Wearable Biosensors Presentation

53,667 views

Published on

this was presented as a technical seminar's presentation for final year of B.E.

Published in: Education, Technology, Business
90 Comments
127 Likes
Statistics
Notes
No Downloads
Views
Total views
53,667
On SlideShare
0
From Embeds
0
Number of Embeds
116
Actions
Shares
0
Downloads
1
Comments
90
Likes
127
Embeds 0
No embeds

No notes for slide

Wearable Biosensors Presentation

  1. 1. WEARABLE BIOSENSORS H.S.RAJU
  2. 2. INTRODUCTION <ul><li>WEARABLES </li></ul><ul><ul><li>Objects that can be worn on body </li></ul></ul><ul><ul><li>Ex: wrist watches, rings, clothes, spectacles, etc,. </li></ul></ul><ul><li>BIOSENSORS </li></ul><ul><ul><li>Detects analyte </li></ul></ul><ul><ul><ul><li>Biological component </li></ul></ul></ul><ul><ul><ul><li>Physiochemical component </li></ul></ul></ul>WEARABLE BIOSENSORS = WEARABLES + BIOSENSORS
  3. 3. WEARABLE BIOSENSORS Fig 1: Photograph of ring sensor, size of the top board is 0.8 x 0.8 inch.
  4. 4. COMPONENTS <ul><li>Sensitive Biological Element </li></ul><ul><li>Transducer </li></ul><ul><li>Associated Electronics </li></ul>Fig2: Schematic diagram showing main components of a biosensor.
  5. 5. WORKING Fig 3: Working of Biosensor a – analyte b – Interferent c – immobilized biological molecule d – Biospecific immobilization surface e – chemical signal f - transducer g – amplification and control unit h – output of measured analyte
  6. 6. OPERATION <ul><li>WITHOUT BIOSENSORS </li></ul>
  7. 7. OPERATION <ul><li>WITH BIOSENSORS </li></ul>
  8. 8. TYPES OF BIOSENSORS <ul><li>Calorimetric biosensors </li></ul><ul><li>Potentiometric biosensors </li></ul><ul><li>Amperometric biosensors </li></ul><ul><li>Optical biosensors </li></ul><ul><li>Piezo-electric biosensors </li></ul><ul><li>Immunosensors </li></ul>
  9. 9. MANUFACTURING OF BIOSENSORS <ul><li>Making of Base Electrode </li></ul><ul><li>Developing the Transducer for the reaction </li></ul><ul><li>Producing Individual Biosensors </li></ul>
  10. 10. DEVELOPMENTS <ul><li>Ring Sensor </li></ul><ul><li>Smart Shirt </li></ul>
  11. 11. RING SENSOR <ul><li>Monitors heart rate and oxygen saturation </li></ul><ul><li>It is a pulse oximetry sensor. </li></ul><ul><li>Is mainly based on </li></ul><ul><li>optical biosensors. </li></ul><ul><li>CR2032 Battery </li></ul><ul><li>ATmel ATmega 128L </li></ul><ul><li>processor </li></ul>LED’S and photodiodes. Microprocessor (inside) Battery Transmitter
  12. 12. <ul><li>Continuous monitoring. </li></ul><ul><li>Easy to use. </li></ul><ul><li>Reducing hospitalization fee. </li></ul><ul><li>Initial cost is high. </li></ul><ul><li>Limited number of physiological parameters can be monitored </li></ul>Advantages Disadvantages
  13. 13. SMART SHIRT
  14. 14. <ul><li>Easy to wear and take off. </li></ul><ul><li>Continuous monitoring. </li></ul><ul><li>Initial cost is high. </li></ul><ul><li>Battery life is less. </li></ul>Advantages Disadvantages
  15. 15. APPLICATIONS <ul><li>Health Care </li></ul><ul><li>Industrial Process Control </li></ul><ul><ul><li>Online control. </li></ul></ul><ul><ul><li>Offline control (Distant and Local). </li></ul></ul><ul><li>Military Applications </li></ul><ul><ul><li>Continuous </li></ul></ul><ul><li>Environmental Monitoring </li></ul>
  16. 16. ADVANTAGES of WEARABLE BIOSENSORS <ul><li>Rapid continuous control </li></ul><ul><li>Facilitates continuous monitoring </li></ul><ul><li>Detection of transient phenomena </li></ul><ul><li>Easy to use </li></ul><ul><li>Reducing hospitalization fee </li></ul><ul><li>Accurate </li></ul>
  17. 17. <ul><li>Heat sterilization is not possible </li></ul><ul><li>Membrane may be fouled by deposits </li></ul><ul><li>Intoxication of cells present in biosensor </li></ul><ul><li>Changes can put mechanical and chemical stress on the biosensor </li></ul><ul><li>Initial cost is high </li></ul><ul><li>Battery life is less </li></ul>DISADVANTAGES of WEARABLE BIOSENSORS
  18. 18. FUTURE TRENDS <ul><li>Magneto biosensors </li></ul><ul><li>Flame retardants </li></ul><ul><li>Personal care products </li></ul><ul><li>Greater use of home-based monitoring and treatment </li></ul><ul><li>Intelligent control of medication delivery (e.g. insulin delivery based directly on blood glucose levels) </li></ul><ul><li>Greater use of nanotechnology and micro fluidics (“lab on a chip”) </li></ul><ul><li>Implementation using biochemistry, chemistry, thin-film physics, and electronics </li></ul>
  19. 19. CONCLUSION <ul><li>Applied to a restricted area of the potential market </li></ul><ul><li>Limitations: sensitivity, response time, and lifetime </li></ul><ul><li>Immobilization techniques nanotechnology, miniaturization, and multisensor </li></ul><ul><li>Improvement in the affinity, specificity, and mass production of the molecular recognition components </li></ul><ul><li>Development of advanced receptors and molecular recognition elements </li></ul>
  20. 20. REFERENCES <ul><li>www.smartshirt.gatech.edu </li></ul><ul><li>www.wearables.gatech.edu </li></ul><ul><li>www.wikipedia.org/wiki/Biosensor </li></ul><ul><li>www.lsbu.ac.uk/biology/enztech/biosensors </li></ul><ul><li>www.molecular-plant-biotechnology.info/enzyme-technology/types-of-biosensors </li></ul><ul><li>www.printedelectronicworld.com/articles/manufacturing_microfluidic_biosensors </li></ul><ul><li>www.studentsguide.in/biotechnology-genomics/biosensor-biotechnology-tools/working-principle-of-biosensors </li></ul><ul><li>www.google.com </li></ul>

×