Your SlideShare is downloading. ×
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Major project
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Major project

1,029

Published on

0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,029
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
20
Comments
0
Likes
2
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Page 1 1. WIREROD MILL ROLLER TABLE DESCRIPTION OF WIREROD MILL ROLLER TABLE The roller table has 3 sections each section driven by a separate DC mill duty motor. A common thyristor converter has been provided for the 3 DC motors. Reversible converter has been provided for regenerative braking of the table motors and for reverse inclining operation of the roller table. Wire rod mill is at HRM i.e. Hot Rolling Mills. Wire rod mill having 7 stands. Provision has been made for running any one or two or all three sections at a time. While the roller table is running any one section motor can be switched off independent of other sections, however once the roller table is running any section motor which is off or any section motor which might have stopped due to fault conditions cannot restarted as it is undesirable to apply full armature voltage step to the motor armature. Production of wire rod from quality and stainless steel is subjected to constant change.The growing demands on the quality of the finished products and on theflexibility and cost effectiveness of the plants necessitate new concepts and strategies from the plant manufacturer. this supplies not only to machine engineering, but also to new innovative processes and technologies. The holistic consideration of the complete process is fundamental for meeting the customer‘s expectations. In a wire rod mill, the performance in term of rolled output plays a vital role in the bottom line of the organisation. In the rolling system, raw material (in block form) is fed one after one, after adequate heating. Then the heated material is drawn by a series of roller and the output is collected through a conveyor, in a coil form. The whole system runs continuously. In order to have trouble free working, the entire coil should be perfect round coil. A concave deformation at a small portion of the ring is called KINK and when it forms, the wire rod refuses to pass through the conveyor. It was observed that the KINK formed in the last few coils only.
  • 2. Page 2 ROLLER TABLE Description of roller table control equipment There are three sections of the roller table each section driven by a DC motor rated 0/7.5/15 kW, 0/230v/460v,0/800/1600rpm. Power equipment All the line equipment on the armature side via protective relays negative line isolator, line contactors, voltmeters, ammeter with shunt and dynamic braking contactor and on the field side viz. field failure relay and voltmeter are mounted in the line and control cubicle. Control equipment The control circuit input knife switch and fuses, transformer/rectifier unit, all the inter locking relays and timers are mounted in the line and control cubicle.
  • 3. Page 3 Description of power and control scheme for roller table drive thyristor controller From incoming supply available available(415,3-phase), a 75 KVA Dry type transformer steps up the voltage to 440V. The transformer has an electrically operated MCCB in the primary. The DC output has two shunts after which DC is taken by cables from the converter cubicles to line and control cubicles.Thethyristor bridge consists of twelve nos. of thyristors and six fuses in a reversible six pulses. Circulating current free connections.The roller table consists of 3 DC motors Dc motor of Wirerod Mill Roller Table Name Plate Details of DC Motor for Wirerod mill Roller Table Frame MDX 3/31 Rating Continuous KW 0/7.5/15 Volts 0/230/445 RPM 0/800/1600 Separate excitation 230V Winding Shunt
  • 4. Page 4 Rating and Service Conditions for Roller Table Drive Thyristor Converter for Wire Rod Mill Incoming Supply Voltage 415V,3-phase Voltage variations ±10% Frequency 50Hz Frequency variations ±3% Fault level 25MVA Converter rating(armature) Voltage 0 to 460V DC Current 1)110 A continuous 2)275 A for 15 sec. (field) Voltage Full field 230V DC Current Full field 4.5A
  • 5. Page 5 2. DC MOTORS Electric motors are broadly classified into two different categories: DC (Direct Current) and AC (Alternating Current). Within these categories are numerous types, each offering unique abilities that suit them well for specific applications. In most cases, regardless of type, electric motors consist of a stator (stationary field) and a rotor (the rotating field or armature) and operate through the interaction of magnetic flux and electric current to produce rotational speed and torque. DC motors are distinguished by their ability to operate from direct current. A direct current (DC) motor is a fairly simple electric motor that uses electricity and a magnetic field to produce torque, which causes it to turn. At its most simple, it requires two magnets of opposite polarity and an electric coil, which acts as an electromagnet. The repellent and attractive electromagnetic forces of the magnets provide the torque that causes the motor to turn. Anyone who has ever played with magnets knows that they are polarized, with a positive and a negative side. The attraction between opposite poles and the repulsion of similar poles can easily be felt, even with relatively weak magnets. A DC motor uses these properties to convert electricity into motion. As the magnets within the motor attract and repel one another, the motor turns.
  • 6. Page 6 Electromechanical Energy Conversion An electromechanical energy conversion device is essentially a medium of transfer between an input side and an output side. Three electrical machines (DC, induction and synchronous) are used extensively for electromechanical energy conversion. Electromechanical energy conversion occurs when there is a change inmagnetic flux linking a coil, associated with mechanical motion. Electric Motor The input is electrical energy (from the supply source), and the output is mechanical energy (to the load). Electrical Mechanical Energy source Energy load Motor Electric Generator The Input is mechanical energy (from the prime mover), and the output is electrical energy. Mechanical Load energy Energy source Generator Electromechanical energy conversion device Electromechanical energy conversion device
  • 7. Page 7 Construction DC motors consist of one set of coils, called armature winding, inside another set of coils or a set of permanent magnets, called the stator. Applying a voltage to the coils produces a torque in the armature, resulting in motion. Stator • The stator is the stationary outside part of a motor. • The stator of a permanent magnet dc motor is composed of two or more permanent magnet pole pieces. • The magnetic field can alternatively be created by an electromagnet. In this case, a DC coil (field winding) is wound around a magnetic material that forms part of the stator.
  • 8. Page 8 Rotor • The rotor is the inner part which rotates. • The rotor is composed of windings (called armature windings) which are connected to the external circuit through a mechanical commutator. Both stator and rotor are made of ferromagnetic materials. The two are separated by air-gap. Winding A winding is made up of series or parallel connection of coils. • Armature winding - The winding through which the voltage is applied or induced. • Field winding - The winding through which a current is passed to produce flux (for the electromagnet) Windings are usually made of copper.
  • 9. Page 9 DC Motor Basic Principles Energy Conversion If electrical energy is supplied to a conductor lying perpendicular to a magnetic field, the interaction of current flowing in the conductor and the magnetic field will produce mechanical force (and therefore, mechanical energy). Value of Mechanical Force There are two conditions which are necessary to produce a force on the conductor.The conductor must be carrying current, and must be within a magnetic field.When these two conditions exist, a force will be applied to the conductor, which will attempt tomove the conductor in a direction perpendicular to the magnetic field. This is the basic theoryby which all DC motors operate. The force exerted upon the conductor can be expressed as follows.
  • 10. Page 10 F = B i l Newton where B is the density of the magnetic field, l is the length of conductor, and i the value of current flowing in the conductor. The direction of motion can be found using Fleming‘s Left Hand Rule. Fleming‘s Left Hand Rule The first finger points in the direction of the magnetic field (first - field), which goes from the North pole to the South pole. The second finger points in the direction of the current in the wire (second - current). The thumb then points in the direction the wire is thrust or pushed while in the magnetic field (thumb - torque or thrust). Principle of operation Consider a coil in a magnetic field of flux density B. When the two ends of the coil are connected across a DC voltage source, current I flows through it. A force is exerted on the coil as a result of the interaction of magnetic field and electric current. The force on the two sides of the coil is such that the coil starts to move in the direction of force. Torque production in a DC motor
  • 11. Page 11 In an actual DC motor, several such coils are wound on the rotor, all of which experience force, resulting in rotation. The greater the current in the wire, or the greater the magnetic field, the faster the wire moves because of the greater force created. At the same time this torque is being produced, the conductors are moving in a magnetic field. At different positions, the flux linked with it changes, which causes an emf to be induced (e = di/dt) as shown in fig. This voltage is in opposition to the voltage that causes current flow through the conductor and is referred to as a counter-voltage or back emf. Induced voltage in the armature winding of DC motor The value of current flowing through the armature is dependent upon the difference between the applied voltage and this counter-voltage. The current due to this counter-voltage tends to oppose the very cause for its production according to Lenz‘s law. It results in the rotor slowing down. Eventually, the rotor slows just enough so that the force created by the magnetic field (F = Bil) equals the load force applied on the shaft. Then the system moves at constant velocity. Reversability of a DC machine Induced emf Flux
  • 12. Page 12 Induced Counter-voltage (Back emf): Due to the rotation of this coil in the magnetic field, the flux linked with it changes at different positions, which causes an emf to be induced. The induced emf in a single coil, e = dᛰc/dt Since the flux linking the coil, ᛰc =ᛰSin⍵t Induced voltage :e = ᛰ⍵Cos⍵t Note that equation gives the emf induced in one coil. As there are several coils wound all around the rotor, each with a different emf depending on the amount of flux change through it, the total emf can be obtained by summing up the individual emfs. The total emf induced in the motor by several such coils wound on the rotor can be obtained by integrating equation , and expressed as: Eb= Kᛰ⍵ m whereK is an armature constant, and is related to the geometry and magnetic properties of the motor, and ⍵ m is the speed of rotation. The electrical power generated by the machine is given by: Pdev = EbIa = K ᛰ⍵mIa
  • 13. Page 13 DC Machine Classification DC Machines can be classified according to the electrical connections of the armature winding and the field windings. The different ways in which these windings are connected lead to machines operating with different characteristics. The field winding can be either self-excited or separately-excited, that is, the terminals of the winding can be connected across the input voltage terminals or fed from a separate voltage source (as in the previous section). Further, in self-excited motors, the field winding can be connected either in series or in parallel with the armature winding. These different types of connections give rise to very different types of machines, as we will study in this section.
  • 14. Page 14 Separately excited machines The armature and field windings are electrically separate from each other. The field winding is excited by separate DC source. Separately exited DC motor The voltage and power equations for this machine are same as those derived in the previous section. Note that the total input power = VfIf +VTIa Self-excited machines In these machines, instead of a separate voltage source, the field winding is connected across the main voltage terminals. Shunt machine • The armature and field winding are connected in parallel.
  • 15. Page 15 • The armature voltage and field voltage are the same. Total current drawn from the supply, IL = If + Ia Total input power = VT IL Series DC machine • The field winding and armature winding are connected in series. • The field winding carries the same current as the armature winding. A series wound motor is also called a universal motor. It is universal in the sense that it will run equally well using either an ac or a dc voltage source. Reversing the polarity of both the stator and the rotor cancel out. Thus the motor will always rotate the same direction irregardless of the voltage polarity.
  • 16. Page 16 Compound DC machine If both series and shunt field windings are used, the motor is said to be compounded. In a compound machine, the series field winding is connected in series with the armature, and the shunt field winding is connected in parallel. Two types of arrangements are possible in compound motors: Cumulative compounding - If the magnetic fluxes produced by both series and shunt field windings are in the same direction (i.e., additive), the machine is called cumulative compound. Series DC Motor Eb Ra Ia Lf = If Rf ωmTdev VT
  • 17. Page 17 Differential compounding - If the two fluxes are in opposition, the machine is differential compound. Torque-Speed Characteristics In order to effectively use a D.C. motor for an application, it is necessary to understand its characteristic curves. For every motor, there is a specific Torque/Speed curve and Power curve. The relation between torque and speed is important in choosing a DC motor for a particular application. Torque-speed characteristics of separately-excited DC motor No-load speed ωm Tdev Stall torque Normal operating range
  • 18. Page 18 Torque speed characteristics of self-excited DC motor
  • 19. Page 19 Speed Control of DC Motors The speed of a motor is given by the relation Eg=V-Ia Ra Ra= armature circuit resistance Obvious that the speed can be controlled by varying (i) Flux/pole, Φ (Flux Control) (ii) Resistance Ra of armature circuit (Rheostat Control) and (iii) Applied voltage V (Voltage Control). Speed Control of Shunt motor: (i) Variation of Flux or Flux Control Method: By decreasing the flux, the speed can be increased and vice versa. The flux of a dc motor can be changed by changing Ish with help of a shunt field rheostat. Since Ishis relatively small, shunt field rheostat has to carry only a small current, which means I2 shR loss is small, so that rheostat is small in size.
  • 20. Page 20 Flux control method (ii) Armature or Rheostatic Control Method: This method is used when speeds below the no-load speed are required. As the supply voltage is normally constant, the voltage across the armature is varied by inserting a variable rheostat in series with the armature circuit. As controller resistance is increased, voltage across the armature is decreased, thereby decreasing the armature speed. For a load constant torque, speed is approximately proportional to the voltage across the armature. From the speed/armature current characteristic, it is seen that greater the resistance in the armature circuit, greater is the fall in the speed. Armature control method (iii) Voltage Control Method: (a) Multiple Voltage Control: In this method, the shunt field of the motor is connected permanently to a fixed exciting voltage, but the armature is supplied with different voltages by connecting it across one of the several different voltages by means of suitable switchgear. The armature speed will be approximately proportional to these different voltages. The intermediate speeds can be obtained by adjusting the shunt field regulator.
  • 21. Page 21 (b) Ward-Leonard System: This system is used where an unusually wide and very sensitive speed control is required as for colliery winders, electric excavators, elevators and the main drives in steel mills and blooming and paper mills. M1 is the main motor whose speed control is required. The field of this motor is permanently connected across the dc supply lines. By applying a variable voltage across its armature, any desired speed can be obtained. This variable voltage is supplied by a motor-generator set which consists of either a dc or an ac motor M2 directly coupled to generator G. The motor M2 runs at an approximately constant speed. The output voltage of G is directly fed to the main motor M1. The voltage of the generator can be varied from zero up to its maximum value by means of its field regulator. By reversing the direction of the field current of G by means of the reversing switch RS, generated voltage can be reversed and hence the direction of rotation of M1. It should be remembered that motor generator set always runs in the same direction. Voltage control method Speed Control of Series Motors 1. Flux Control Method: Variations in the flux of a series motor can be brought about in any one of the following ways: (a) Field Diverters: The series winding are shunted by a variable resistance known as field diverter. Any desired amount of current can be passed through the diverter by adjusting its resistance. Hence the flux can be decreased and consequently, the speed of the motor increased.
  • 22. Page 22 (b) Armature Diverter: A diverter across the armature can be used for giving speeds lower than the normal speed. For a given constant load torque, if Iais reduced due to armature diverter, the ᛰmust increase (∵TaαᛰIa) This results in an increase in current taken from the supply (which increases the flux and a fall in speed (NαI/ᛰ). The variation in speed can be controlled by varying the diverter resistance. Series motor speed control (c) Trapped Field Control Field: This method is often used in electric traction. The number of series filed turns in the circuit can be changed. With full field, the motor runs at its minimum speed which can be raised in steps by cutting out some of the series turns. (d) Paralleling Field coils: this method used for fan motors, several speeds can be obtained by regrouping the field coils. It is seen that for a 4-pole motor, three speeds can be obtained easily.
  • 23. Page 23 2. Variable Resistance in Series with Motor: By increasing the resistance in series with the armature the voltage applied across the armature terminals can be decreased. With reduced voltage across the armature, the speed is reduced. However, it will be noted that since full motor current passes through this resistance, there is a considerable loss of power in it. Electric Braking A motor and its load may be brought to rest quickly by using either (i) Friction Braking or (ii) Electric Braking. Mechanical brake has one drawback: it is difficult to achieve a smooth stop because it depends on the condition of the braking surface as well as on the skill of the operator. The excellent electric braking methods are available which eliminate the need of brake lining levers and other mechanical gadgets. Electric braking, both for shunt and series motors, is of the following three types: (i) Rheostatic or dynamic braking (ii) Plugging i.e., reversal of torque so that armature tends to rotate in the opposite direction. (iii) Regenerative braking. Obviously, friction brake is necessary for holding the motor even after it has been brought to rest.
  • 24. Page 24 Electric Braking of Shunt Motors (a) Rheostat or Dynamic Braking: In this method, the armature of the shunt motor is disconnected from the supply and is connected across a variable resistance R. The field winding is left connected across the supply. The braking effect is controlled by varying the series resistance R. Obviously, this method makes use of generator action in a motor to bring it to rest. Dynamic braking (b) Plugging or Reverse Current Braking: This method is commonly used in controlling elevators, rolling mills, printing presses and machine tools etc. In this method, connections to the armature terminals are reversed so that motor tends to run in the opposite direction. Due to the reversal of armature connections, applied voltage V and E start acting in the same direction around the circuit. In order to limit the armature current to a reasonable value, it is necessary to insert a resistor in the circuit while reversing armature connections. (c) Regenerative Braking: This method is used when the load on the motor has over-hauling characteristic as in the lowering of the cage of a hoist or the downgrade motion of an electric train. Regeneration takes place when Eb becomes grater than V. This happens when the overhauling load acts as a prime mover and so drives the machines as a generator. Consequently, direction of Ia and hence of armature torque is reversed and speed falls until E becomes lower than V. It is obvious that during the slowing down of the motor, power is returned to the line which may be used for supplying another train on an upgrade, thereby relieving the powerhouse of part of its load.
  • 25. Page 25 Electric Braking of Series Motor (a) Rheostat (or dynamic) Braking: The motor is disconnected from the supply, the field connections are reversed and the motor is connected in series with a variable resistance R. Obviously, now, the machine is running as a generator. The field connections are reversed to make sure that current through field winding flows in the same direction as before (i.e., from M to N ) in order to assist residual magnetism. In practice, the variable resistance employed for starting purpose is itself used for braking purposes. (b) Plugging or Reverse Current Braking: As in the case of shunt motors, in this case also the connections of the armature are reversed and a variable resistance R is put in series with the armature. (c) Regenerative Braking: This type of braking of a series motor is not possible without modification because reversal of Ia would also mean reversal of the field and hence of Eb. However, this method is sometimes used with traction motors, special arrangements being necessary for the purpose. Disadvantages of DC motors High initial cost Increased operation and maintenance cost due to presence of commutator and brush gear
  • 26. Page 26 Cannot operate in explosive and hazard conditions due to sparking occur at brush ( risk in commutation failure) Not suitable in very clean environment Vulnerable to dust which decreases performance Care required to maintain the mechanical interface used to get current to rotating field.
  • 27. Page 27 3. AC MOTORS AC motor is electric motor driven by an alternating current (AC). It commonly consists of two basic parts, an outside stationary stator having coils supplied with alternating current to produce a rotating magnetic field, and an inside rotor attached to the output shaft that is given a torque by the rotating field. There are two main types of AC motors, depending on the type of rotor used. The first type is the induction motor or asynchronous motor; this type relies on a small difference in speed between the rotating magnetic field and the rotor toinduce rotor current. The second type is the synchronous motor, which does not rely on induction and as a result, can rotate exactly at the supply frequency or a sub- multiple of the supply frequency. The magnetic field on the rotor is either generated by current delivered through slip rings or by a permanent magnet. Other types of motors include eddy current motors, and also AC/DC mechanically commutated machines in which speed is dependent on voltage and winding connection. SYNCHRONOUS MOTORS The synchronous motorhas the special property of maintaining a constantrunning speed under all conditions of load up to full load. This constant running speed can be maintained even under variable line voltage conditions. It is, therefore, a useful motor in applications where the running speed must be accurately known and unvarying. It should be noted that, if a synchronous motor is severely overloaded, its operation (speed) will suddenly lose its synchronous properties and the motor will come to a halt. The synchronous speed of the motor used in this experiment is 1800 rpm. The synchronous motor gets its name from the term synchronous speed, which is the natural speed of the rotating magnetic field of the stator. As you have learned, this natural speed of rotation is controlled strictly by the number of pole pairs and the frequency of the applied power.
  • 28. Page 28 Like the induction motor, the synchronous motor makes use of the rotating magnetic field. Unlike the induction motor, however, the torque developed does not depend on the induction currents in the rotor. Briefly, the principle of operation of the synchronous motor is as follows: a multi phase source of AC is applied to the stator windings and a rotating magnetic field is produced. A direct current is applied to the rotor windings and a fixed magnetic field is produced. The motor is constructed such that these two magnetic fields react upon each other causing the rotor to rotate at the same speedas the rotating magnetic field. If a load is applied to the rotor shaft, the rotor will momentarily fall behind the rotating field but will continue to rotate at the same synchronous speed. The falling behind is analogous to the rotor being tied to the rotating field with a rubber band. Heavier loads will cause stretching of the band so the rotor position lags the stator field but the rotor continues at the same speed. If the load is made too large, the rotor will pull out of synchronism with the rotating field and, as a result, will no longer rotate at the same speed. The motor is then said to be overloaded. The synchronous motor is not a self-starting motor. The rotor is heavy and, from a dead stop, it is not possible to bring the rotor into magnetic lock with the rotating magnetic field. For this reason, all synchronous motors have some kind of starting device. A simple starter is another motor which brings the rotor up to approximately 90 percentof its synchronous speed. The starting motor is then disconnected and the rotor locks in step with the rotating field. The more commonly used starting method is to have the rotor include a squirrel cage induction winding. This induction winding brings the rotor almost to its synchronous speed as an induction motor
  • 29. Page 29 Synchronous motor Construction of Synchronous Motor Stator Frame The exterior frame, made of steel, either cast or a weldment, supports the laminated stator core and has feet, or flanges, for mounting to the foundation. Frame vibration from core magnetic forcing or rotor unbalance is minimized by resilient mounting the core and=or by designing to avoid frame resonance with forcing frequencies. If bracket type bearings are employed, the frame must support the bearings, oil seals, and gas seals when cooled with hydrogen or gas other than air. The frame also provides protection from the elements and channels cooling air, or gas, into and out of the core, stator windings, and rotor. When the unit is cooled by gas contained within the frame, heat from losses is removed by coolers having water circulating through finned pipes of a heat exchanger mounted within the frame. Where cooling water is unavailable and outside air cannot circulate through the frame because of its dirty or toxic condition, large air-to-air heat exchangers are employed, the outside air being forced through the cooler by an externally shaft-mounted blower.
  • 30. Page 30 Stator Core Assembly The stator core assembly of a synchronous machine is almost identical to that of an induction motor. A major component of the stator core assembly is the core itself, providing a high permeability path for magnetism. The stator core is comprised of thin silicon steel laminations and insulated by a surface coating minimizing eddy currentand hysteresis losses generated by alternating magnetism. The laminations are stacked as full rings or segments, in accurate alignment, either in a fixture or in the stator frame, having ventilation spacers inserted periodically along the core length. The completed coreis compressed and clamped axially to about 10 kg/cm2 using end fingers and heavy clamping plates. Core end heating from stray magnetism is minimized, especially on larger machines, by using non-magnetic materials at the core end or by installing a flux shield of either tapered laminations or copper shielding.
  • 31. Page 31 A second major component is the stator winding made up of insulated coils placed in axial slots of the stator core inside diameter. The coil make-up, pitch, and connections are designed to produce rotating stator electromagnetic poles in synchronism with the rotor magnetic poles. The stator coils are retained into the slots by slot wedges driven into grooves in the top of the stator slots. Coil end windings are boundtogether and to core-end support brackets. Rotors Rotor assembly The rotor of a synchronous motoris a highly engineered unitized assembly capable of rotating satisfactorily at synchronous speed continuously according to standards or as necessary for the application.The central element is the shaft, having journals to support the rotor assembly in bearings. Located at the rotor assembly axial mid-section is the rotor core embodying magnetic poles. When the rotor is round it is called ‗‗non salient pole‘‘, or turbine generator type construction and when the rotor has protruding pole assemblies, it is called ‗‗salient pole‘‘ construction. The non-salient pole construction, used mainly on turbine generators(and also as wind tunnel fan drive motors), has two or four magnetic poles created by direct current in coils located in slots at the rotor outside diameter. Coils are restrained in the slots by slot wedges and at the ends by retaining rings on large high-speed rotors, and fiberglass tape on other units where stresses permit. This construction is not suited for use on a motor requiring self-starting as the rotor surface, wedges, and retaining rings overheat and melt from high currents of self-starting. A single piece forging is sometimes used on salient pole machines, usually with four or six poles. Salient poles can also be integral with the rotor lamination and can be mounted directly to the shaft or fastened to an intermediate rotor spider.
  • 32. Page 32 Rotor of synchronous motor Each distinct pole has an exciting coil around it carrying excitation current or else it employs permanent magnets. In a generator, a moderate cage winding in the face of therotor poles, usually with pole-to-pole connections, is employed to dampen shaft torsional oscillation and to suppress harmonic variation in the magnetic waveform. In a motor, heavy bars and end connections are required in the pole face to minimize and withstand the high heat of starting duty. Direct current excites the rotor windings of salient, and non-salient pole motors and generators, except when permanent magnets are employed. The excitation current is supplied to the rotor from either an external DC supply through collector rings or a shaft-mounted brushless exciter. Positive and negative polarity bus bars or cables pass along and through the shaft as required to supply excitation current to the windings of the field poles. When supplied through collector rings, the DC current could come from a shaft-driven DC or AC exciter rectified output, from an AC-DC motor generator set, or from plant power. DC current supplied by a shaft mounted AC generator is rectified by a shaft-mounted rectifier assembly. Induction Motor The induction motor is the most commonly used type of ac motor. Its simple, rugged construction costs relatively little to manufacture. The induction motor has a rotor that is not connected to an external source of voltage. The induction motor derives its name from the fact that ac voltages are induced in the rotor
  • 33. Page 33 circuit by the rotating magnetic field of the stator. In many ways, induction in this motor is similar to the induction between the primary and secondary windings of a transformer. Induction motor The three-phase induction motors are the most widely used electric motors in industry. They run at essentially constant speed from no-load to full-load. However, the speed is frequency dependent and consequently these motors are not easily adapted to speed control. We usually prefer d.c. motors when large speed variations are required. Nevertheless, the 3-phase induction motors are simple, rugged, low- priced, easy to maintain and can be manufactured with characteristics to suit most industrial requirements. In this chapter, we shall focus our attention on the general principles of 3-phase induction motors. Like any electric motor, a 3-phase induction motor has a stator and a rotor. The stator carries a 3-phase winding (called stator winding) while the rotor carries a short-circuited winding (called rotor winding). Only the stator winding is fed from 3-phase supply. The rotor winding derives its voltage and power from the externally energized stator winding through electromagnetic induction and hence the name. The induction motor may be considered to be a transformer with a rotating secondary and it can, therefore, be described as a ―transformertype‖a.c. machine in which electrical energy is converted into mechanical energy. Construction A 3-phase induction motor has two main parts (i) stator and (ii) rotor. The rotor is separated from the stator by a small air-gap which ranges from 0.4 mm to 4 mm, depending on the power of the motor. Stator
  • 34. Page 34 It consists of a steel frame which encloses a hollow, cylindrical core made up of thin laminations of silicon steel to reduce hysteresis and eddy current losses. A number of evenly spaced slots are provided on the inner periphery of the laminations. The insulated connected to form a balanced 3-phase star or delta connected circuit. The 3-phase stator winding is wound for a definite number of poles as per requirement of speed. Greater the number of poles, lesser is the speed of the motor and vice-versa. When 3-phase supply is given to the stator winding, a rotating magnetic field (See Sec. 8.3) of constant magnitude is produced. This rotating field induces currents in the rotor by electromagnetic induction. Rotor The rotor, mounted on a shaft, is a hollow laminated core having slots on its outer periphery. The winding placed in these slots (called rotor winding) may be one of the following two types: Squirrel cage type and Wound type Squirrel cage rotor It consists of a laminated cylindrical core having parallel slots on its outer periphery. One copper or aluminum bar is placed in each slot. All these bars are joined at each end by metal rings called end
  • 35. Page 35 rings.This forms a permanently short circuited winding which is indestructible. The entire construction (bars and end rings) resembles a squirrel cage and hence the name. The rotor is not connected electrically to the supply but has current induced in it by transformer action from the stator. Those induction motors which employ squirrel cage rotor are called squirrel cage induction motors. Most of 3-phase induction motors use squirrel cage rotor as it has a remarkably simple and robust construction enabling it to operate in the most adverse circumstances. However, it suffers from the disadvantage of a low starting torque. It is because the rotor bars are permanently short- circuited and it is not possible to add any external resistance to the rotor circuit to have a large starting torque. Wound rotor It consists of a laminated cylindrical core and carries a 3-phase winding, similar to the one on the stator [See Fig. The rotor winding is uniformly distributed in the slots and is usually star-connected. The open ends of the rotor winding are brought out and joined to three insulated slip rings mounted on the rotor shaft with one brush resting on each slip ring. The three brushes are connected to a 3-phase star-connected rheostat as shown in Fig. (8.4). At starting, the external resistances are included in the rotor circuit to give a large starting torque. These resistances are gradually reduced to zero as the motor runs up to speed.
  • 36. Page 36 Rotating Magnetic Field Due to 3-Phase Currents When a 3-phase winding is energized from a 3-phase supply, a rotating magnetic field is produced. This field is such that its poles do not remain in a fixed position on the stator but go on shifting their positions around the stator. For this reason, it is called a rotating field. It can be shown that magnitude of this rotating field is constant and is equal to 1.5 ᛰwhereᛰis the maximum flux due to any phase. Principle of Operation
  • 37. Page 37 When 3-phase stator winding is energized from a 3-phase supply, a rotating magnetic field is set up which rotates round the stator at synchronous speed Ns = 120 f/P. The rotating field passes through the air gap and cuts the rotor conductors, which as yet, are stationary. Due to the relative speed between the rotating flux and the stationary rotor, e.m.f.sare induced in the rotor conductors. Since the rotor circuit is short-circuited, currents start flowing in the rotor conductors. The current-carrying rotor conductors are placed in the magnetic field produced by the stator. Consequently, mechanical force acts on the rotor conductors. The sum of the mechanical forces on all the rotor conductors produces a torque which tends to move the rotor in the same direction asthe rotating field. The fact that rotor is urged to follow the stator field (i.e., rotor moves in the direction of stator field) can be explained by Lenz‘s law. According to this law, the direction of rotor currents will be such that they tend to oppose the cause producing them. Now, the cause producing the rotor currents is the relative speed between the rotating field and the stationary rotor conductors. Hence to reduce this relative speed, the rotor starts running in the same direction as that of stator field and tries to catch it. Slip We have seen above that rotor rapidly accelerates in the direction of rotating field. In practice, the rotor can never reach the speed of stator flux. If it did, there would be no relative speed between the stator field and rotor conductors, no induced rotor currents and, therefore, no torque to drive the rotor. The friction
  • 38. Page 38 and windage would immediately cause the rotor to slow down. Hence, the rotor speed (N) is always less than the suitor field speed (Ns). This difference in speed depends upon load on the motor. The difference between the synchronous speed Ns of the rotating stator field and the actual rotor speed N is called slip. It is usually expressed as a percentage of synchronous speed i.e. % age slip, s = Ns – N/Ns (i) The quantity Ns - N is sometimes called slip speed. (ii) When the rotor is stationary (i.e., N = 0), slip, s = 1 or 100 %. (iii) In an induction motor, the change in slip from no-load to full-load is hardly 0.1% to 3% so that it is essentially a constant-speed motor. Starting Torque of 3-Phase Induction Motors The rotor circuit of an induction motor has low resistance and high inductance. At starting, the rotor frequency is equal to the stator frequency (i.e., 50 Hz) so that rotor reactance is large compared with rotor resistance. Therefore, rotor current lags the rotor e.m.f. by a large angle, the power factor is low and consequently the starting torque is small. When resistance is added to the rotor circuit, the rotor power factor is improved which results in improved starting torque. This, of course, increases the rotor impedance and, therefore, decreases the value of rotor current but the effect of improved power factor predominates and the starting torque is increased. Squirrel-cage motors. Since the rotor bars are permanently short circuited, it is not possible to add any external resistance in the rotor circuit at starting. Consequently, the stalling torque of such motors is low. Squirrelcage motors have starting torque of 1.5 to 2 times the full-load value with starting current of 5 to 9 times the full-load current. Wound rotor motors. The resistance of the rotor circuit of such motors can be increased through the addition of external resistance. By inserting the proper value of external resistance (so that R2 = X2), maximum starting torque can be obtained. As the motor accelerates, the external resistance is gradually cut out until the rotor circuit is short-circuited on itself for
  • 39. Page 39 running conditions. Classification Of Induction Motors Squirrel cage Induction Motor Among the a.c motors, squirrel cage induction motor is the most popular one. It is quite cheap, robust and efficient. This motor also has good voltage regulation, high startingtorque and also requires less maintenance. There are two types of three phase inductionmotors based on the rotor construction. They are Squirrel cage induction motor and Wound / Slip ring induction motor. Almost 90-95% of the 3 phase induction motors are squirrel cage type. As the name suggests, the rotor of this kind of motors are looks like the wheelcage of squirrel. Compared to dc motor and synchronous motor, three phase induction motor (IM) is simple in construction. Let us now discuss the construction of this kind of motor. As we all know that a three phase induction motor essentially consists of a stator and a rotor. Construction of Squirrel cage Induction Motor Stator Stator is similar for both kinds of three phase induction motors. Stator is the stationary part which is made up of high grade alloy steel. Stator core carry alternating flux which produces hysteresis and eddy current. In order to reduce these, stator core consists of highgrade, silicon steel punching. The thickness of punching varies from 0.35 mm to 0.65 mm. The punching are insulated from each other by oxide /varnish coating. The insulated stator conductors are placed in the slots. The statorconductors are connected to form three phase windings. These windings are place on stator core slots. The three phase windings may be either connected in star or in delta.
  • 40. Page 40 Rotor The rotor core is a cylindrical laminated iron core , with slots around core carrying rotor conductors. Steel laminations are provided on the rotor core. Each slot contains an uninsulated bar conductors of aluminium or copper. At the end of each rotor, the rotor bar conductors are short circuited by heavy end rings. These two components – conductors and end rings form the structure of a squirrel cage , that‘s why the rotor is named so.In motors upto 100kW rating the squirrel cage structure is made up of cast aluminium. The rotor conductor bars are not exactly parallel to the shaft but they are slightly skewed. Squirrel cage induction motor rotor
  • 41. Page 41 Operating Principle In case of dc motor, the current is drawn from the supply and conducted into armature conductor through the brushes and commutator. Though in an induction motor, there is no electrical connection to the rotor, but currents are induced in the rotor circuit .So same condition prevails as in case of dc motor i.e the rotor conductors carry current in stator magnetic field and thereby have a force exerted upon them tending to move them at right angles to the field. When the stator / primary winding of a 3 phase induction motor is connected to a 3 phase a.c supply, a rotating magnetic field is established which rotates at synchronous speed. The direction of revolution of this field will depend upon the phase sequence of the primary current i.e the order of connection of primary terminals to the supply. The direction of this rotating field can be reversed by interchanging the connection to the supply of any two leads of 3phase induction motor. The speed at which the produced field will revolve is called the synchronous speed of the motor and is given by the expression Ns = 120f / P where f and p is supply frequency and number of stator poles respectively. The direction of rotating magnetic field will be clockwise and rotor is stationary at starting. The relative motion of rotor with respect to stator field is anticlockwise. By Faraday‘s law of electromagnetic induction, a voltage / emf will be induced in the conductor of rotor. As the rotor circuit is complete this induced voltage causes a current to flow in rotor conductors.By applying Right hand rule , direction of induced emf or current in rotor conductor is found outwards. Direction of flux due to rotor current alone is anticlockwise. We know that when a conductor carrying current is put in a magnetic field
  • 42. Page 42 ,a force is produced in it. Thus rotor conductors experiences the force whose direction is governed by Left hand rule. Torques are produced on all rotor conductors which rotates the rotor in same direction as that of rotating magnetic field . Three phase induction motor is self-starting and the motor is named so since its operation depends upon induced voltage in the rotor conductors. Slip ring Induction Motor The stator windings of a wound-rotor motor are identical to those of a standard squirrel-cage motor. A wound-rotor motor does fall into the category of induction motors, however, the conductor bars of the squirrel-cage rotor are replaced with three phase windings wound with the same amount of poles as the stator. The wound rotor windings terminate in slip rings mounted on the rotor shaft. Carbon brushes ride on the slip rings, and during start-up they are externally connected in series to a three-phase resistor bank. (One resistor for each phase, wye connected). Each set of external resistors are shorted out simultaneously in one or more steps as the motor comes up to speed. Wound-rotor motors were one of the first types of motors to allow variable-speed operation. By placing high wattage variable resistors in series with the rotor windings, you could effectively control the speed of the motor. Wound-rotor motors are especially useful because they are able to deliver high starting torque without overloading the electrical supply system.
  • 43. Page 43 Stator Construction The stator of a wound-rotor motor is the same as the stator of a squirrel-cage induction motor. The windings are placed in the slots of the stator 120 electrical degrees apart. The windings can be wound in either a wye or a delta configuration. This motor can also be wound to run on a single voltage, or dual voltage.
  • 44. Page 44 Rotor construction The rotor of a wound-rotor is made from laminations stacked together in the same manner as the rotor of a squirrel-cage induction motor, with an oxide or varnish coating between each lamination. However, the rotor of a wound-rotor motor is constructed by placing insulated coils of wire in the slots instead of the solid conductor bars. A wound-rotor motor can be distinguished from a squirrel-cage induction motor by the presence of the coils of wire in the windings instead of the solid conductor bars, by the presence of the three slip rings on the shaft, and by the presence of an external resistance bank. Rotor of slip ring induction motor Operating Principle As with a squirrel-cage induction motor, three phase power is applied to the stator through the three motor leads, T1, T2 and T3. This establishes the rotating magnetic field in the stator. The coils in the rotor have current induced in them in a similar manner to a squirrel-cage induction motor. A wound-rotor motor is normally started with full resistance in the circuit. As the motor accelerates, resistance is gradually switched out of the rotor circuit. When the motor reaches full speed, all the resistance is switched out and the rotor windings are shorted. The rotor windings themselves have only slightly more resistance than the bars in a squirrel-cage rotor. This low resistance results in the same basic characteristics as a 3-phase squirrel-cage induction motor, but with slightly more slip and slightly lower efficiency. Wound rotor motors are usually not started with the slip rings shunted, as the rotor resistance is too low, and starting currents would be much too high. By inserting resistance in the ring circuit, starting currents are decreased and starting torque is increased.
  • 45. Page 45 Starting and Torque The maximum torque is produced when the maximum resistance is connected to the rotor and the induced frequency is at its highest. A high-resistance rotor develops a high starting torque at low starting line current. When no resistance is applied to the rotor circuit, the motor as the same basic starting torque characteristics as an induction motor. The starting torque is about 125% of the full-load torque. When maximum resistance is applied to the rotor, the motor‘s starting torque is almost equal to the motor‘s breakdown torque, or about 200%. Once the motor starts, the speed of the rotor increases and the induced frequency decreases, decreasing the induction and induced current in the rotor. The torque also decreases as the induced current decreases. As the torque decreases toward the minimum torque needed, the resistance can be removed from the rotor circuit.Whenresistance is switched out of the circuit, the current increases. This increases the torque, and allows the motor to continue to accelerate. At this point, there is no resistance, except for the small amount in the coil conductors, and the motor operates in a manner similar to a standard squirrel- cage induction motor.
  • 46. Page 46 4.AC Replacement for DC Mill-Duty Motors For many years, DC mill auxiliary motors for steel mill applications such as screwdowns, shears, tables and sideguides were specified as ―mill duty.‖ They are of an extremely rugged design based on AIST dimensional and rating standards, and are therefore interchangeable between motor manufacturers. Many thousands of mill-duty motors remain in operation today, although many have been replaced with less- rugged DC or AC motors. Enclosures The standard covers Totally Enclosed Non-Ventilated (TENV) and Totally Enclosed Forced Ventilated (TEFV) designs. Motor manufacturers added their own designations, such as ―separately ventilated‖ and ―blower ventilated‖ to distinguish the type of forced ventilation. In the AC world, there are many additional designations. The equivalent international standard for Totally Enclosed is IP44, protection against 1-mm solid objects and splashing water. Other standards include IP54, protection against dust and splashing water, and IP55, protection against dust and water jets. An increased enclosure protection level generally involves increased cost. Dimensions The key mounting and shaft height dimensions are reproduced in Table. Leads Leadswere to be brought out on the left side facing the commutator end, also known as the non-drive end. Terminal (conduit) boxes are an option. In the case of AC motors, there is no commutator, so the non- drive end designation is more useful. Frames The standard specifies a horizontal frame split so that the armature can be lifted straight up and out. This requirement is practical in a DC machine, which has few connections crossing the split. The armature includes the commutator, the most technically complicated part of the motor, the part most prone to failure and the part that requires periodic machining. In an AC machine, many leads would cross the split, decreasing reliability while increasing the time to disassemble. There is also no commutator requiring peri- odic maintenance. In most cases, a split-frame AC machine is not considered practical.
  • 47. Page 47 Key Mounting and Shaft Height Dimensions From AIST Standard No. 1 Frame no D E F XC Definition of dimensions(inches) 802 7.625 6.250 8.250 32.875 D bottom of foot to shaft center 803 8.500 7.000 9.000 37.000 E width: center of foot bolt to center of motor frame 804 9.000 7.500 9.500 39.000 F length: center of foot bolt to center of motor frame 806 10.000 8.250 10.500 42.250 XC length from shaft end to shaft end Shafts The shafts shall be replaceable and keyed according to the standard. Runout table motors generally had a straight shaft, while motors for other applications were often tapered in addition to having the key. Couplings are more convenient to field-replace when the shaft is tapered. However, since the AC motor does not have a split frame, the entire motor would be replaced and repairs done in a motor shop. Ratings The rating table introduces some additional terms. Totally Enclosed 1 Hour is the short-time TENV rating, while Force Ventilated Continuous is the TEFV continuous ratings. The larger 620, 622 and 624 frames use the term ―self-ventilated,‖ which is taken to mean TEFV from referencing motor manufacturer publications. It is important that the user understand the application rating of the DC motor being considered for replacement with a new motor. • All ratings are at 230 VDC.
  • 48. Page 48 • Field excitation for series, compound and shunt windings are included, with the shunt wound ratings being the most applicable to AC induction motors. • The standard does not address the 820, 822 or 824 frames. Table 2 gives the standard horsepower ratings by frame size, while Table 3 provides the torque ratings by frame size. AIST Standard No. 1 specifies both starting and running torques, with the starting torques higher than the equivalent running torques. This takes into consideration that the field and armature currents, and therefore motor torque, can be higher than rated during the short time required for starting. However, the rms current values must be at or below the rated value during normal operation. It is useful to remember that motor currents were routinely measured but torque was not. In order to determine the motor torque field current, armature current and motor design curves were required to calculate the estimated torque. This occasionally led to heated discussions speculating on the motor‘s ability to produce torque versus the actual and specified load requirements. Motor frame size generally determined the current and torque capabilities, while the insulation level and available applied voltage determined the horsepower and speed capabilities. This will be discussed in more detail later when comparing the AC mill-duty motor speed and torque capabilities against the standard and DC mill-duty motors supplied by motor manufacturers. Table 2 Horsepower and rpm Ratings of Frame 800 and 600 Motors in AIST Standard No. 1 Totally Enclosed 1 Hour or Force Ventilated Continuous RPM Frame no. HP Series Compound Shunt Adjustable Speed 802A 5 900 1,025 1,025 1,025/2,050 802B 7.5 800 900 900 900/1,800 802C 10 800 900 900 900/1,800 803 15 725 800 800 800/2,000 804 20 650 725 725 725/1,800 806 30 575 650 650 650/1,950
  • 49. Page 49 Totally Enclosed 1 Hour or Self-Ventilated Continuous at 75°C rise RPM Frame no HP Series compound Shunt Adjustable speed 620 275 370 390 390 390/975 622 375 340 360 360 360/1,080 624 500 320 340 340 340/1,020 Voltage Source The standard calls for 230 VDC ratings, but suitable for operation at 500 VDC and reduced torque. This ambiguous language was added in 1968 when DC rectifiers were beginning to be applied and the effects of harmonic currents, called ―ripple‖ in the standard, on motor commutation and heating were not fully understood. Motor manufacturers produced designs with a variety of voltage and torque ratings. Since these were DC motors, raising the applied voltage from 230 to 500 roughly doubles the base speed and horsepower ratings, while the nameplate may have the standard 230 VDC ratings. The point here is that the user needs to understand how the motor is applied before simply changing it out with an AC motor with the same nameplate horsepower and speed. Temperature Rise The standard specifies a 75°C rise by thermometer method or 110°C by resistance method, but not the insulation class. In his 1969 article, Sherman observes that when the ―skeleton‖ motor frame became obsolete around 1939, so did measurement by thermometer. Around 1968, motor manufacturers were already providing mill-duty motors with Class H insulation systems good for a total temperature of 180°C. This translates to a margin of error, commonly known as a hot spot allowance, of 30° over a 40°C ambient (40 + 110 + 30 = 180). The equivalent is a 20°C hot spot allowance over a 50°C ambient, a more common allowance at the time. The exception was runout table service motors, which were Class F.
  • 50. Page 50 Class F insulation allows for a 155°C total temperature, or a 5°C hot spot allowance according to the previous calculation. The required allowance for heating errors using modern motor modeling techniques can be assumed to be much less than it was 40 years ago when the standard was issued. Also, the application of runout table motors was based on torque, and the rms loading was generally less than the 100% rating, providing additional margin. In any case, the 110°C rise over a 50°C ambient is not allowed with Class F insulation, since the total of the two is 160°C. An increased ambient temperature level gen- erally involves increased cost. It should be noted that Kelvin (K) and Centigrade (C) are used interchangeably for purposes of specifying temperature rise. The standard uses Centigrade. Torque Ratings of Frame 800 and 600 Motors in AIST Standard No. 1 Maximum starting torque (lb-ft) Maximum running torque on 230V (lb-ft) Frame no Series compound Shunt Series compound Shunt 802A 145 115 92 116 90 75 802B 245 198 158 196 154 130 802C 330 263 175 262 205 160 803 545 445 275 440 345 265 804 810 650 435 650 505 390 806 1,370 1,100 725 1,100 855 650 Maximum starting torque (lb-ft) Maximum running torque on 230V (lb-ft) Frame no Series compound Shunt series compound Shunt 620 19,500 16,650 13,320 15,600 12,950 11,100 622 29,000 24,600 19,660 23,200 19,110 16,380 624 41,100 34,740 27,790 32,800 27,020 23,160
  • 51. Page 51 Speed Regulation Adjustable speed motors were to slow down (droop) no more than 15% at rated load. This referred to the technology of the day, where voltage or CEMF regulators were used to regulate speed without speed feedback devices. The equivalent AC motor would have volts-per-hertz control, which should hold speed within a few percent, i.e., have better speed regulation than the DC motor they replace. Variations in Speed Due to Heating DC motor flux levels are controlled by field current and motor characteristics. The standard allows for 15–20% speed variation from ambient to rated operating temperature. This corresponds roughly to the change in the resistance of copper over that temperature range. Existing applications may use field control by voltage and will experience this type of speed variation, while field control by current applications will not have this speed variation. The equivalent AC motor should have little speed variation due to heating. Maximum Inertia AIST maximum armature inertia Frame no WK2(lb-ft2) GD2(kg-m2) 802 6 1.0 803 12 2.0 804 60 5.1 806 50 8.4 Variation From Rated Speed Under normal operating temperature and rated conditions, a speed variation of 7.5% is allowed. The equivalent AC motor should not see this effect. WK2 Factor The standard does not specify inertia for frames 620–624. Table 4 shows inertias given as WK2 from the standard and also converted to GD2.
  • 52. Page 52 AC 800 Series Mill-Duty Motors Over the years, various motor manufacturers have offered AC mill-duty motors. These generally met various aspects of AIST Standard No. 1, including the dimensional standard, but were not always designed for the overload duty. The General Electric version, known as the KD, duplicated their DC-type MD design, including the rolled steel frame, and was designed for a specific AC drive type. The AIST standard was generally recognized around the world for steel mill auxiliary drives. Toshiba Mitsubishi Electric Industrial Systems Corp. (TMEIC) recently introduced an AC mill-duty motor intended to replace existing DC mill-duty motors both dimensionally and functionally. The motors are 3- phase induction type designed for operation on pulse width modulated (PWM) inverters. AIST Standard No. 1 uses English units. The new AC mill-duty motor was designed using the metric system and converted to English units. The following is a review of the features of the frame 806–818 designs currently available. Enclosures Three types of enclosures are available. These are Totally Enclosed Non-Ventilated (TENV), Drip Proof Separately Ventilated (DPSV) and Totally Enclosed Separately Ventilated (TESV) types. The Separately Ventilated (SV) description specifies a separate source of cooling air as contrasted with the more general Forced Ventilation (FV) designation. Some DC mill-duty motors were force ventilated with ambient air using motor-mounted fans, which meant they were totally enclosed but subject to mill air. Dimensions Key motor mounting dimensions are given in Table 6. The metric (mm) units are from the motor outline drawings, and the English (inches) units are from the standard. Conversion from the metric system using 25.4 mm/inch gives a maximum deviation of 0.07 inch. Due to differences in nomenclature standards, a word description and the AIST/JIC is used in Table 6; for example, ―Bottom of foot to shaft center (D/C),‖ where D is from AIST and C is shown in Figure 1. The general AC mill-duty motor outline drawing is shown in Figure 1. The end view on the left is from the non-drive end or opposite side of the motor facing the driven equipment. The terminal box is shown on the left side for this example. Details by frame size are shown in the Leads section immediately following.
  • 53. Page 53 Leads Terminal boxes for termination of the 3-phase leads are a standard feature, as pictured in Figure 2. DC mill-duty motors required two armature leads and two field leads, more if the fields were designed to be reconnected in series or parallel. Replacement of the DC motors will require replacement of the DC leads and with a new 3-phase cable terminated in the terminal box. The dimensions shown in Figure 2 are in mm. AC mill-duty motor outline drawing with double shaft extension Frame 806–812 top-mounted terminal box.
  • 54. Page 54 The standard terminal box location for the smaller frames is on the top of the motor, allowing for ease of cable routing and termination. Left-side or right-side mounting of the terminal box is optional for the smaller frame sizes and standard for the larger frame sizes. Terminal Box Locations by Frame Size Location of terminal box when facing the non-drive end Frame no Top Left side Right side 806 Standard Option Option 808 Standard Option Option 810 Standard Option Option Frames DC mill-duty motors had rolled steel split frames. The AC mill-duty motor frames are rolled steel but not split, for the reasons noted earlier. They also feature a robust cast aluminum and copper bar squirrel cage rotor and form wound stator construction. The rotor construction process allows pull-out torques about 300%. Modern design programs allow verification of mechanical strength and electrical flux distribution. Figure 4 shows the stator winding configuration of an AC motor. The picture shows why the split frame is not considered practical for the AC mill-duty motor. Shafts Some DC mill-duty motor shafts were tapered for quick field replacement of the coupling on the replacement rotor shaft. Rotor replacement was possible without removing the entire motor because the frame was split. Tapered shafts were not generally used for table motor applications, although the frame may have been split. Permanent magnet table motors did not have the split frame feature. The AC mill- duty motor shafts are keyed without taper or threaded locking nut. Special provisions for adapting the coupling must be made in cases where the original motor has these features. Since the AC motor frame is not split, the motor is replaced as a unit and the tapered shaft feature becomes less important.
  • 55. Page 55 Ratings AIST Standard No. 1 provides ratings for series, compound and shunt DC motor excitation with 230 volts applied from a DC generator. While many DC mill-duty motors were applied at 230 VDC, many were also applied at 460 VDC, 500 VDC and various other ratings. At this point, it is important to remember that the motor nameplate does not necessarily correspond to the motor application. The user must know the application rating, including the rms and overload values, before attempting to apply the same frame size AC motor. The standard and general practice used the unit of pounds, with force assumed, in defining torque and inertia. Note that Table 8 uses the more explicit term ―pounds of force‖ (lbf). In the case of DC motors, the horsepower (HP) and speed (RPM) are generally assumed to be directly proportional to the DC voltage applied to the armature, with the torque remaining unchanged. Therefore, doubling the applied voltage doubles the HP and RPM for the same rated torque. Although this may not be strictly correct due to motor characteristics, it is close enough for application purposes. Only the variable speed shunt applications will be considered in comparing the DC and AC mill-duty motors Ratings for 230 VDC and 500 VDC Applications Ratings for 500 VDC Ratings for 230 VDC Frame no HP Base RPM Top RPM Torque HP Base RPM 804 20 725 1,850 188 40 1,440 806 30 650 1,950 242 65 1,413 808 50 575 1,725 457 109 1,250
  • 56. Page 56 AC mill-duty stator before inserting in frame Useful Conversion Factors kW HP x 0.746 Torque HP x 5,252 / RPMlbf-ft Lbf-ft 1.3558Nm WK2 Inertia lbf-ft2 GD2 0.1686 x WK2 kgfm2 In DC applications, torque was not usually measured, but calculated from currents and design curves, as discussed earlier. Frames 802–818 generally did not have compensating windings necessary to make the torque and armature current values proportional over the operating range. That is, 200% current was less than 200% torque. This should be taken into consideration when specifying the equivalent AC motor.
  • 57. Page 57 The 500 VDC rating in Table 9 was chosen not only because it was in common usage by North American suppliers, but also to emphasize the need to understand the user‘s application rating. If your application is at the commonly used 460 VDC, the AC motor ratings would match within ±1 HP when converted from the design kW rating. The replacement of any existing drive system involves understanding the actual application ratings, which can be quite different than the motor nameplate. AC Mill-Duty Ratings Compared to DC Mill-Duty at 500 VDC Totally Enclosed 1 Hour (TENV) or Force Ventilated Continuous (TEFV, DPSV or TESV) 500 VDC ratings At design VAC ratings Frame no HP Base RPM Torque (lbf-ft) kW HP Base RPM Top RPM Torque (lbf-ft) 804 20 1,420 188 15 19 1,250 1,850 172 806 65 1,413 242 44 59 1,300 1,950 238 Variable speed operation includes constant torque from zero to rated base speed, the point at which motor HP and kW are determined. Operation above base speed is at constant HP and kW; that is, torque decreases proportionally to the speed increase. NEMA MG-1 decreases the overload requirement as the top/base speed range increases, capping the decrease at 140% of the base speed overload at a 3-to-1 speed range. Frame 818 speed-torque (lb-ft) characteristic from base to top speed.
  • 58. Page 58 The frame 818 speed-torque curve is shown in Figure 5 for a 200% overload application at base speed and the NEMA MG-1 193% overload at top speed. DC motors being replaced probably adhered to this standard. Since no equivalent standard exists for AC motors, new applications sometimes specify the same overload throughout the speed range. Induction motors inherently lose torque capability proportional to speed squared, and therefore may have no overload capability at top speed unless one is specified. Voltage Source The AC mill-duty motor is designed for operation from a PWM inverter and operation over the speed ranges listed above. Temperature Rise The AC mill-duty motor incorporates Class F insulation and is rated based on Class F rise assuming a 40°C maximum ambient. Speed Regulation The speed torque characteristic for the frame 818 motor shows a slip, or speed loss due to load, that is nearly linear over a wide range of loads. This means that, when used as a table motor with volts-per-hertz control, applied loads will slow the motor from its no-load speed perhaps 1 or 2%, certainly much less than the 15% allowed by the standard from no-load to rated load. Provided there is not excessive cable line drop, overloads of 250% should be possible up to base speed with basic volts-per-hertz control. Operation above base speed requires speed feedback control using the standard motor. Requirements for higher overloads are possible but may require a larger standard frame or modified design. WK2 Factor The AC mill-duty motor inertias are less than the maximum values allowed by AIST Standard No. 1, but higher than those of the equivalent DC motor. One of the commonly advertised features of AC versus DC is that the AC motor inertia is lower. In this particular case, the rugged, solid rotor construction results in a higher inertia than the equivalent DC motor manufactured by TMEIC. Note that the DC motor inertias from other motor manufacturers will be different and may be given with and without fans. It should also be noted that the response of modern PWM inverters, with speed feedback device or without, is usually faster than the DC drive they replace. The net result is that the overall perfor- mance of the new equipment should be at least as good as the replaced drive and motor.
  • 59. Page 59 Additional Features of AC 800 Series Mill-Duty Motors There are some additional features of the new AC mill-duty motor line that should be considered: Efficiency One big advantage of AC motors over DC is their improved efficiency. When replacement of a DC generator with an inverter is considered, the savings are more than doubled from those shown. Motor efficiency is a function of design and operating conditions and will vary. The numbers given in Table 12 are for reference only, comparing AC and DC mill-duty motors for the same conditions. AC 818 mill-duty motor characteristic curve
  • 60. Page 60 AC Mill-Duty Inertia Compared to AIST and DC AISE maximum Armature inertia TMEIC DC mill-duty motor TMEIC AC mill-duty motor Frame no WK2 (lb- ft2) GD2 (kg- m2) WK2 (lb- ft2) GD2 (kg- m2) WK2 (lb- ft2) GD2 (kg- m2) 804 30 5.6 14 2.1-2.2 28 5.3 806 50 8.4 25-26 4.2-4.3 47 7.9 Comparison of AC and DC Motor Efficiencies Under Same Conditions TMEIC DC mill-duty motor ratings TMEIC AC mill-duty motor ratings Frame no Kw RPM Efficiency Efficiency Improvement 804 15 725 85.7% 90.1% 2.9% 806 22 650 87.6% 91.5% 3.5% The efficiencies listed in Table 12 are for rated conditions according to the standard. DC motors operating at half and quarter speed will have significantly lower efficiencies because they are basically the same motor operated at lower voltages. The AC mill-duty motors are always higher efficiency than the equivalent DC mill-duty motor. Motor Design Ratings Each motor frame has designs corresponding to the equivalent 460 VDC, 230 VDC and 115 VDC ratings. They are labeled Standard, Medium and Low speed in Table 13. The rotor is the same design, the stator winding connections are modified for approximately the same VAC and therefore high efficiency.
  • 61. Page 61 Responsive induction motor control requires that the motor voltage goes higher than the nameplate rating to force the torque-producing component of stator current to rapidly pick up load. This is especially true in the constant torque range of Figure 5. Some motor manufacturers may list the maximum voltage on their nameplates, but in general this statement is true. Therefore to get the maximum rating and performance, all 21 of the ratings in Table 13 would be driven by an inverter capable of 420–460 VAC output at 70 hertz. It is also worth noting that these motors are designed for variable speed applications and that none of the frames happens to fall on either the 50 or 60 Hz line frequencies. The following formula is for 3-phase motor synchronous speed: RPM = (120 x Hertz) / Number of Poles There is an important distinction between synchronous speed and rated speed in the application of induction motors. Using Equation 1 and Table 13, one can determine that frame 818 is a 6- pole design (6 = 120 x 44/880). Referring back to Table 10, we find a frame 818 rating of 870 rpm. This 10-rpm difference corresponds to the induction motor slip frequency required to produce torque. One can therefore determine that the slip frequency at rating conditions of 100% load requires approximately 1.4% slip (10/880). The motor nameplate will reflect the 870-rpm rated condition at 100% load. AC Mill-Duty Design Ratings Frame no Speed kW RPM VAC Amps Hertz 804 Standard 15 1,614 370 68 78.4 806 Standard 44 1,314 370 96 65.7
  • 62. Page 62 Bearings Roller bearings are used for the drive end, and ball bearings for the non-drive end. The non-drive end bearing includes a grounding brush for additional protection against unwanted shaft currents caused by inverter switching. In addition, frames 808 and above use insulated brackets for both bearings. A special labyrinth seal is also optionally available, as shown in Figure. Standard bearing arrangements: (a) non-drive end, (b) drive end. 1. Bracket 2. Antifriction bearing 3. Standard seal 4. Inner bearing cover 5. Bearing nut 6. Bearing washer
  • 63. Page 63 7. Bearing insulation brush 8. Outer bearing cover 9. Grease inlet 10. Grease outlet Labyrinth bearing arrangements: (a) non-drive end, (b) drive end. 1. Bracket 2. Antifriction bearing
  • 64. Page 64 3. Labyrinth seal 4. Labyrinth cover 5. Inner Bearing cover 6. Bearing nut 7. Bearing washer 8. Bearing insulation brush 9. Outer bearing cover 10. Grease inlet 11. Grease outlet Conclusion An AC mill-duty motor in frames 806–818 is now available to replace existing DC mill-duty motors conforming to AIST Standard No. 1. They are ideally suited to replace table motors and may be used in other variable speed applications as well. The user must take care to understand the application of the existing DC motor, as the nameplate may not reflect actual usage.
  • 65. Page 65 5. Speed Control of AC Motors An important factor in industrial progress during the past five decades has been the increasing sophistication of factory automation which has improved productivity many fold. Manufacturing lines typically involve a variety of variable speed motor drives which serve to power conveyor belts, robot arms, overhead cranes, steel process lines, paper mills, and plastic and fiber processing lines to name only a few. Prior to the 1950s all such applications required the use of a DC motor drive since AC motors were not capable of smoothly varying speed since they inherently operated synchronously or nearly synchronously with the frequency of electrical input. To a large extent, these applications are now serviced by what can be called general- purpose AC drives. In general, such AC drives often feature a cost advantage over their DC counterparts and, in addition, offer lower maintenance, smaller motor size, and improved reliability. However, the control flexibility available with these drives is limited and their application is, in the main, restricted to fan, pump, and compressor types of applications where the speed need be regulated only roughly and where transient response and low-speed performance are not critical. Unlike D.C. Motors, A.C. Induction Motors are not suitable for variable speeds. Their speed control and regulation is comparatively difficult when compared with D.C. Motors. Speed Control of Slip Ring Induction Motors A slip ring motor or a phase wound motor is an induction motor which can be started with full line voltage, applied across its stator terminals. The value of starting current is adjusted by adding up external resistance to its rotor circuit.
  • 66. Page 66 Slip ring induction motor Slip Ring Motor Characteristics A slip ring motor or a phase wound motor is an induction motor which can be started with full line voltage, applied across its stator terminals. The value of starting current is adjusted by adding up external resistance to its rotor circuit. Incase of a squirrel cage induction motor, the value of rotor resistance is very low, which leads to heavy starting current requirement. But in case of slip ring motors, the rotor resistance is increased by the addition of external resistance. This external resistance makes the rotor circuit current low and thus the stator current drawn is also low with a high starting torque. The point to be noted is the ―slip necessary to generate maximum torque is directly proportional to the rotor resistance.‖ So it is evident that the slip increases with increase in external resistance. With the above statements, let us discuss the different methods of speed control of slip ring induction motors. Speed control from stator side Changing applied voltage By varying the supply voltage (V) i,e the voltage supplied to the stator we can vary the speed of an induction motor. This is a slip control method with constant frequency variable supply
  • 67. Page 67 voltage. From the torque eq. we come to know that the torque developed by theinduction motor is proportional to the square of the supply voltage. It is also known that slip at maximum torque is independent of supply voltage. Here speed control is obtained by varying supply voltage until the torque required by theload is developed at desired speed. This method of speed control is suitable where load torque decreases with speed eg: fan load. We have already discussed earlier that torque developed by the induction motor is proportional to the square of the supply voltage and current proportional to voltage. So when we reduce the voltage to reduce speed of the motor for same current value, the torque definitely reduces. The stator voltage control is most suitable where intermittent drive operation is required. This method is most used for fan / pump loads.  Speed control in single ph IM (domestic fan) is obtained by triac controller. Speed control is done by varying firing angle of the triac.  Speed control of three ph IM is done by connecting three pairs of back to back connected thyristors. Speed control is obtained by varying the conduction period of thyristors.  For speed control of small ac motors (single phase supply) we use two thyristors (back to back) in anti-parallel. This method is most easiest and cheapest. In this method speed of the motor is controlled by changing the applied voltage across the motor terminals. Decreasing applied voltage will decrease the speed of the motor and increasing voltage will increase the speed. But this method is not used widely for following two reasons (i) Large change in voltage is required for relatively small change in motor speed (ii) This large change in voltage may disturb the magnetic conditions of the motor, as it changes the flux density. Changing the applied frequency This method provides wide range of speed control with gradual variation of speed throughout this range. The major difficulty with this method is how to get the variable frequency supply.
  • 68. Page 68 The auxillary equipment required for this purpose results in a high cost, increased maintenance and lowering of overall efficiency. That is why this method is not generally used but there are certain applications where this method is very suitable. The synchronous speed of an induction motor is given by Ns = 120f /P. The synchronous speed and therefore the speed of the motor can be controlled by varying supply frequency. The emf induced in the stator of the induction motor is given by E1 = 4.44 k f φ T1. From the emf equation it can be understood that a change of frequency will result in a change of flux level unless the induced emf is changed in the same ratio. An imbalance will result in an excessive flux and saturation or reduced flux and reduced torque per ampere of current. Excessive flux will cause increase in iron losses. In order to avoid saturation and to minimize losses, motor is operated at rated air gap flux by varying terminal voltagewith frequency so as to maintain constant (V/f) ratio. This control method is known as constant volts per hertz. The variable frequency supply is obtained by the following devices :- 1. Inverter (converts fixed voltage dc to fixed/variable voltage ac of variable frequency) – voltage source inverter (VSI) and current source inverter (CSI). 2. Cycloconverter (converts fixed voltage, frequency ac to variable voltage and frequency ac) Thus speed can be varied by changing supply frequency. As changing in the supply frequency is a difficult task, this method is used where motor is directly powered from a generator. We can change the supply frequency by generator by changing speed of prime mover of the generator. As we increase supply frequency, speed of the motor also increases and vice versa. This method is being used to some extent in electrically driven ships. Changing the number of stator poles As said above, Ns = 120f/p. Thus by changing in number of stator poles we can change thespeed of induction motor. This method is easily applicable for squirrel cage type induction motors, as rotor of these motors adopts itself for any number of poles. To use this method, stator is wound for two or more different winding with different poles. Only one winding will be in circuit at a time other being disconnected. E.g. stator can be wound with two different windings having no. of poles 2 and 4 respectively. In this case if supplied frequency is 50 Hz, (i) Ns = 120 * 50 / 2 =
  • 69. Page 69 3000 rpm (for p = 2) and (ii) Ns = 120 * 50 / 4 = 1500 rpm (for p = 4). this method is being used in elevator and traction motors. Control from rotor side Injecting emf in rotor circuit An emf of same frequency as that of slip of the motor is injected in rotor circuit via slip rings. When we insert voltage which is in phase with induced rotor emf, it is equivalent to decreasing resistance of rotor. Whereas when we insert voltage which is opposite in phase with induced emf in rotor, its like increasing resistance of rotor circuit. Hence by injecting emf in rotor circuit we can control the speed of a induction motor. Rotor Rheostat Control The external rheostat which is used for the starting purpose of these slip ring motors can be used for its speed control too. But the point to look into is the starting rheostat must be rated for ―continuous‖ operation. We have already discussed about the rheostat starting of slip ring motors. With the same rheostat added to the rotor circuit, it is possible to regulate the speed of slip ring motors. The resistance is engaged maximum during starting and slowly cut-off to increase the speed of the motor. When running at full speed, if the need arises to reduce the speed, the resistance is slowly added up and thus speed reduces. To understand the speed control, let us look into the torque-slip relation given below. Torque T = S/R. Where S – is the slip of the motor, And R – is the Rotor resistance It is evident from the above relation that as the rotor resistance increases, the torque decreases. But for a given load demand, the motor and thus the rotor has to supply the same torque without any decrease. So in order to maintain the torque constant, as the rotor resistance increases the slip also increases. This increase in slip is nothing but decrease in motor speed.
  • 70. Page 70 But there are some disadvantages in this method of speed control. As the rotor resistance is increased, the ‖ I2 R‖ losses also increases which in turn decreases the operating efficiency of the motor. It can be interpreted as the loss is directly proportional to reduction in speed. Since the losses are more, this method of speed reduction is used only for short period only. Cascade Control This method has two motors mounted on same shaft called in tandem or cascade operation. The motor ―A‖ which is connected to the mains is called as the main or the master motor. This motor
  • 71. Page 71 has slip rings mounted on its rotor shaft from which the motor ―B‖ gets its supply from is called as auxiliary or the slave motor. It is to be noted that both the motors are mounted on same shaft. Thus it is evident that either the motors must run at same speed or it may have some gear arrangements. The main motor is necessarily a slip ring induction motor but the auxiliary motor can be slip ring or squirrel cage induction motor. For satisfactory operation, motor ―A‖ must be phase wound/ slip ring type with the stator to rotor winding ratio of 1:1, so that in addition to cascade operation, they can also run from supply mains separately. Since the supply for the slave motor is
  • 72. Page 72 from the slip rings of the master motor, and it is forming a chain of sequential operation, the system is called as ―Tandem or Cascade or Concatenation‖ operation. Three or four different combinations are possible for attaining different speeds. 1. Main motor may be alone on the mains, where Na = 120f/Pa, where Pa is the number of poles in motor ―A.‖ 2. Auxiliary or the slave motor running alone on the mains, where Nb = 120f/Pb, where Pb is the number of poles in motor ―B.‖
  • 73. Page 73 3. The combination may be in cascade operation. In this operation, the important point is that the phase rotation of the stator fields of the motors ―A‖ and ―B‖ must be in same direction. Thus the synchronous speed of this cascaded motor set is given by Nc = 120f/ (Pa + Pb). In my next article, we will discuss on the cascade set starting phenomena and speed control by injecting e.m.f in the rotor circuit. Speed Control of Squirrel Cage Induction Motor Among the ac motors, squirrel cage induction motor is the most popular one. It is quite cheap, robust and efficient. This motor also has good voltage regulation, high startingtorque and also requires less maintenance. There are two types of three phase induction motors based on the rotor construction. They are Squirrel cage induction motor and Wound / Slip ring induction motor. Almost 90-95% of the 3 phase induction motors are squirrel cage type. Squirrel cage induction motor
  • 74. Page 74 Unlike D.C. Motors, A.C. Induction Motors are not suitable for variable speeds. Their speed control and regulation is comparatively difficult when compared with D.C. Motors. These are some of the methods which are commonly used for the speed control of squirrel cage induction motors: 1. Changing Applied Voltage 2. Changing Applied Frequency 3. Changing Number Of Stator Poles The above three methods are most commonly used for the speed control of squirrel cage Induction motors. Changing Applied Voltage This method, even though easiest, it is rarely used. The reasons are (a) for a small change in speed, there must be a large variation in voltage. (b) This large change in voltage will result in large change in flux density, thereby seriously disturbing the magnetic distribution/condition of the motor. Changing Applied Frequency We all know that the synchronous speed of the induction motor is given by Ns = 120f/P. So from this relation, it is evident that the synchronous speed and thus the speed of the induction motor can by varied by the supply frequency. This method has its own limitations. The motor speed can be reduced by reducing the frequency, if the induction motor happens to be the only load on the generators. Even then the range over which the speed can be varied is very less. This method is famous in some electrically driven ships although not common in shore. Changing The Number Of Stator Poles As we know the relation between the synchronous speed and the number of poles, i.e. Ns = 120f/P. So the number of poles is inversely proportional to the speed of the motor. This change of number of poles can be achieved by having two or more entirely independent stator windings
  • 75. Page 75 in the same slots. Each winding gives a different number of poles and hence different synchronous speed. For example, for the same motor, if no. of poles = 2 , 4 or 6, which can be changed as per speed requirement, and lets say the supply frequency f = 50 Hz, Then for No. of Poles P = 2, then Ns = 120 * 50/2: So Ns = 3000 r.p.m No. of Poles P = 4, then Ns = 120 * 50/4: So Ns = 1500 r.p.m No. of Poles P = 6, then Ns = 120 * 50/6: So Ns = 1000 r.p.m. Thus the speed control of squirrel cage induction motor can be done easily, but as steps of reduced speed. This method is used for elevator motors, traction motors and also for machine tools.
  • 76. Page 76 6. Variable Frequency Drive A Variable Frequency Drive (VFD) is a type of motor controller that drives an electric motor by varying the frequency and voltage supplied to the electric motor. Other names for a VFD are variable speed drive,adjustable speed drive, adjustable frequency drive, AC drive, microdrive, and inverter. Frequency (or hertz) is directly related to the motor‘s speed (RPMs). In other words, the faster the frequency, the faster the RPMs go. If an application does not require an electric motor to run at full speed, the VFD can be used to ramp down the frequency and voltage to meet the requirements of the electric motor‘s load. As the application‘s motor speed requirements change, the VFD can simply turn up or down the motor speed to meet the speed requirement.
  • 77. Page 77 Common VFD Terms Variable Frequency Drive (VFD) This device uses power electronics to vary the frequencyof input power to the motor, thereby controllingmotor speed. Variable Speed Drive (VSD) This more generic term applies to devices that controlthe speed of either the motor or the equipmentdriven by the motor (fan, pump, compressor, etc.).This device can be either electronic or mechanical. Adjustable Speed Drive (ASD) Again, a more generic term applying to bothmechanical and electrical means of controllingspeed Working of Variable Frequency Drive Induction motors, the workhorses of industry, rotate at a fixed speed that is determined by the frequency of the supply voltage. Alternating current applied to the stator windings produces a magnetic field that rotates at synchronous speed. This speed may be calculated by dividing line frequency by the number of magnetic pole pairs in the motor winding. A four-pole motor, for example, has two pole pairs, and therefore the magnetic field will rotate 60 Hz / 2 = 30 revolutions per second, or 1800 rpm. The rotor of an induction motor will attempt to follow this rotating magnetic field, and, under load, the rotor speed "slips" slightly behind the rotating field. This small slip speed generates an induced current, and the resulting magnetic field in the rotor produces torque. A VFD converts 60 Hz power, for example, to a new frequency in two stages: the rectifier stage and the inverter stage. The conversion process incorporates three functions:
  • 78. Page 78 Rectifier stage A full-wave, solid-state rectifier converts three-phase 60 Hz power from a standard 208, 460, 575 or higher utility supply to either fixed or adjustable DC voltage. The system may include transformers if higher supply voltages are used. Inverter stage Electronic switches - power transistors or thyristors switch the rectified DC on and off, and produce a current or voltage waveform at the desired new frequency. The amount of distortion depends on the design of the inverter and filter. Control system An electronic circuit receives feedback information from the driven motor and adjusts the output voltage or frequency to the selected values. Usually the output voltage is regulated to produce a constant ratio of voltage to frequency (V/Hz). Controllers may incorporate many complex control functions. Converting DC to variable frequency AC is accomplished using an inverter. Most currently available inverters use pulse width modulation (PWM) because the output current waveform closely approximates a sine wave. Power semiconductors switch DC voltage at high speed, producing a series of short-duration pulses of constant amplitude. Output voltage is varied by changing the width and polarity of the switched pulses. Output frequency is adjusted by changing the switching cycle. The first stage of a Variable Frequency AC Drive, or VFD, is the Converter. The converter is comprised of six diodes, which are similar to check valves used in plumbing systems. They allow current to flow in only one direction; the direction shown by the arrow in the diode symbol. For example, whenever A-phase voltage (voltage is similar to pressure in plumbing systems) is more positive than B or C phase voltages, then that diode will open and allow current to flow. When B-phase becomes more positive than A-phase, then the B-phase diode will open and the A-phase diode will close. The same is true for the 3 diodes on the negative side of the bus. Thus, we get six current ―pulses‖ as each diode opens and closes. This is called a ―six-pulse VFD‖, which is the standard configuration for current Variable Frequency Drives.
  • 79. Page 79 Let us assume that the drive is operating on a 480V power system. The 480V rating is ―rms‖ or root-mean-squared. The peaks on a 480V system are 679V. As you can see, the VFD dc bus has a dc voltage with an AC ripple. The voltage runs between approximately 580V and 680V.
  • 80. Page 80 We can get rid of the AC ripple on the DC bus by adding a capacitor. A capacitor operates in a similar fashion to a reservoir or accumulator in a plumbing system. This capacitor absorbs the ac ripple and delivers a smooth dc voltage. The AC ripple on the DC bus is typically less than 3 Volts. Thus, the voltage on the DC bus becomes ―approximately‖ 650VDC. The actual voltage will depend on the voltage level of the AC line feeding the drive, the level of voltage unbalance on the power system, the motor load, the impedance of the power system, and any reactors or harmonic filters on the drive. The diode bridge converter that converts AC-to-DC, is sometimes just referred to as a converter. The converter that converts the dc back to ac is also a converter, but to distinguish it from the diode converter, it is usually referred to as an ―inverter‖. It has become common in the industry to refer to any DC-to-AC converter as an inverter.
  • 81. Page 81 When we close one of the top switches in the inverter, that phase of the motor is connected to the positive dc bus and the voltage on that phase becomes positive. When we close one of the bottom switches in the converter, that phase is connected to the negative dc bus and becomes negative. Thus, we can make any phase on the motor become positive or negative at will and can thus generate any frequency that we want. So, we can make any phase be positive, negative, or zero.
  • 82. Page 82 The blue sine-wave is shown for comparison purposes only. The drive does not generate this sine wave. Notice that the output from the VFD is a ―rectangular‖ wave form. VFD‘s do not produce a sinusoidal output. This rectangular waveform would not be a good choice for a general purpose distribution system, but is perfectly adequate for a motor. If we want to reduce the motor frequency to 30 Hz, then we simply switch the inverter output transistors more slowly. But, if we reduce the frequency to 30Hz, then we must also reduce the voltage to 240V in order to maintain the V/Hz ratio (see the VFD Motor Theory presentation for more on this). How are we going to reduce the voltage if the only voltage we have is 650VDC? This is called Pulse Width Modulation or PWM. Imagine that we could control the pressure in a water line by turning the valve on and off at a high rate of speed. While this would not be practical for plumbing systems, it works very well for VFD‘s. Notice that during the first half cycle, the voltage is ON half the time and OFF half the time. Thus, the average voltage is half of 480V or 240V. By pulsing the output, we can achieve any average voltage on the output of the VFD.
  • 83. Page 83 VFDs Can Control Multiple Motors Many applications use one or more motors operating in parallel at the same desired speed. Using one Variable frequency drive (VFD) to control these multiple motors provides a host of advantages as summarized below. 1. Saves money 2. Cuts cabinet size, complexity and design costs 3. Can reduce footprint of the motors and driven loads 4. Cuts maintenance time and cost 5. Reduces inventory stockingrequirements 6. Reduces control system complexity. Money is saved because one high horsepower rated VFD is less expensive than multiple low horsepower VFDs. Each VFD requires its own circuit protection, so using one VFD reduces cost in this area as well.
  • 84. Page 84 The VFD enclosure can be smaller because one large VFD requires less cabinet space than multiple smaller units. This saves space and money. Design costs are also cut because it‘s easier to engineer an enclosure to house one relatively large VFD as opposed to multiple smaller VFDs. One large VFD also produces less heat than multiple smaller units, further simplifying enclosure design and saving energy. In terms of the motors and connected loads, the footprint can also often be reduced. For example, it may be possible to fit multiple small fans of a smaller size into a confined duct space as opposed to one large fan. Maintenance time and costs are cut because only one VFD has to be serviced as opposed to multiple smaller VFDs, often of varying sizes. This also reduces inventory stocking requirements. Each motor will be smaller and usually available as on off-the-shelf standard product. Because many of the motors will be identical, spares can be stocked and replaced quickly in a failure. The overall control system also becomes much simpler. Instead of connecting many VFDs to the main controller, usually a PLC, and synchronizing their operation; only one connection is required. When programming the PLC, only one VFD speed control loop needs to be configured, instead of multiple instances. Multiple motor system Taken in total, the above benefits may justify use of a VFD in applications where using one VFD per motor is cost prohibitive. When this is the case, the application benefits from all of the
  • 85. Page 85 advantages of operating motors at controlled speeds including reduced energy costs, longer motor life and better operating performance. But even given these benefits, most VFD installations with multiple motors use one VFD per motor. Design Constraints 1. All motors must operate at same speed 2. Design must accommodate VFD as a single point of failure 3. VFD must be upsized unless all motors are started simultaneously Multiple conditions must be met when applying one VFD for control of multiple motors. First, each motor must have the same desired operating speed. With one VFD per motor, each motor can be controlled separately and run at a different speed. This is not so when running multiple motors from one VFD. Second, running multiple motors from one VFD creates a single point of failure. If the VFD fails, then all of the motors connected to it are not usable. Various VFD bypass schemes can be used to overcome this limitation, but these schemes all add cost and complexity to the system. Although the VFD becomes a single point of failure, motor and connected load reliability actually improve in many applications as there are now multiple smaller motors as opposed to one large motor. If one motor fails, it‘s often possible to continue operation with the remaining motors. In these cases the remaining motors run at a speed controlled by the VFD, and operate the overall system at reduced but often still viable capacity. Third, care must be taken when operating the motors. To minimize VFD size, all motors need to be started up simultaneously. The VFD will ramp all the motors up to speed at a controlled rate, minimizing the inrush current required by each motor at startup. If application requirements prevent all the motors from being started up simultaneously, then the VFD must be upsized. What types of applications meet the three specific conditions detailed above? Applications that use dual fans or pumps are good candidates. The VFD can ensure that the two units are operated at the desired speed, and don‘t end up fighting each other or having one unit carry more than its design load level. Air handling systems, exhaust/supply fans, make-up air units, recovery wheels
  • 86. Page 86 and fan arrays are also good candidates for an installation where one VFD controls multiple motors. Once it‘s determined that the application falls within the required specific conditions, the next step is detailed design, where care must be taken to select and apply the right VFD and associated components. Design Details The VFD must be sized properly based on its connected motors. The first step is to sum total connected motor horsepower or full load amps (FLA). Of the two, FLA is the better parameter to use, but it‘s sometimes not available. Once this sum is calculated, selection of the VFD based on total horsepower or FLA can be made. The VFD should always be sized equal to or greater than this sum. Normal VFD operation will enable all of the connected motors to maintain a constant speed, but only if the correct type of motors are used. A standard induction motor tends to slip somewhat with respect to the line frequency as its load varies, so speeds won‘t be synchronous. The solution is to use three-phase, inverter-duty synchronous induction motors as this ensures that the motor speeds will remain synchronous with the line frequency. Unlike with a single motor connected to a VFD, each motor must have its own overload and short circuit protection. When controlling a single motor, a VFD with the right features can often provide short circuit and overload protection to the motor, and may be able to sense an over current situation if the circumstances are right. But a VFD only senses its total connected load, outputting as many amps as needed up to its current rating. When controlling multiple motors, a single VFD can‘t sense which motor is drawing high current, so it can‘t provide appropriate overload and over current protection to each individual motor.
  • 87. Page 87 Each motor connected to the VFD must have its own short circuit and overload protection For instance, a 50hp/65amp VFD might be controlling four 10hp/14amp motors for a total connected load of 56amps as shown in Figure 1. If one of the motors was overloaded and drawing 22 amps while the other three motors continued to operate normally, it would be difficult to configure the VFD‘s protection circuits to sense the overload condition. This is why each individual motor must have its own short circuit and overload protection, installed at point C in Figure 1. The VFD can sense an overcurrent situation if one is present in the wiring (B) from the VFD output to each motor overcurrent protection device, because it‘s rated for the combined total FLA. But, each individual motor must have its own protection in the form of overcurrent and short circuit devices. Overload protection is designed to disconnect the individual motor from the VFD if the motor draws current greater than normal but less theneight times its FLA for a prolonged period of
  • 88. Page 88 time. This protects the motor and the motor conductors from excessive heating. The most common types of motor overload protection technologies are bimetal and solid state. Short circuit protection is designed to protect against short circuit and ground fault conditions where the overcurrent condition is greater than eight times the motor‘s FLA. These types of conditions can be very destructive, so the motor must be disconnected within a fraction of a second. The two main types of short circuit protection devices are fuses and circuit breakers. With individual motor protection, only the motor that faults is disconnected, and the remaining motors continue to run. This is a must in applications that can‘t afford to have the entire system shut down while a single motor is repaired or replaced. As previously mentioned, a disadvantage of controlling multiple motors is that the VFD becomes a single point of failure for the entire system. This disadvantage can be eliminated by using a bypass circuit as depicted in Fig. With this three-contactor bypass arrangement, the motors can still run if the VFD were to fail, although only at rated speed rather than at a speed controlled by the VFD. The contactors upstream and downstream of the VFD are opened, and the bypass contactor D is closed. This bypasses the VFD and connects all of the motors directly to line power. This arrangement is very common in HVAC applications. Engineers and companies are constantly looking for simple yet creative methods to optimize performance and design of VFD, motor, and connected load systems. Using a VFD to control multiple motors fits the bill as it saves money, reduces the footprint and simplifies maintenance. From simply using one VFD to control two motors on a make-up air unit, to controlling a large 14 motor fan array on an air handler supply fan with a single VFD—multiple motor configurations make sense in many different applications.
  • 89. Page 89 This three-contactor bypass arrangement allows the connected motors to continue operation in the event of VFD failure VFD Sizing When a single VFD is used to control multiple motors, VFD sizing and selection become more complex unless all of the motors are started simultaneously. With multiple motors connected to one VFD, adding the horsepower of each to obtain a total load and selecting the VFD accordingly may not be sufficient depending on operating conditions. One of more motors can‘t be started up while one or more motors are already running unless the selected drive is sufficiently oversized. To illustrate this point, consider the following example with three 460 VAC motors connected to one VFD. Two of the motors are rated at 5 HP with a full load amp (FLA) rating of 6.2 amps. The third motor is rated at 10 HP with an FLA of 14 amps. If all motors are accelerated, decelerated and
  • 90. Page 90 run in unison—the sum of the connected motor FLA allows use of a 20 HP drive. But if it were necessary to accelerate and run the 5 HP motors and then start the 10 HP, the sum of the FLA would have to be recalculated. The FLA for each of the 5 HP motors would be used in the calculations, but the locked rotor amps (LRA) for the 10 HP would have to be taken into account. The LRA is the amount of current drawn by a motor at startup. Because the 10 HP motor wouldn‘t be accelerated from zero frequency and voltage to its running condition, it would look at the drive as a fixed voltage/frequency line starter and would require its full LRA rating to quickly accelerate to the drive‘s output frequency. Thus, the amp draw on the drive when the 10 HP drive is coming on line would be the FLA of each of the 5 HP motors, plus the LRA of 10 HP motor which is 86.5 amps. The total amp figure to be used for VFD sizing is thus 6.2 FLA + 6.2 FLA + 86.5 LRA = 98.9 Amps. This amp load would require upsizing to a 75 HP VFD with a minimum continuous output rating of 99 Amps, a 50% increase in VFD size. Uses of the VFD Energy Reduce Energy Consumption and Costs If you have an application that does not need to be run at full speed, then you can cut down energy costs by controlling the motor with a variable frequency drive, which is one of the benefits of Variable Frequency Drives. VFDs allow you to match the speed of the motor- driven equipment to the load requirement. There is no other method of AC electric motor control that allows you to accomplish this. Electric motor systems are responsible for more than 65% of the power consumption in industry today. Optimizing motor control systems by installing or upgrading to VFDs can reduce energy consumption in your facility by as much as 70%. Additionally, the utilization of VFDs improves product quality, and reduces production costs. Combining energy efficiency tax incentives, and utility rebates, returns on investment for VFD installations can be as little as 6 months.
  • 91. Page 91 Increase Production Through Tighter Process Control By operating your motors at the most efficient speed for your application, fewer mistakes will occur, and thus, production levels will increase, which earns your company higher revenues. On conveyors and belts you eliminate jerks on start-up allowing high through put. Extend Equipment Life and Reduce Maintenance Your equipment will last longer and will have less downtime due to maintenance when it‘s controlled by VFDs ensuring optimal motor application speed. Because of the VFDs optimal control of the motor‘s frequency and voltage, the VFD will offer better protection for your motor from issues such as electro thermal overloads, phase protection, under voltage, overvoltage, etc.. When you start a load with a VFD you will not subject the motor or driven load to the ―instant shock‖ of across the line starting, but can start smoothly, thereby eliminating belt, gear and bearing wear. It also is an excellent way to reduce and/or eliminate water hammer since we can have smooth acceleration and deceleration cycles. Applications Variable speed drives are used for two main reasons: • to improve the efficiency of motor-driven equipment by matching speed to changing load requirements; or • to allow accurate and continuous process control over a wide range of speeds. Motor-driven centrifugal pumps, fans and blowers offer the most dramatic energy-saving opportunities. Many of these operate for extended periods at reduced load with flow restricted or throttled. In these centrifugal machines, energy consumption is proportional to the cube of the flow rate. Even small reductions in speed and flow can result in significant energy savings. In these applications, significant energy and cost savings can be achieved by reducing the operating speed when the process flow requirements are lower.
  • 92. Page 92 In some applications, such as conveyers, machine tools and other production-line equipment, the benefits of accurate speed control are the primary consideration. VFDs can increase productivity, improve product quality and process control, and reduce maintenance and downtime. Decreasing cost and increasing reliability of power semiconductor electronics are reasons that VFDs are increasingly selected over DC motors or other adjustable speed drives for process speed control applications. Motors and VFDs must be compatible. Consult the manufacturers of both the VFD and the motor to make sure that they will work together effectively. VFDs are frequently used with inverter- duty National Electrical Manufacturers Association (NEMA) design B squirrel cage induction motors. (Design B motors have both locked rotor torque and locked rotor current that are normal.) De-rating may be required for other types of motors. VFDs are not usuallyrecommended for NEMA design D motors because of the potential for high harmonic current losses. Additional Benefits of VFDs In addition to energy savings and better process control, VFDs can provide other benefits: • A VFD may be used for control of process temperature, pressure or flow without the use of a separate controller. Suitable sensors and electronics are used to interface the driven equipment with the VFD. • Maintenance costs can be lower, since lower operating speeds result in longer life for bearings and motors. • Eliminating the throttling valves and dampers also does away with maintaining these devices and all associated controls. • A soft starter for the motor is no longer required. • Controlled ramp-up speed in a liquid system can eliminate water hammer problems. • The ability of a VFD to limit torque to a user-selected level can protect driven equipment that cannot tolerate excessive torque.
  • 93. Page 93 7. Conclusion The wire rod mill roller table consisting of 3 DC motors, the speed control of these motors of roller table is became a complex task and maintenance cost is heavy and there is a chances of brush wear of the DC motors so we are upgrading to AC drive system with existing DC drive system of wire rod mill roller table.Hence, by this up gradation we can achieve better performance at reduced costs.
  • 94. Page 94 8.References 1. DC Motors- www.vlab.ee.nus.edu.sg.com 2. AC Motors - Bill Brown, P.E., Square D Engineering Services 3. AC Replacement for DC Mill-Duty Motors -Ronald Tessendorf& Sumiyasu Kodama 4. Speed Control of AC Motors-T.A. Lipo&kareljezernik 5. Variable Frequency Drive - Randall L. Foulke, P.E., BCEE

×