Upcoming SlideShare
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

# Saving this for later?

### Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime - even offline.

Standard text messaging rates apply

# Geometri Transformasi

673
views

Published on

Published in: Education

0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total Views
673
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
20
0
Likes
0
Embeds 0
No embeds

No notes for slide

### Transcript

• 1. TransformasiOleh :Feli RamuryMaya SaftariNurul Fajriah
• 2. Pendahuluan1. Konsep Felix Klein2. Geometr Transformasi
• 3. Transformasi VektorTr a n s f o r ma s i i n ime n u n j u k k a n s u a t ut r a n s f o r ma s i l i n i e r .Tr a n s f o r ma s i l i n i e ra k a n t a mp a k t e r l i h a tj e l a s j i k a B = C d a n a k a nd i n y a t a k a n d a l a m b e n t u kA : B B y a n g d i s e b u td e n g a n o p e r a t o r l i n i e rp a d a B. Sa t u a l a s a nme n g a p a t r a n s f o r ma s it e r s e b u t d i k a t a k a n
• 4. Gambar Points on a Line L1 a +tb a +b L1 a tb Diperpanjang sebesar t b 0
• 5. Transformasi Linier dengan Matriks 1. I s o me t r i a r t i n y a b e r u k u r a n s a ma . 2. I n v a r i a n 3. I s o me t r i d a l a m g e o me t r i E u c l i d t e r d i r i d a r i 3 k a t e g o r i d a n k o mp o s i s i n y a : t r a n s l a s i , r o t a s i , d a n r e f l e k s i .
• 6. Transformasi Affine1. T r a n s f o r ma s i a f f i n a d a l a h h u b u n g a n g e o me t r i y a n g me mp e r t a h a n k a n b e n t u k d a s a r d a n i n t e g r i t a s b a n g u n g e o me t r i . Tr a n s f o r ma s i a f f i n d a p a t b e r u p a r o t a s i , t r a n s l a s i , d a n d i l a t a s i .2. T r a n s f o r ma s i a f f i n e t i d a k me mp e r t a h a n k a n /
• 7. Contoh Transformasi Affine
• 8. The Group of Isometries ofThe Plane
• 9. C h a p t e r 3.7, s e t i a pi s o me t r i d a r i R 2a d a l a h p r o d u k d a r is a t u , d u a , a t a u t i g ar e f l e k s i .M i s a l k a n f = r 1r 2r 3,Re f l e k s i d i o p e r a s i k a nd e n g a n d i r i n y ame n j a d i f u n g s ii d e n t i t a s , d i d a p a tf = r 1r 2r 3 r 3r 2r 1 = r 1r 2r 2r 1 = r 1r 1
• 10. A t r a n s f o r ma t i o no f a s e t S i a af u n c t i o n f r o m St o S, a n d ac o l l e c t i o n G o ft r a n s f o r ma t i o nf o r ms a g r o u p i fi t h a s t h e t wop r o p e r t i e s :J i k a f d a n g b e r a d a d i G , ma k a b e g i t u j u g a f g
• 11. Spherical GeometrySpherical Geometry adalah suatu geometri dua dimensi dari permukaan bola (sphere). Sphere adalah himpunan semua titik dalam ruang tiga dimensi yang merupakan jaraktetap dari suatu titik tertentu (disebut pusat).
• 12. Great CircleO 1 Q θ P
• 13. Great CircleGreat Circle Distance adalah lingkaran yang dibentukoleh perpotongan bola dan bidang melewati pusat.Sebuah lingkaran besar adalah lingkaran terbesaryang dapat ditarik pada suatu lingkungantertentu, dan jalur terpendek sepanjang bola antaradua titik adalah lingkaran besar.
• 14. The Reflection “line” on The Sphere
• 15. Representing Space Rotations byQuaternions 
• 16.
• 17.
• 18. Rotations of (i, j, k) –space
• 19.
• 20.
• 21.
• 22.
• 23. Terima Kasih