ( ) ( ) ( )∫ ∞ ∞− −=− ωωτω π τ dSRR XXXXXX cos1 2 1 0 ( ) ( ) ( ) ( )∫− −=− σ σ ωωτω π τ dSRR XXXXXX cos1 2 1 0 [since ( ){ }tX is band limited ] ( ) ( ) ( )∫−       =− σ σ ω ωτ ω π τ dSRR XXXXXX 2 sin2 2 1 0 2 -----------------------(1) From trigonometry, 0sin ≤θ 22 sin θθ ≤ 22 sin2 22 2 ωτωτ ≤      --------------------------- (2) Inserting (2) in (1) , we have ( ) ( ) ( )∫−       ≤− σ σ ω ωτ ω π τ dSRR XXXXXX 22 1 0 22 ( )∫− ≤ σ σ ωω π τσ dS XX 4 22 ( )∫ ∞ ∞− ≤ ωω π τσ dS XX 4 22 ( )∫ ∞ ∞− ≤ ωω π τσ dS XX 2 1 2 22 ( )0 2 22 XXR τσ ≤ ( ) ( ) ( )0 2 0 22 XXXXXX RRR τσ τ ≤− ( ) ( )[ ] ( )002 22 XXXXXX RRR τστ ≤− 156
  • 18. 11. If ( ) ( ) ( )tNtAtY ++= θω0cos , where A is a constant, θ is a random variable with a uniform distribution in ( )ππ,− and ( ){ }tN is a band limited Gaussian white noise with a power spectral density ( )     <− = elsewhere for N S B NN ,0 , 2 0 0 ωωω ω . Find the power spectral density of ( ){ }tY . Assume that ( )tN and θ are independent. Solution: Given ( ) ( ) ( )tNtAtY ++= θω0cos Since θ is uniformly distributed in ( )ππ,− , the density function is given by ( ) πθπ π θ <<−= , 2 1 f ( ) ( ) ( )[ ]2121 , tYtYEttRYY = ( ) ( )( ) ( ) ( )( )[ ]220110 coscos tNtAtNtAE ++++= θωθω ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]211202102010 2 coscoscoscos tNtNtNtAtNtAttAE +++++++= θωθωθωθω ( ) ( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )[ 11202102010 2 coscoscoscos NtNEtNEtAEtNEtAEttEA +++++++= θωθωθωθω ( since ( )tN and θ are independent ) ( ) ( )[ ] ( )[ ]( ) ( )[ ]( ) ( )2120102010 2 ,0cos0coscoscos ttRtAEtAEttEA NN+++++++= θωθωθωθω ( ) ( ) ( ) ( ) ( )212010 2 21 ,coscos, ttRdfttAttR NNYY +++= ∫− θθθωθω θ π π ( ) ( ) ( ) ( )212010 2 21 , 2 1 coscos2 2 , ttRdtt A ttR NNYY +++= ∫− θ π θωθω π π ( ) ( ) ( )[ ] ( )2120102010 2 21 ,coscos 4 , ttRdtttt A ttR NNYY +−−+++++= ∫− π π θθωθωθωθω π ( ) ( )( ) ( )( ) ( )21210210 2 21 ,cos2cos 4 , ttRdttdtt A ttR NNYY +         −+++= ∫∫ −− π π π π θωθθω π ( ) ( )( ) ( )( ) ( )21210 210 2 21 ,cos 2 2sin 4 , ttRdtt ttA ttR NNYY +         −+      ++ = ∫−− π π π π θω θω π 157
  • 19. ( ) ( )( ) ( )( )( ) ( )( )( ) ( )21210210210 2 21 ,cossinsin 2 1 4 , ttRtttttt A ttR NNYY +    −++−+= − π πθωωω π ( ) ( )( )[ ] ( )21210 2 21 ,cos2 4 , ttRtt A ttR NNYY +−= ωπ π ( ) ( ) ( )21210 2 21 ,cos 2 , ttRtt A ttR NNYY +−= ω ( ) ( )ττωτ NNYY R A R += 0 2 cos 2 Taking Fourier transform on both sides , we have ( )[ ] [ ] ( )[ ]ττωτ NNYY RFF A RF += 0 2 cos 2 ( ) ( ) ( )[ ] ( )ωωωδωωδπω NNYY S A S +++−= 00 2 2 where [ ] ( ) ( )[ ]pppF ++−= ωδωδπτcos . 158