SlideShare a Scribd company logo
1 of 7
Download to read offline
2/16/2010

Example Determining the tl length.doc

1/7

Example: Determining
Transmission Line Length
A load terminating at transmission line has a normalized
impedance z L′ = 2.0 + j 2.0 . What should the length of
transmission line be in order for its input impedance to be:
a) purely real (i.e., xin = 0 )?
b)

have a real (resistive) part equal to one (i.e., rin = 1.0 )?

Solution:
a) Find z L′ = 2.0 + j 2.0 on your Smith Chart, and then rotate

clockwise until you “bump into” the contour x = 0 (recall this is
contour lies on the Γr axis!).
When you reach the x = 0 contour—stop! Lift your pencil and
note that the impedance value of this location is purely real
(after all, x = 0 !).
Now, measure the rotation angle that was required to move
clockwise from z L′ = 2.0 + j 2.0 to an impedance on the x = 0
contour—this angle is equal to 2 β !
You can now solve for , or alternatively use the electrical
length scale surrounding the Smith Chart.
Jim Stiles

The Univ. of Kansas

Dept. of EECS
2/16/2010

Example Determining the tl length.doc

2/7

One more important point—there are two possible solutions!
Solution 1:

2β = 30
= 0.042λ

z L′ = 2 + j 2
Γ (z )

′
zin = 4.2 + j 0

x =0

Jim Stiles

The Univ. of Kansas

Dept. of EECS
2/16/2010

Example Determining the tl length.doc

3/7

Solution 2:

z L′ = 2 + j 2
′
zin = 0.24 + j 0

x =0

Γ (z )

2β = 210
= 0.292λ

Jim Stiles

The Univ. of Kansas

Dept. of EECS
2/16/2010

Example Determining the tl length.doc

4/7

b) Find z L′ = 2.0 + j 2.0 on your Smith Chart, and then rotate

clockwise until you “bump into” the circle r = 1 (recall this circle
intersects the center point or the Smith Chart!).

When you reach the r = 1 circle—stop! Lift your pencil and note
that the impedance value of this location has a real value equal
to one (after all, r = 1 !).
Now, measure the rotation angle that was required to move
clockwise from z L′ = 2.0 + j 2.0 to an impedance on the r = 1
circle—this angle is equal to 2β !
You can now solve for , or alternatively use the electrical
length scale surrounding the Smith Chart.
Again, we find that there are two solutions!

Jim Stiles

The Univ. of Kansas

Dept. of EECS
2/16/2010

Example Determining the tl length.doc

5/7

Solution 1:

z L′ = 2 + j 2

Γ (z )

r =1

′
zin = 1.0 − j 1.6

2β = 82
= 0.114λ

Jim Stiles

The Univ. of Kansas

Dept. of EECS
2/16/2010

Example Determining the tl length.doc

6/7

Solution 2:

′
zin = 1.0 + j 1.6

Γ (z )

z L′ = 2 + j 2

r =1

2β = 339
= 0.471λ

Jim Stiles

The Univ. of Kansas

Dept. of EECS
2/16/2010

Example Determining the tl length.doc

7/7

′
Q: Hey! For part b), the solutions resulted in zin = 1 − j 1.6 and
′
zin = 1 + j 1.6 --the imaginary parts are equal but opposite! Is

this just a coincidence?

A: Hardly! Remember, the two impedance solutions must result
in the same magnitude for Γ --for this example we find
Γ ( z ) = 0.625 .

Thus, for impedances where r =1 (i.e., z ′ = 1 + j x ):
Γ=

jx
z ′ − 1 (1 + jx ) − 1
=
=
z ′ + 1 (1 + jx ) + 1 2 + j x

and therefore:
2

Γ =

jx

2

2+ j x

2

x2
=
4 +x2

Meaning:

x =
2

4 Γ

2

1− Γ

2

of which there are two equal by opposite solutions!

x = ±

2 Γ
1− Γ

2

Which for this example gives us our solutions x = ±1.6 .

Jim Stiles

The Univ. of Kansas

Dept. of EECS

More Related Content

What's hot

GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...
GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...
GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...Panchal Anand
 
Fvm for convection diffusion2
Fvm for convection diffusion2Fvm for convection diffusion2
Fvm for convection diffusion2parabajinkya0070
 
Capitulo 3, 7ma edición
Capitulo 3, 7ma ediciónCapitulo 3, 7ma edición
Capitulo 3, 7ma ediciónSohar Carr
 
Smith chart:A graphical representation.
Smith chart:A graphical representation.Smith chart:A graphical representation.
Smith chart:A graphical representation.amitmeghanani
 
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...SEENET-MTP
 
Ch.14.4 Graph Manipulations
Ch.14.4 Graph ManipulationsCh.14.4 Graph Manipulations
Ch.14.4 Graph Manipulationsmdicken
 
Capitulo 1, 7ma edición
Capitulo 1, 7ma ediciónCapitulo 1, 7ma edición
Capitulo 1, 7ma ediciónSohar Carr
 
Capitulo 10, 7ma edición
Capitulo 10, 7ma ediciónCapitulo 10, 7ma edición
Capitulo 10, 7ma ediciónSohar Carr
 

What's hot (18)

Line integrals
Line integralsLine integrals
Line integrals
 
GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...
GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...
GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...
 
Fvm for convection diffusion2
Fvm for convection diffusion2Fvm for convection diffusion2
Fvm for convection diffusion2
 
Stoke’s theorem
Stoke’s theoremStoke’s theorem
Stoke’s theorem
 
Capitulo 3, 7ma edición
Capitulo 3, 7ma ediciónCapitulo 3, 7ma edición
Capitulo 3, 7ma edición
 
Smith chart basics
Smith chart basicsSmith chart basics
Smith chart basics
 
Smith chart:A graphical representation.
Smith chart:A graphical representation.Smith chart:A graphical representation.
Smith chart:A graphical representation.
 
Sol67
Sol67Sol67
Sol67
 
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
Marija Dimitrijević Ćirić "Matter Fields in SO(2,3)⋆ Model of Noncommutative ...
 
Ch01 2
Ch01 2Ch01 2
Ch01 2
 
Ch.14.4 Graph Manipulations
Ch.14.4 Graph ManipulationsCh.14.4 Graph Manipulations
Ch.14.4 Graph Manipulations
 
beban harmonis dinamika struktur
beban harmonis  dinamika strukturbeban harmonis  dinamika struktur
beban harmonis dinamika struktur
 
Deflection in beams 1
Deflection in beams 1Deflection in beams 1
Deflection in beams 1
 
Capitulo 1, 7ma edición
Capitulo 1, 7ma ediciónCapitulo 1, 7ma edición
Capitulo 1, 7ma edición
 
Torsubsion
TorsubsionTorsubsion
Torsubsion
 
Capitulo 10, 7ma edición
Capitulo 10, 7ma ediciónCapitulo 10, 7ma edición
Capitulo 10, 7ma edición
 
3D Smith Chart
3D Smith Chart3D Smith Chart
3D Smith Chart
 
Solution baupc 2003
Solution baupc 2003Solution baupc 2003
Solution baupc 2003
 

Viewers also liked

Example a lossless reciprocal network
Example a lossless reciprocal networkExample a lossless reciprocal network
Example a lossless reciprocal networkRahul Vyas
 
The smith chart
The smith chartThe smith chart
The smith chartRahul Vyas
 
5 6 binomial multisection matching transformers
5 6 binomial multisection matching transformers5 6 binomial multisection matching transformers
5 6 binomial multisection matching transformersRahul Vyas
 
2 4 the_smith_chart_package
2 4 the_smith_chart_package2 4 the_smith_chart_package
2 4 the_smith_chart_packageRahul Vyas
 
Line regulation
Line regulationLine regulation
Line regulationpaccy np
 

Viewers also liked (9)

Patchantenna
PatchantennaPatchantenna
Patchantenna
 
Example a lossless reciprocal network
Example a lossless reciprocal networkExample a lossless reciprocal network
Example a lossless reciprocal network
 
The smith chart
The smith chartThe smith chart
The smith chart
 
5 6 binomial multisection matching transformers
5 6 binomial multisection matching transformers5 6 binomial multisection matching transformers
5 6 binomial multisection matching transformers
 
2 4 the_smith_chart_package
2 4 the_smith_chart_package2 4 the_smith_chart_package
2 4 the_smith_chart_package
 
Line regulation
Line regulationLine regulation
Line regulation
 
Ppt lte
Ppt ltePpt lte
Ppt lte
 
Electromagnetics
ElectromagneticsElectromagnetics
Electromagnetics
 
Modul lelly kurniawan
Modul lelly kurniawanModul lelly kurniawan
Modul lelly kurniawan
 

Similar to Determining Transmission Line Length from Load Impedance

Lect 03 Smith charts.pdf
Lect 03 Smith charts.pdfLect 03 Smith charts.pdf
Lect 03 Smith charts.pdfAhmed Salem
 
Transmission Lines Part 4 (Smith Charts).pptx
Transmission Lines Part 4 (Smith Charts).pptxTransmission Lines Part 4 (Smith Charts).pptx
Transmission Lines Part 4 (Smith Charts).pptxPawanKumar391848
 
Mit2 092 f09_lec06
Mit2 092 f09_lec06Mit2 092 f09_lec06
Mit2 092 f09_lec06Rahman Hakim
 
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).pptEE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).pptRyanAnderson41811
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715HelpWithAssignment.com
 
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptxNotes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptxDibyadipRoy1
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715HelpWithAssignment.com
 
Transmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptxTransmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptxRituparna Mitra
 
7.curves Further Mathematics Zimbabwe Zimsec Cambridge
7.curves   Further Mathematics Zimbabwe Zimsec Cambridge7.curves   Further Mathematics Zimbabwe Zimsec Cambridge
7.curves Further Mathematics Zimbabwe Zimsec Cambridgealproelearning
 
Single Variable Calculus Assignment Help
Single Variable Calculus Assignment HelpSingle Variable Calculus Assignment Help
Single Variable Calculus Assignment HelpMath Homework Solver
 

Similar to Determining Transmission Line Length from Load Impedance (20)

Contour
ContourContour
Contour
 
Lect 03 Smith charts.pdf
Lect 03 Smith charts.pdfLect 03 Smith charts.pdf
Lect 03 Smith charts.pdf
 
Transmission Lines Part 4 (Smith Charts).pptx
Transmission Lines Part 4 (Smith Charts).pptxTransmission Lines Part 4 (Smith Charts).pptx
Transmission Lines Part 4 (Smith Charts).pptx
 
Mit2 092 f09_lec06
Mit2 092 f09_lec06Mit2 092 f09_lec06
Mit2 092 f09_lec06
 
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).pptEE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
 
Ps02 cmth03 unit 1
Ps02 cmth03 unit 1Ps02 cmth03 unit 1
Ps02 cmth03 unit 1
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Sol83
Sol83Sol83
Sol83
 
Sol83
Sol83Sol83
Sol83
 
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptxNotes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Holographic Cotton Tensor
Holographic Cotton TensorHolographic Cotton Tensor
Holographic Cotton Tensor
 
Mathematics
MathematicsMathematics
Mathematics
 
Transmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptxTransmission Lines Part 1 (TL Theory).pptx
Transmission Lines Part 1 (TL Theory).pptx
 
Shell theory
Shell theoryShell theory
Shell theory
 
Complex Integral
Complex IntegralComplex Integral
Complex Integral
 
Vectors and Kinematics
Vectors and KinematicsVectors and Kinematics
Vectors and Kinematics
 
7.curves Further Mathematics Zimbabwe Zimsec Cambridge
7.curves   Further Mathematics Zimbabwe Zimsec Cambridge7.curves   Further Mathematics Zimbabwe Zimsec Cambridge
7.curves Further Mathematics Zimbabwe Zimsec Cambridge
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
Single Variable Calculus Assignment Help
Single Variable Calculus Assignment HelpSingle Variable Calculus Assignment Help
Single Variable Calculus Assignment Help
 

Recently uploaded

New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsNathaniel Shimoni
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersNicole Novielli
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rick Flair
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demoHarshalMandlekar2
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 

Recently uploaded (20)

New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directions
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software Developers
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demo
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 

Determining Transmission Line Length from Load Impedance

  • 1. 2/16/2010 Example Determining the tl length.doc 1/7 Example: Determining Transmission Line Length A load terminating at transmission line has a normalized impedance z L′ = 2.0 + j 2.0 . What should the length of transmission line be in order for its input impedance to be: a) purely real (i.e., xin = 0 )? b) have a real (resistive) part equal to one (i.e., rin = 1.0 )? Solution: a) Find z L′ = 2.0 + j 2.0 on your Smith Chart, and then rotate clockwise until you “bump into” the contour x = 0 (recall this is contour lies on the Γr axis!). When you reach the x = 0 contour—stop! Lift your pencil and note that the impedance value of this location is purely real (after all, x = 0 !). Now, measure the rotation angle that was required to move clockwise from z L′ = 2.0 + j 2.0 to an impedance on the x = 0 contour—this angle is equal to 2 β ! You can now solve for , or alternatively use the electrical length scale surrounding the Smith Chart. Jim Stiles The Univ. of Kansas Dept. of EECS
  • 2. 2/16/2010 Example Determining the tl length.doc 2/7 One more important point—there are two possible solutions! Solution 1: 2β = 30 = 0.042λ z L′ = 2 + j 2 Γ (z ) ′ zin = 4.2 + j 0 x =0 Jim Stiles The Univ. of Kansas Dept. of EECS
  • 3. 2/16/2010 Example Determining the tl length.doc 3/7 Solution 2: z L′ = 2 + j 2 ′ zin = 0.24 + j 0 x =0 Γ (z ) 2β = 210 = 0.292λ Jim Stiles The Univ. of Kansas Dept. of EECS
  • 4. 2/16/2010 Example Determining the tl length.doc 4/7 b) Find z L′ = 2.0 + j 2.0 on your Smith Chart, and then rotate clockwise until you “bump into” the circle r = 1 (recall this circle intersects the center point or the Smith Chart!). When you reach the r = 1 circle—stop! Lift your pencil and note that the impedance value of this location has a real value equal to one (after all, r = 1 !). Now, measure the rotation angle that was required to move clockwise from z L′ = 2.0 + j 2.0 to an impedance on the r = 1 circle—this angle is equal to 2β ! You can now solve for , or alternatively use the electrical length scale surrounding the Smith Chart. Again, we find that there are two solutions! Jim Stiles The Univ. of Kansas Dept. of EECS
  • 5. 2/16/2010 Example Determining the tl length.doc 5/7 Solution 1: z L′ = 2 + j 2 Γ (z ) r =1 ′ zin = 1.0 − j 1.6 2β = 82 = 0.114λ Jim Stiles The Univ. of Kansas Dept. of EECS
  • 6. 2/16/2010 Example Determining the tl length.doc 6/7 Solution 2: ′ zin = 1.0 + j 1.6 Γ (z ) z L′ = 2 + j 2 r =1 2β = 339 = 0.471λ Jim Stiles The Univ. of Kansas Dept. of EECS
  • 7. 2/16/2010 Example Determining the tl length.doc 7/7 ′ Q: Hey! For part b), the solutions resulted in zin = 1 − j 1.6 and ′ zin = 1 + j 1.6 --the imaginary parts are equal but opposite! Is this just a coincidence? A: Hardly! Remember, the two impedance solutions must result in the same magnitude for Γ --for this example we find Γ ( z ) = 0.625 . Thus, for impedances where r =1 (i.e., z ′ = 1 + j x ): Γ= jx z ′ − 1 (1 + jx ) − 1 = = z ′ + 1 (1 + jx ) + 1 2 + j x and therefore: 2 Γ = jx 2 2+ j x 2 x2 = 4 +x2 Meaning: x = 2 4 Γ 2 1− Γ 2 of which there are two equal by opposite solutions! x = ± 2 Γ 1− Γ 2 Which for this example gives us our solutions x = ±1.6 . Jim Stiles The Univ. of Kansas Dept. of EECS