Tổng quan về laser

  • 555 views
Uploaded on

 

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
555
On Slideshare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
5
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Tổng quan về laser Viết bởi Trần NghiêmThứ ba, 23 Tháng 3 2010 01:14 10/10 - 6353 lượt đọc (Được đọc nhiều) Là một trong những dụng cụ có hiệu suất thuộc vào loại tồi - chỉ trên dưới 1% - nhưng những tia sáng laser kì diệu ngày càng thâm nhập sâu vào đời sống của con người. Bài viết trình bày chi tiết những vấn đề có liên quan đến kĩ thuật laser, từ lịch sử phát mính cho đến nguyên lí hoạt động và ứng dụng... Trong những bộ phim khoa học viễn tưởng nổi tiếng hồi thập niên 1950, các con quái vật thường được miêu tả có khả năng phát ra những tia sáng gây chết người từ đôi mắt của chúng (xem hình 1), nhưng cho tới khi phát minh ra laser thì các chùm năng lượng mãnh liệt và tập trung như thế cũng chỉ là tưởng tượng mà thôi. Ngày nay, người ta có thể sửa đổi, thăm dò, hay phá hủy vật chất bằng cách sử dụng các bức xạ tập trung cao phát ra từ các nguồn năng lượng gọi là laser. Hầu như tất cả ánh sáng mà chúng ta nhìn thấy hàng ngày, từ ánh sáng Mặt Trời, các vì sao, các bóng đèn nóng sáng và đèn huỳnh quang, cho đến các bộ ti vi, đều xảy ra tự phát khi các nguyên tử và phân tử tự giải phóng năng lượng thừa của chúng. Hình 1. Quái vật mắt laser của thập niên 1950
  • 2. Ánh sáng tự nhiên và ánh sáng nhân tạo thông thường được phát ra bởi sự thayđổi năng lượng ở các mức nguyên tử và phân tử xảy ra mà không cần có sự canthiệp từ bên ngoài. Tuy nhiên, loại ánh sáng thứ hai tồn tại và xảy ra khi nguyêntử hay phân tử vẫn giữ năng lượng dư thừa của nó cho đến khi bị cưỡng bứcphải phát ra năng lượng dưới dạng ánh sáng. Laser được chế tạo để tạo ra vàkhuếch đại dạng ánh sáng cưỡng bức này thành các chùm cường độ mạnh vàtập trung. Laser là từ viết tắt của Light Amplification by theStimulated Emissionof Radiation (Khuếch đại ánh sáng bằng sự phát bức xạ cưỡng bức). Tính chấtđặc biệt của ánh sáng laser khiến cho kĩ thuật laser trở thành một công cụ thiếtyếu trong hầu như mọi mặt đời sống hàng ngày, như viễn thông, giải trí, sản xuấtvà y khoa.Albert Einstein đã tình cờ đặt bước đầu tiên trong sự phát triển laser với việcnhận thấy có khả năng có hai loại phát xạ. Trong một bài báo công bố năm 1917,ông là người đầu tiên đề xuất sự tồn tại của phát xạ cưỡng bức. Trong nhiềunăm, các nhà vật lí cho rằng sự phát xạ tự phát của ánh sáng là hình thức khả dĩvà trội nhất, và bất cứ sự phát xạ cưỡng bức nào cũng đều phải yếu hơn nhiềulần. Mãi đến sau Thế chiến thứ hai, người ta mới bằt đầu tìm kiếm những điềukiện cần thiết cho sự phát xạ cưỡng bức chiếm ưu thế, và làm cho một nguyêntử hay phân tử kích thích nguyên tử hay phân tử khác, tạo ra hiệu ứng khuếchđại ánh sáng phát xạ.Một nhà khoa học tại trường đại học Columbia , Charles H. Townes, là ngườiđầu tiên thành công trong việc khuếch đại bức xạ cưỡng bức hồi đầu thập niên1950, nhưng nghiên cứu của ông tập trung vào các sóng viba (có bước sóng dàihơn nhiều so với bước sóng ánh sáng khả kiến), và ông đặt tên cho dụng cụ củamình là maser. Các nhà khoa học khác theo chân ông chế tạo maser thànhcông, và một lượng đáng kể các nỗ lực tập trung vào cố gắng tạo ra bức xạcưỡng bức ở các bước sóng ngắn hơn. Nhiều khái niệm cơ sở cho sự ra đờicủa laser được phát triển cũng khoảng thời gian đó, cuối thập niên 1950, bởiTownes và Arthur Schawlow (thuộc Phòng thí nghiệm Bell ) và bởi Gordon Gouldở trường đại học Columbia . Gould đi thẳng tới việc đăng kí bằng sáng chế chứkhông công bố ý tưởng của mình, và mặc dù ông được công nhận là người đặtra từ “laser”, nhưng cũng phải mất gần 30 năm sau ông mới nhận được một vàibằng sáng chế. Vẫn có sự bất đồng về người xứng đáng được công nhận chokhái niệm laser. Hai người Xô Viết, Nikolai Basov và Aleksander Prokhorov,cùng chia giải Nobel vật lí năm 1964 với Townes cho nghiên cứu tiên phong củahọ về các nguyên lí nền tảng cho maser và laser. Schawlow thì chia giải Nobelvật lí năm 1981 cho nghiên cứu của ông về laser.Việc công bố công trình của Schawlow và Townes kích thích một nỗ lực to lớnnhằm chế tạo một hệ laser hoạt động được. Tháng 5/1960, Theodore Maiman,làm việc tại Phòng nghiên cứu Hughes, chế tạo được một dụng cụ bằng thỏiruby tổng hợp, được công nhận là laser đầu tiên. Laser ruby của Maiman phát racác xung ánh sáng đỏ kết hợp cường độ mạnh có bước sóng 694 nanomet,trong một chùm hẹp có mức độ tập trung cao, khá tiêu biểu cho những đặc tínhbiểu hiện bởi nhiều laser hiện nay. Laser đầu tiên dùng một thỏi ruby nhỏ có hai
  • 3. đầu mạ bạc để phản xạ ánh sáng, bao quanh bởi một đèn flash xoắn ốc, và đủnhỏ để cầm trong tay. Điều thú vị là nhà nhiếp ảnh được Phòng thí nghiệmHughes ủy quyền để quảng cáo phát minh mới cho rằng laser thực tế quá nhỏvà chụp Maiman trong tư thế với laser lớn hơn mãi đến sau này vẫn không hoạtđộng được. Bức ảnh chụp Maiman cùng với laser “hoành tráng hơn” đó vẫnđược lưu truyền và sử dụng trong nhiều ấn phẩm.Mặc dù laser phát ra ánh sáng khả kiến là phổ biến nhất, nhưng các nguyên lí cơbản có thể áp dụng được cho nhiều vùng phổ điện từ. Sự phát xạ cưỡng bứcđầu tiên thu được trong vùng vi ba của phổ điện từ, nhưng hiện nay laser có mặttrên thị trường còn phát ra ánh sáng cực tím và hồng ngoại, và tiến bộ đangđược thực hiện theo hướng tạo ra laser trong vùng phổ tia X. Các laser thực tếđược sử dụng hiện nay có công suất phát từ dưới 1 miliwatt cho đến nhiềukilowatt, và một số tạo ra cả nghìn tỉ watt trong những xung cực ngắn. Hình 2cho thấy một số loại laser điển hình, có kích thước đủ cỡ và ứng dụng rộng rãi.Các phòng thí nghiệm thuộc quân đội và phòng thí nghiệm khác đã chế tạo đượcnhững thiết bị laser chiếm cả một tòa nhà, trong khi những laser phổ biến nhấtsử dụng dụng cụ bán dẫn kích thước bằng một hạt cát.Để hiểu được các nguyên lí cơ bản của laser, điều cần thiết là phải giải thíchcách thức bức xạ cưỡng bức được tạo ra và khuếch đại. Nguyên lí đầu tiêntrong số các nguyên lí này là cần thiết, bởi vì laser vốn dĩ là một dụng cụ cơlượng tử và bản chất lượng tử của năng lượng phải được kể đến để giải thíchhoạt động của laser. Vật lí cổ điển cho rằng năng lượng có thể biến thiên liên tụcvà đều đặn, và các nguyên tử và phân tử có thể có bất kì lượng năng lượng nào.Công trình nghiên cứu của Einstein, cáo trở thành chìa khóa cho sự phát triểncủa cơ học lượng tử, cho rằng năng lượng tồn tại trong từng đơn vị gián đoạn,hay lượng tử, và các nguyên tử và phân tử (và do đó là mọi đối tượng khác) bịhạn chế chỉ có những lượng năng lượng gián đoạn nhất định. Hình 2. Một số loại laser thông dụng
  • 4. Thêm một vài khái niệm nữa cũng cần thiết để hiểu được hoạt động laser, bắtđầu là photon và mức nguyên tử và xuất phát từ nguyên tắc lượng tử hóa: Sự lượng tử hóa năng lượng trong nguyên tử làm cho nguyên tử có các mức năng lượng gián đoạn. Sự chuyển từ mức năng lượng này sang mức năng lượng khác phải xảy ra cùng với sự phát xạ ánh sáng. Một số loại chuyển trạng thái xảy ra và ảnh hưởng đến lượng năng lượng trong sự chuyển đó. Sự phát xạ tự phát và cưỡng bức có thể xảy ra do sự chuyển mức năng lượng. Nghịch đảo dân cư giữa các mức năng lượng phải thu được để khuếch đại sự phát bức xạ cưỡng bức.Nếu như nguyên tử hay phân tử nằm ở một trạng thái năng lượng cao hơn trạngthái thấp nhất, hay trạng thái cơ bản, nó có thể tự phát rơi xuống mức nănglượng thấp hơn mà không cần kích thích từ bên ngoài. Một kết quả có thể xảy racủa sự rơi làm giảm trạng thái năng lượng là giải phóng năng lượng dư thừa(bằng với sự chênh lệch giữa hai mức năng lượng) dưới dạng một photon ánhsáng. Nguyên tử hay phân tử kích thích có một thời gian phát xạ đặc trưng, đó làthời gian trung bình mà chúng vẫn giữ được trạng thái năng lượng kích thích caohơn trước khi rơi xuống mức năng lượng thấp hơn và phát ra photon. Thời gianphát xạ là một nhân tố quan trọng trong việc tạo ra phát xạ cưỡng bức, loại phátxạ thứ hai mà Einstein nêu ra.Còn ở trạng thái kích thích, nếu nguyên tử được rọi với photon đến có cùngnăng lượng chính xác như năng lượng mà sự chuyển trạng thái có thể xảy ra tựphát, nguyên tử có thể bị cưỡng bức bằng photon đến để quay trở lại trạng tháinăng lượng thấp hơn và đồng thời phát ra một photon có cùng năng lượngchuyển trạng thái. Một photon riêng lẻ tương tác với một nguyên tử bị kích thíchdo đó có thể tạo ra hai photon phát xạ. Nếu các photon phát xạ được xem làsóng, thì sự phát xạ cưỡng bức sẽ dao động cùng tần số với ánh sáng tới, vàcùng pha (kết hợp), kết quả là làm khuếch đại cường độ của ánh sáng ban đầu.Hình 3 minh họa sự phát xạ tự phát (a) và cưỡng bức (b) với hai sóng kết hợpnhư trường hợp thứ hai ở trên.
  • 5. Hình 3. Các quá trình tự phát và cưỡng bứcVấn đề quan trọng nhất trong việc thu được phát xạ laser cưỡng bức là dướinhững điều kiện cân bằng nhiệt động lực học bình thường, dân cư, hay sốnguyên tử hoặc phân tử ở mỗi mức năng lượng, không thuận lợi cho sự phát xạcưỡng bức. Do các nguyên tử và phân tử có xu hướng tự rơi xuống các mứcnăng lượng thấp hơn nên số nguyên tử hay phân tử ở mỗi mức sẽ giảm khinăng lượng tăng. Thật vậy, dưới những điều kiện bình thường, đối với một sựchuyển mức năng lượng ứng với một bước sóng quang điển hình (vào bậc 1electron-volt), tỉ số của số nguyên tử hay phân tử ở trạng thái năng lượng caohơn và số nguyên tử hay phân tử ở trạng thái cơ bản thấp hơn có lẽ là 10 17. Nóicách khác, hầu như tất cả các nguyên tử hay phân tử ở vào trạng thái cơ bảnđối với sự chuyển mức năng lượng ánh sáng khả kiến.Một lí do khiến sự phát xạ cưỡng bức khó thu được trở nên hiển nhiên khi xemxét các sự kiện có khả năng xảy ra quanh sự phân hủy của một electron từ mộttrạng thái kích thích với sự phát xạ ánh sáng sau đó và tự phát. Ánh sáng phátxạ có thể dễ dàng kích thích sự phát xạ từ các nguyên tử bị kích thích khác,nhưng một số cỏ thể gặp phải nguyên tử ở trạng thái cơ bản và bị hấp thụ chứkhông gây ra phát xạ (hình 3c). Do số nguyên tử ở trạng thái kích thích ít hơnnhiều so với số nguyên tử ở trạng thái cơ bản nên photon phát xạ có khả năng bịhấp thụ nhiều hơn, bù lại thì số phát xạ cưỡng bức cũng không đáng kể so vớiphát xạ tự phát (ở trạng thái cân bằng nhiệt động lực học).Cơ chế làm cho phát xạ cưỡng bức có thể lấn át là phải có số nguyên tử ở trạngthái kích thích nhiều hơn số nguyên tử ở trạng thái năng lượng thấp hơn, saocho các photon phát xạ có khả năng gây kích thích phát xạ nhiều hơn là bị hấpthụ. Do điều kiện này là nghịch đảo trạng thái cân bằng ban đầu nên nó được gọilà sự nghịch đảo dân cư. Miễn là có nhiều nguyên tử ở trạng thái năng lượngcao hơn so với ở trạng thái năng lượng thấp hơn, thì phát xạ cưỡng bức sẽ lấnát và ta thu được dòng thác photon. Photon phát xạ ban đầu sẽ kích thích sựphát xạ của nhiều photon hơn, những photon này sau đó lại kích thích sự phátxạ ra nhiều photon hơn nữa, và cứ thế tiếp diễn. Kết quả là dòng thác photon
  • 6. tăng lên, ánh sáng phát xạ được khuếch đại. Nếu sự nghịch đảo dân cư chấmdứt (dân cư ở trạng thái cơ bản trở nên lấn át) thì phát xạ tự phát sẽ trở lại làquá trình chủ yếu.Vào khoảng thời gian Einstein đề xuất ý tưởng, đa số các nhà vật lí tin rằng bấtcứ điều kiện nào không phải ở trạng thái cân bằng nhiệt động lực học đều khôngbền và không thể được duy trì liên tục. Mãi đến sau Thế chiến thứ hai, người tamới xem xét đến các phương pháp tạo ra sự nghịch đảo dân cư cần thiết để duytrì phát xạ cưỡng bức. Các nguyên tử và phân tử có thể chiếm giữ nhiều mứcnăng lượng, và mặc dù một số sự chuyển trạng thái có khả năng xảy ra hơn sovới một số sự chuyển trạng thái khác (do các quy luật của cơ học lượng tử và vìnhững lí do khác), nhưng sự chuyển trạng thái có thể xảy ra giữa bất kì hai mứcnăng lượng nào. Yêu cầu tối thiểu cho sự phát xạ cưỡng bức và khuếch đại, hayhoạt động laser, là ít nhất phải có một trạng thái năng lượng cao hơn có dân cưnhiều hơn một trạng thái năng lượng thấp hơn.Sự nghịch đảo dân cư có thể được tạo ra qua hai cơ chế cơ bản: hoặc là tạo radư thừa số nguyên tử hay phân tử ở một trạng thái năng lượng cao, hoặc là làmgiảm dân số ở một trạng thái năng lượng thấp. Cũng có thể chọn một hệ khôngbền ở mức năng lượng thấp, nhưng đối với hoạt động laser liên tục, phải chú ývừa làm tăng dân cư ở mức cao vừa làm giảm dân cư ở mức thấp. Nếu quánhiều nguyên tử hay phân tử tích tụ ở mức năng lượng thấp thì sự nghịch đảodân cư sẽ không còn và hoạt động laser dừng lại.Phương pháp thông dụng nhất tạo ra sự nghịch đảo dân cư trong môi trườnglaser là cấp thêm năng lượng cho hệ để kích thích các nguyên tử hay phân tửlên mức năng lượng cao. Cách cấp năng lượng đơn giản bằng cách dùng nhiệtkhuấy động môi trường không đủ (dưới điều kiện cân bằng nhiệt động lực học)để tạo ra sự nghịch đảo dân cư, do nhiệt chỉ làm tăng năng lượng trung bình củacác hạt, chứ không làm tăng số loại trạng thái kích thích tương đối so với trạngthái thấp. Tỉ số của số nguyên tử ở hai mức năng lượng (1 và 2) dưới trạng tháicân bằng nhiệt động lực học được cho bởi phương trình sau: N2/N1 = exp[- (E2 - E1) / kT]trong đó N1 và N2 tương ứng là số nguyên tử ở mức 1 và mức 2, E1 và E2 lànăng lượng của hai mức, k là hằng số Boltzmann, T là nhiệt độ kelvin. Như đãđược chỉ rõ trong phương trình, ở trạng thái cân bằng nhiệt động lực học, N 2 chỉcó thể lớn N1 nếu như nhiệt độ là một số âm. Trước khi nghiên cứu mô tả hoạtđộng maser và laser được công bố, các nhà vật lí thường xem sự nghịch đảodân cư là nhiệt độ âm, đó là từ chỉ những điều kiện không ở trạng thái cân bằngnhiệt động lực học không được mong đợi là sẽ được duy trì liên tục.Để tạo ra sự nghịch đảo dân cư cần thiết cho hoạt động laser, các nguyên tửhay phân tử phải bị kích thích có chọn lọc lên những mức năng lượng đặc biệt.Ánh sáng và dòng điện là cơ chế kích thích được chọn của đa số laser. Ánhsáng hoặc các electron có thể cung cấp năng lượng cần thiết để kích thích cácnguyên tử hay phân tử lên các mức năng lượng cao được chọn, và sự truyềnnăng lượng không đòi hỏi đưa các electron trực tiếp lên mức năng lượng caonào đó của sự chuyển trạng thái laser. Một số phương pháp khác có thể phức
  • 7. tạp hơn, nhưng chúng thường tạo ra hoạt động laser tốt hơn. Một phương phápthường được sử dụng là kích thích nguyên tử hay phân tử lên mức năng lượngcao hơn cần thiết, sau đó nó sẽ rơi xuống mức laser cao. Kiểu kích thích giántiếp có thể được sử dụng để kích thích các nguyên tử trong hỗn hợp khí xungquanh, sau đó chúng sẽ truyền năng lượng của chúng cho các nguyên tử hayphân tử đảm nhận việc tạo ra hoạt động laser. Hình 4. Biểu đồ năng lượng laser 3 mức và 4 mứcNhư đã nói tới ở phần trước, lượng thời gian mà một nguyên tử hay phân tử trải qua ởmột trạng thái kích thích là yếu tố quyết định trong việc xác định xem nó sẽ bị cưỡng bứcphát xạ và tham gia vào dòng thác photon, hay là sẽ mất đi năng lượng qua việc phát xạtự phát. Các trạng thái kích thích thường có thời gian sống chỉ vài nano giây trước khichúng giải phóng năng lượng của mình bằng phát xạ tự phát, một khoảng thời gian khôngđủ lâu để có thể chịu sự kích thích bởi một photon khác. Do đó, yêu cầu tối cần thiết chohoạt động laser là mức năng lượng cao phải có thời gian sống lâu hơn. Các trạng thái nhưvậy thật sự tồn tại trong những chất nhất định, và thường được gọi là trạng thái siêu bền(xem hình 4). Thời gian sống trung bình trước khi phát xạ tự phát xảy ra đối với trạngthái siêu bền là vào bậc micro giây đến mili giây, một khoảng thời gian khá dài ở thế giớinguyên tử. Với thời gian sống lâu này, các nguyên tử và phân tử bị kích thích có thể tạora một lượng đáng kể phát xạ cưỡng bức. Hoạt động laser chỉ xảy ra nếu như dân cư ởmức cao được tạo ra nhanh hơn sự phân hủy của nó, duy trì được dân cư ở mức cao nhiềuhơn ở mức thấp. Thời gian sống của phát xạ tự phát càng lâu thì nguyên tử hay phân tửcàng thích hợp cho các ứng dụng laser.Maser mà Charles Townes chứng minh trong bước tiến tới laser đầu tiên thật có ý nghĩa,vì nó yêu cầu tạo ra sự nghịch đảo dân cử để hoạt động, và do đó chứng minh với nhiềunhà vật lí còn hoài nghi rằng sự nghịch đảo dân cư như vậy là có thể thực hiện được. Hệcủa ông là maser hai mức, chỉ sử dụng các mức cao và thấp. Townes đã tiến hành mộtphương pháp mới lạ trong hệ nguyên tử amoniac của ông để tạo ra sự nghịch đảo dân cư– kĩ thuật chùm phân tử tách các phân tử amoniac bị kích thích khỏi các phân tử ở trạngthái cơ bản. Các phân tử ở trạng thái cơ bản bị loại bỏ, và các phân tử bị kích thích được
  • 8. tách ra thiết lập sự nghịch đảo dân cư cần thiết. Các phương pháp khác, hiệu quả hơn,hiện nay được phát triển cho maser và laser thực tế, yêu cầu sử dụng ba, bốn mức nănglượng hoặc nhiều hơn.Cấu trúc mức năng lượng thiết thực đơn giản nhất đối với hoạt động laser là hệ ba mức,được minh họa trong hình 4a. Trong hệ này, trạng thái cơ bản là mức laser thấp, và sựnghịch đảo dân cư có thể được tạo ra giữa mức này và một trạng thái siêu bền năng lượngcao hơn. Đa số các nguyên tử hay phân tử ban đầu bị kích thích lên trạng thái năng lượngcao có thời gian sống ngắn nhiều hơn lên mức siêu bền. Từ trạng thái này, chúng nhanhchóng phân hủy sang mức siêu bền trung gian, mức có thời gian sống dài hơn nhiều sovới trạng thái năng lượng cao (thường dài hơn cỡ 1000 lần). Do thời gian cư trú của mỗinguyên tử ở trạng thái siêu bền tương đối lâu, nên dân số có xu hướng tăng và đưa đến sựnghịch đảo dân cư giữa trạng thái siêu bền và trạng thái cơ bản thấp hơn (dân số giảmliên tục đối với mức cao nhất). Phát xạ cưỡng bức thu được từ thực tế số nguyên tử cósẵn ở trạng thái bị kích thích (siêu bền) nhiều hơn so với ở trạng thái thấp, trạng thái màsự hấp thụ ánh sáng có khả năng xảy ra nhất.Mặc dù laser ba mức hoạt động đối với mọi mục đích thực tế, như đã được minh chứngbằng laser đầu tiên của Maiman, nhưng có một số vấn đề đã hạn chế hiệu quả của phươngpháp này. Vấn đề trọng tâm xuất hiện do mức laser thấp là mức cơ bản, là trạng thái bìnhthường đối với đa số các nguyên tử hay phân tử. Để tạo ra sự nghịch đảo dân cư, phầnlớn electron ở trạng thái cơ bản phải được đưa lên mức năng lượng bị kích thích cao, đòihỏi phải cung cấp đáng kể năng lượng từ bên ngoài. Ngoài ra, sự nghịch đảo dân cư khócó thể duy trì trong một khoảng thời gian đáng kể, và do đó, laser ba mức hoạt động theokiểu xung chứ không liên tục.Laser sử dụng bốn mức năng lượng hay nhiều hơn tránh được một số vấn đề đềcập ở trên, và do đó được sử dụng phổ biến hơn. Hình 4b minh họa kịch bảnbốn mức năng lượng. Cấu trúc mức năng lượng tương tự như trong hệ ba mức,trừ vấn đề sau khi nguyên tử rơi từ mức cao nhất xuống trạng thái cao siêu bền,chúng không rơi hết xuống trạng thái cơ bản qua một bước. Do sự nghịch đảodân cư không được tạo ra giữa trạng thái cơ bản và mức cao, nên số nguyên tửhay phân tử phải được đưa lên đột ngột giảm xuống trong mô hình này. Trongmột hệ laser bốn mức điển hình, nếu chỉ 1 hoặc 2% số nguyên tử hay phân tửcư trú ở mức laser thấp (mức nằm trên trạng thái cơ bản) thì chỉ cần kích thích 2đến 4% trong tổng số nguyên tử hay phân tử lên mức cao là sẽ thu được sựnghịch đảo dân cư cần thiết. Một thuận lợi nữa của việc tách mức laser thấp khỏimức cơ bản là các nguyên tử mức thấp sẽ tự động rơi xuống trạng thái cơ bản.Nếu như mức laser thấp có thời gian sống ngắn hơn nhiều so với mức cao thìcác nguyên tử sẽ phân hủy sang mức cơ bản ở tốc độ đủ để tránh việc tích tụ ởmức laser thấp. Nhiều laser được thiết kế dưới những ràng buộc này có thể hoạtđộng theo mode liên tục tạo ra chùm tia không đứt quãng.
  • 9. Hình 5. Phát hiện maser vũ trụCác laser hoạt động thực tế thường phức tạp hơn mô hình mô tả ở trên. Mức laser caothường không phải là một mức đơn, mà là một nhóm mức năng lượng cho phép nănglượng kích thích cần thiết biến đổi trong một phạm vi rộng trong khi hoạt động. Mức thấpcũng gồm nhiều mức, và nếu mỗi mức cao gần nhau phân hủy sang một mức thấp khác,một laser có thể hoạt động ở nhiều sự chuyển trạng thái, tạo ra nhiều hơn một bước sóng.Ví dụ, laser helium-neon được dùng phổ biến nhất để phát ra bước sóng đỏ, nhưng nócũng có thể hoạt động ở những sự chuyển trạng thái khác để phát ra bức xạ cam, vàng,xanh lá và hồng ngoại. Nhiều nhân tố khác tồn tại trong việc thiết kế laser thực tế, nhưbản chất của môi trường hoạt tính. Hỗn hợp khí hay những kết hợp khác của các loạiphân tử thường được dùng để cải thiện hiệu quả bắt và truyền năng lượng, hoặc hỗ trợ sựgiảm dân số ở mức laser thấp.Trước khi có bằng chứng mang tính bước ngoặt chứng tỏ maser và laser thực sự có thểtạo ra được, các nhà khoa học đã thấy thực tế là maser xuất hiện trong tự nhiên tồn tạitrong không gian vũ trụ bên ngoài (hình 5). Ngay cả sau khi Einstein tiên đoán sự phát xạcưỡng bức, đa số các nhà vật lí vẫn tin rằng việc tạo ra sự nghịch đảo dân cư là quá khónên nó không thể xảy ra trong tự nhiên. Thực ra mà nói thì hình như các nhà khoa học đãkhông xem xét đúng đắn liệu vật chất có tồn tại trong tự nhiên ở trạng thái khác, ngoàitrạng thái cân bằng nhiệt động lực học hay không. Cái gọi là maser vũ trụ gồm các nguồnnhư các lớp vỏ khí bao bọc quanh các sao kềnh đỏ, sao chổi, tàn dư của sao siêu mới, vànhững đám mây phân tử đang hình thành sao khác. Trong đám mây khí bao quanh mộtngôi sao nóng, bức xạ phát ra từ ngôi sao có thể kích thích các phân tử khí lên các mứcnăng lượng cao, rồi phân hủy xuống trạng thái siêu bền. Chỉ cần tồn tại mức laser thấpthích hợp, sự nghịch đảo dân cư có thể xảy ra và sẽ thu được hoạt động laser. Mặc dù quátrình đó không giống với các maser và laser nhân tạo, và một lượng lớn năng lượng cóthể được phát ra, nhưng sự phát xạ của năng lượng maser hoặc laser sao không bị giớihạn trong một chùm. Bức xạ phát ra bởi maser vũ trụ truyền đi xa theo mọi hướng giốngnhư năng lượng phát ra từ đám mây khí nóng giống sao nào khác.Ngoài việc tạo ra sự nghịch đảo dân cư, cũng cần một vài nhân tố khác nữa để khuếch đạivà tập trung ánh sáng thành một chùm. Ánh sáng phát ra từ sự phát xạ cưỡng bức được
  • 10. tạo ra trong môi trường laser thường có một bước sóng riêng, nhưng phải được trích ra cóhiệu quả từ môi trường bằng một số cơ chế bao gồm sự khuếch đại. Công việc này đượchoàn thành trong một hộp cộng hưởng, nó phản xạ một số ánh sáng phát xạ trở lại môitrường laser, và qua nhiều lần tương tác, hình thành hay khuếch đại cường độ ánh sáng.Ví dụ, sau sự phát xạ cưỡng bức ban đầu, hai photon có cùng năng lượng và cùng phamỗi hạt có thể bắt gặp các nguyên tử bị kích thích, rồi thì sẽ phát ra nhiều photon hơn cócùng năng lượng và cùng pha. Số photon được tạo ra bởi phát xạ cưỡng bức tăng lênnhanh chóng, và sự tăng này tỉ lệ trực tiếp với khoảng cách mà ánh sáng truyền trong môitrường laser.Hình 6 minh họa sự thu lợi, hay khuếch đại, xảy ra với chiều dài đường truyền tăng lêntrong hộp cộng hưởng do các gương đặt ở hai đầu mang lại. Hình 6a cho thấy sự bắt đầucủa phát xạ cưỡng bức, ánh sáng được khuếch đại trong hình 6b đến hình 6g khi nó bịphản xạ từ các gương đặt ở hai đầu hộp. Một phần ánh sáng truyền xuyên qua gươngphản xạ một phần ở phía bên phải của hộp trong mỗi lần truyền (hình 6b, d và f). Cuốicùng, ở trạng thái cân bằng (hình 6h), hộp bão hòa bức xạ cưỡng bức.Mức độ khuếch đại thu được trong một laser, biểu diễn bằng thuật ngữ độ lợi,chỉ lượng phát xạ cưỡng bức mà một photon có thể tạo ra khi nó truyền đi mộtkhoảng cách cho trước. Ví dụ, độ lợi 1,5 /cm nghĩa là một photon sinh ra thêm1,5 photon nữa trên mỗi cm mà nó truyền đi. Hệ số khuếch đại này tăng lên theochiều dài đường truyền của hộp laser. Độ lợi thực tế phức tạp hơn nhiều, vàngoài những nhân tố khác, nó phụ thuộc vào những dao động trong sự phân bốdân cư giữa các mức năng lượng laser cao và thấp. Điều quan trọng là lượngkhuếch đại tăng rõ rệt với khoảng cách truyền trong môi trường laser. Hình 6. Sự phát xạ cưỡng bức trong hộp laser
  • 11. Trong laser có hộp cộng hưởng dọc, như thỏi ruby hay ống chứa đầy khí, ánh sáng truyềndọc theo chiều dài của môi trường laser làm phát sinh nhiều phát xạ cưỡng bức hơn ánhsáng truyền vuông góc với trục của hộp cộng hưởng. Do đó, sự phát xạ ánh sáng tậptrung dọc theo chiều dài của hộp, ngay cả khi không dùng gương để giới hạn đườngtruyền của nó theo hướng dọc. Việc đặt các gương ở hai đầu của hộp laser cho phépchùm tia truyền tới lui, làm tăng thêm sự khuếch đại do đường truyền qua môi trường dàihơn. Sự phản xạ nhiều lần cũng tạo ra chùm tập trung cao (một đặc trưng quan trọng củalaser), do chỉ có những photon truyền song song với thành hộp là bị phản xạ bởi haigương. Sự xắp xếp này được gọi là dao động tử, và nó cần thiết, vì đa số vật liệu laser cóđộ lợi rất thấp và sự khuếch đại đầy đủ chỉ có thể thu được với đường truyền dài qua môitrường.Đa số laser hiện nay được thiết kế có các gương ở cả hai đầu của hộp cộng hưởng để làmtăng quãng đường ánh sáng truyền trong môi trường laser. Cường độ phát xạ tăng lêntheo mỗi lượt truyền của ánh sáng cho tới khi nó đạt tới mức cân bằng, mức này do cấutạo hộp và gương thiết đặt. Một gương của hộp phản xạ gần như toàn bộ ánh sáng tới,còn gương kia (gương ra) phản xạ một số ánh sáng và truyền một phần ra ngoài dướidạng chùm laser. Trong một laser có độ lợi thấp, gương ra được chọn sao cho chỉ truyềnmột phần nhỏ ánh sáng ra ngoài (có lẽ chỉ vài phần trăm) và phản xạ đa phần ánh sáng trởlại hộp. Ở trạng thái cân bằng, công suất laser ở trong hộp cao hơn bên ngoài, và thay đổitheo phần trăm ánh sáng truyền qua gương ra. Bằng cách làm tăng hệ số truyền củagương ra, sự chênh lệch công suất giữa bên trong và bên ngoài hộp có thể được làm giảmxuống. Tuy nhiên, chỉ cần gương ra phản xạ một số phần ánh sáng trở lại hộp, công suấtở bên trong vẫn cao hơn bên ngoài trong chùm tia xuất hiện.Một nhận thức sai lầm về laser là ý tưởng cho rằng tất cả ánh sáng phát xạ bị phản xạ tớilui trong hộp cho tới khi cường độ của nó đạt tới giới hạn, rồi thì một số “thoát ra” ngoàiqua gương ra dưới dạng chùm tia. Trong thực tế, gương ra luôn luôn truyền một phầnkhông đổi ánh sáng dưới dạng chùm, phản xạ phần còn lại trở vào hộp. Chức năng nàyquan trọng trong việc cho phép laser đạt tới trạng thái cân bằng, với các mức công suấtlaser cả bên trong lẫn bên ngoài đều trở nên không đổi.Vì trong thực tế ánh sáng dao động tới lui trong hộp laser, nên hiện tượng cộng hưởng trởthành một nhân tố ảnh hưởng tới việc khuếch đại cường độ laser. Phụ thuộc vào bướcsóng của bức xạ cưỡng bức và chiều dài hộp, sóng phản xạ từ các gương sẽ hoặc là giaothoa tăng cường và được khuếch đại mạnh, hoặc là giao thoa triệt tiêu và xóa bỏ hoạtđộng laser. Vì các sóng trong hộp là kết hợp hoàn toàn cùng pha, chũng sẽ vẫn là cùngpha khi phản xạ từ một gương. Các sóng cũng sẽ cùng pha khi chạm tới gương đối diện,với điều kiện là chiều dài hộp bằng một số nguyên lần bước sóng. Như vậy, sau khi thựchiện một dao động hoàn chỉnh trong hộp, sóng ánh sáng đã truyền được quãng đườngbằng hai lần chiều dài hộp. Nếu khoảng cách đó là một bội số nguyên của bước sóng, thìcác sóng sẽ tăng thêm biên độ bởi sự giao thoa tăng cường. Khi chiều dài hộp khôngchính xác là bội số nguyên của bước sóng, giao thoa triệt tiêu sẽ xảy ra, phá hủy hoạt
  • 12. động laser. Phương trình sau đây xác định điều kiện cộng hưởng phải có để sự khuếch đạimạnh xảy ra trong hộp laser: N x = 2 x (chiều dài hộp)trong đó N là một số nguyên, và là bước sóng. Điều kiện cộng hưởng thậtra không quan trọng vì những sự chuyển trạng thái laser thực tế tronghộp phân bổ trong một phạm vi bước sóng, gọi là dải thông độ lợi.Bước sóng của ánh sáng cực kì nhỏ so với chiều dài của một hộp laserđiển hình, và nói chung một quãng đường truyền hoàn chỉnh trong hộpsẽ tương đương với vài trăm ngàn bước sóng ánh sáng được khuếchđại. Cộng hưởng có thể xảy ra ở mỗi số gia bước sóng nguyên (ví dụ200 000, 200 001, 200 002,...), và do bước sóng tương ứng rất gầnnhau, chúng rơi trong dải thông độ lợi của laser. Hình 7 minh họa mộtví dụ điển hình, trong đó một vài giá trị cộng hưởng của N, thườngđược gọi là mode dọc của laser, vừa khít trong dải thông độ lợi. Hình 7. Mode cộng hưởng hộp và dải thông độ lợiCác chùm laser có những đặc điểm chung nhất định, nhưng cũng khác nhau ở mức độrộng các khía cạnh như kích thước, sự phân kì, và sự phân bố ánh sáng qua đường kínhchùm tia. Những đặc điểm này phụ thuộc nhiều vào việc thiết kế hộp laser (hộp cộnghưởng), và hệ thống quang học điều khiển chùm tia, cả bên trong lẫn bên ngoài hộp. Mặcdù laser có thể tạo ra một đốm sáng không đổi khi chiếu lên một bề mặt, nhưng nếu đocường độ sáng tại những điểm khác nhau trong tiết diện ngang của chùm, thì sẽ thấy sựkhác nhau về cường độ. Việc thiết kế hộp cộng hưởng cũng ảnh hưởng tới độ phân kìchùm tia, số đo mức độ trải rộng của chùm tia khi khoảng cách tới laser tăng lên. Gócphân kì của chùm tia là một nhân tố quan trọng trong việc tính toán đường kính của chùmtia tại một khoảng cách cho trước.Trong nhiều phần thảo luận trước, chúng ta đã giả định các gương tại hai đầu của hộpcộng hưởng laser là gương hai chiều, hay gương phẳng. Về mặt khái niệm thì đây là mộtcấu hình đơn giản nhất, nhưng trong thực tế nó có thể rất khó được thực hiện. Nếu haigương không thẳng hàng chính xác với nhau, thì sự mất ánh sáng dư thừa sẽ xảy ra, làmcho laser ngừng hoạt động. Ngay cả khi sự không thẳng hàng chỉ ở mức độ nhỏ, sau mộtvài phản xạ liên tiếp, kết quả có thể là sự thất thoát đáng kể ánh sáng từ các mặt của hộp.Nếu một hoặc cả hai gương có bề mặt cầu, thì sự thất thoát ánh sáng do sự không thẳng
  • 13. hàng có thể giảm bớt hoặc bị loại trừ. Do tính hội tụ của gương cầu, ánh sáng bị giới hạntrong hộp ngay cả khi các gương không chính xác thẳng hàng với nhau, hoặc nếu ánhsáng không được phát ra chính xác dọc theo trục của hộp. Có một số biến tấu thiết kế sửdụng kết hợp cả gương phẳng và gương cầu để đảm bảo ánh sáng luôn luôn hội tụ trở lạiphía gương đối diện. Một cấu hình thuộc loại này có tên là hộp cộng hưởng bền, do ánhsáng phản xạ từ một gương đi tới gương kia sẽ tiếp tục dao động mãi mãi nếu như khôngcó ánh sáng nào bị thất thoát.Trong môi trường laser có độ lợi thấp, hộp cộng hưởng rất quan trọng trong việc tối đahóa việc sử dụng bức xạ cưỡng bức. Trong laser độ lợi cao, sự mất mát mức thấp từ cácmặt của hộp không có tính quyết định. Thật ra, các thiết kế hộp cộng hưởng không bền cóthể được ưa chuộng hơn vì chúng thường dễ thu năng lượng từ một thể tích lớn hơn trongmôi trường laser, mặc dù chúng cho phép ánh sáng thất thoát. Các gương trong laser độlợi cao thường thường trong suốt hơn các gương trong laser có độ lợi thấp hơn, cho nênmột tia sáng cho trước chỉ có thể truyền một lần qua hộp trước khi xuất hiện trong chùmtia. Do đó, sự sắp thẳng hàng của các gương không có tính quyết định như trong laser độlợi thấp, nơi mà hệ số phản xạ của gương ra làm cho ánh sáng phản xạ nhiều lần trước khixuất hiện ra ngoài.Chiều dài hộp laser và bước sóng ánh sáng tác động lẫn nhau để tạo ra mode dọc của sựphân bố năng lượng trong chùm tia, còn thiết kế hộp cộng hưởng là một nhân tố then chốttrong việc xác định sự phân bố cường độ theo chiều rộng của chùm tia, và tỉ lệ mà chùmtia phân kì. Cường độ cắt ngang chùm tia được xác định bằng mode ngang của chùm.Những phân bố có khả năng trong cường độ chùm tia được giới hạn bởi cái gọi là cácđiều kiện biên nhất định, nhưng thường thì một chùm tia biểu hiện một, hai, hoặc hơn haiđỉnh ở giữa, với cường độ không ở các rìa ngoài. Các mode khác nhau này được gọi làmode TEM(mn), viết tắt của các từ mode ngang (Tranverse), mode điện (Electric) vàmode từ (Magnetic), trong đó m và n là các số nguyên. Các số nguyên cho biết số cựctiểu, hay số điểm cường độ bằng không, giữa các rìa của chùm theo hai hướng vuông gócnhau (m cho mode E và n cho mode M).Một chùm laser điển hình sáng nhất tại trung tâm và giảm dần cường độ về phíangoài rìa. Đây là mode bậc nhất đơn giản nhất, kí hiệu là TEM(00) và có cườngđộ cắt ngang chùm tuân theo hàm Gauss. Hình 8 minh họa một vài trong sốnhiều mode TEM(mn) khả dĩ. Mặc dù một số laser hộp cộng hưởng bền, đặc biệtlà những laser được thiết kế cho công suất ra cực đại, hoạt động ở một hoặcnhiều mode bậc cao, nhưng người ta thường muốn loại bỏ những dao động này.Mode bậc nhất có thể thu được dễ dàng trong các laser độ lợi thấp hộp cộnghưởng bền, và là mode được ưa chuộng vì chùm tia trải rộng do sự nhiễu xạ cóthể tiến đến một giá trị cực tiểu lí thuyết.
  • 14. Hình 8. Mode ngang của chùm laserNhiễu xạ đóng một vai trò quan trọng trong việc xác định kích thước của đốm laser cóthể chiếu tới một khoảng cách cho trước. Dao động của chùm tia trong hộp cộng hưởngtạo ra một chùm hẹp sau đó phân kì ở một số góc phụ thuộc vào thiết kế hộp cộng hưởng,kích thước của lỗ hở ra, và gây ra các hiệu ứng nhiễu xạ trên chùm tia. Sự nhiễu xạthường được mô tả là hiệu ứng trải rộng chùm tia, hình thành nên các vòng nhiễu xạ (gọilà vòng Airy) bao quanh chùm tia khi sóng ánh sáng truyền qua một lỗ nhỏ. Hiện tượngnhiễu xạ này đặt ra giới hạn về đường kính tối thiểu của đốm sáng sau khi truyền qua mộthệ quang học. Đối với laser, chùm trải rộng từ gương ra có thể được xem là qua một lỗnhỏ, và hiệu ứng nhiễu xạ trên chùm tia do gương gây ra sẽ giới hạn độ phân kì tối thiểuvà kích thước đốm sáng của chùm. Đối với các chùm mode TEM(00), nhiễu xạ thường lànhân tố giới hạn sự phân kì của chùm. Giá trị danh nghĩa của sự phân kì chùm tia đượccho bởi mối quan hệ đơn giản sau: Độ phân kì (radian) = Hằng số x Bước sóng / Đường kính chùm tiaNếu chùm tia laser truyền qua một hệ quang học, giá trị đường kính thích hợp trongphương trình trên là đường kính của thành phần cuối mà chùm tia truyền qua. Hằng sốtrong phương trình phụ thuộc vào sự phân bố cường độ trong chùm, và có giá trị rất gầnthống nhất với nhau. Mỗi quan hệ rõ ràng cho thấy độ phân kì chùm tia tăng theo bướcsóng, và giảm khi đường kính chùm (hoặc thấu kính ra) tăng. Nói cách khác, đường kínhchùm càng nhỏ thì chùm càng bị phân kì nhiều và càng trải rộng ra theo khoảng cách sovới chùm lớn.Giá trị của độ phân kì chùm tia đối với một laser cho trước có thể có ý nghĩa thực hànhrất lớn. Laser helium-neon và laser bán dẫn trở thành những công cụ chuẩn trong lĩnh vựctrắc địa. Người ta gởi một xung laser nhanh tới một gương phản xạ góc đặt tại nơi cần lậpbản đồ, và độ trễ của xung laser phản xạ lại có thể được đo chính xác để thu được khoảng
  • 15. cách tới nơi đặt laser. Trên những khoảng cách ngắn thông thường, độ phân kì chùm tiakhông phải là vấn đề quan trọng, những đối với những phép đo khoảng cách xa, sự phânkì quá mức có thể làm giảm cường độ chùm tia phản xạ, và cản trở việc đo đạc. Các nhàdu hành người Mĩ trên sứ mệnh Apollo 11 và Apollo 14 đã đặt một cái gương phản xạgóc trên Mặt Trăng, nó sẽ phản xạ ánh sáng từ một laser ruby xung công suất lớn đặt tạiđài quan sát MacDonald, ở Texas. Mặc dù chùm tia trải ra trong bán kính 3km trên bềmặt Mặt Trăng, ánh sáng phản xạ vẫn có cường độ đủ mạnh để thu nhận được trên TráiĐất. Khoảng cách từ Mặt Trăng đến đài quan sát Texas được đo với độ chính xác 15cmtrong thí nghiệm này, nhưng kể từ thập niên 1980, những tiến bộ kĩ thuật đã tăng độchính xác lên dưới 2cm. Những cố gắng hiện nay đang được thực hiện sử dụng các kínhthiên văn công suất lớn để truyền và nhận các xung ánh sáng từ một vài gương phản xạđặt trên Mặt Trăng để làm giảm hơn nữa sai số đo, có thể chỉ khoảng 1mm.Do cơ chế tạo ra hoạt động laser liên quan tới việc làm tăng số nguyên tử hay phân tử lêntrạng thái kích thích cao nhằm tạo ra sự nghịch đảo dân cư cần thiết, nên hiển nhiên mộtsố dạng năng lượng phải được đưa vào hệ laser. Các photon có thể được áp dụng để cungcấp năng lượng cần thiết trong một quá trình gọi là bơm quang học. Bằng cách chiếu sángvật liệu laser với ánh sáng có bước sóng thích hợp, nguyên tử hay phân tử phát xạ có thểđược đưa lên mức năng lượng cao, từ đó nó rơi xuống mức siêu bền, và rồi bị cưỡng bứcphát xạ ra ánh sáng. Thật may mắn, trong đa số laser, ánh sáng dùng để bơm không nhấtthiết phải có bước sóng đặc biệt, chủ yếu do laser có thể có nhiều mức cao có thể phânhủy hoàn toàn xuống mức siêu bền. Do đó, một nguồn ánh sáng không đắt tiền phát ramột ngưỡng rộng bước sóng, như đèn nóng sáng hay đèn flash, thường có thể được dùnglàm bơm quang học cho laser. Một nhân tố quan trọng giới hạn hiệu suất laser là photoncủa ánh sáng bơm phải có năng lượng cao (hay có bước sóng ngắn hơn) so với ánh sánglaser.Bơm điện là một cơ chế kích thích khác thường được dùng trong laser khí và laser bándẫn. Trong laser khí, dòng điện truyền qua chất khí kích thích các nguyên tử và phân tửvào mức năng lượng cao cần thiết để bắt đầu phân hủy, hoặc phân hủy một loạt, tạo raphát xạ laser. Một số laser khí dẫn một dòng không đổi qua chất khí để tạo sự phát ralaser liên tục, còn những laser dùng xung điện thì tạo ánh sáng laser ra dạng xung. Một sốlaser công suất lớn còn sử dụng chùm electron đưa trực tiếp vào chất khí để kích thích.Laser bán dẫn hoạt động theo kiểu rất khác, nhưng cũng dựa trên dòng điện để tạo ra sựnghịch đảo dân cư cần thiết. Trong những dụng cụ này, sự nghịch đảo được tạo ra giữadân cư của các hạt mang điện (electron và cặp electron-lỗ trống) trong mặt phẳng tiếpgiáp giữa các vùng chất bán dẫn khác nhau. Sự phát xạ ánh sáng trong laser bán dẫn tậptrung trong mặt phẳng tiếp giáp bởi sự phản hồi từ các đầu chẻ của tinh thể (hình 9). Vậtliệu lát mỏng có hệ số phản xạ cao, và phản xạ đủ ánh sáng trở lại tinh thể để thu được độlợi. Bề mặt chẻ cũng có thể được đánh bóng để điều chỉnh hệ số phản xạ. Đầu chẻ điểnhình của tinh thể được phủ một vật liệu phản xạ sao cho sự phát xạ chỉ có thể xảy ra ởmột đầu, như được minh họa trên hình 9. Điện thế và dòng điện cần thiết trong laser bándẫn thấp hơn nhiều so với laser khí.
  • 16. Hình 9. Diode laser bán dẫnCác dạng truyền năng lượng khác ít được sử dụng hơn để tạo ra sự chuyển trạng thái lasermạnh. Các phản ứng hạt nhân và hóa học có thể được dùng để tạo ra sự kích thích trongmột số loại laser. Các laser khí có thể dùng những hỗn hợp khí khác nhau để thực hiệnquá trình laser. Trong laser helium-neon, các nguyên tử helium bắt năng lượng từ sựphóng điện khí do một dòng điện vào gây ra, rồi truyền sang các mức năng lượng rất gầnnhau tồn tại trong khí neon. Sau đó sự chuyển trạng thái laser xảy ra trong khí neon đểtạo ra phát xạ laser.Laser vốn dĩ không hiệu quả. Năng lượng phải được cung cấp cho laser, và một số bị thấtthoát trong quá trình biến đổi sang loại năng lượng có trật tự cao hơn là dạng ánh sánglaser. Như đã nói ở phần trên, đối với laser bơm quang học, ánh sáng laser ra luôn luôncó bước sóng dài hơn bước sóng ánh sáng bơm. Những mất mát năng lượng khác xảy ratrong các quá trình chuyển mức năng lượng xảy ra trong laser ba mức và bốn mức. Saukích thích ban đầu lên mức cao, sự chuyển trạng thái laser tự nó chỉ có thể giải phóngmột phần năng lượng đó, đáng nói là phần còn lại bị mất trong những quá trình khác.Trong một số hệ thống, với sự chuyển trạng thái laser năng lượng cao, đa phần nănglượng được dùng chỉ để đưa các loại laser lên mức thích hợp, nằm trên trạng thái cơ bản.Quá trình kích thích, dù bằng phương pháp điện hay phương pháp quang, không có hiệusuất 100% - và năng lượng chưa bao giờ được hấp thụ hoàn toàn bởi môi trường laser.Tất cả những nhân tố chính này, và một số nhân tố thứ yếu không nói đến ở đây, thật sựgiới hạn hiệu suất tổng thể của laser. Mặc dù những laser bán dẫn hiệu quả nhất và mộtsố laser khí có thể biến đổi gần 10% năng lượng vào thành ánh sáng laser, nhưng laserđiển hình có hiệu suất chỉ cỡ 1% hoặc thấp hơn.Trong vài thập kỉ kể từ thập niên 1960, laser đã không còn là một ý tưởng khoa học viễntưởng, một vật hiếm trong phòng nghiên cứu, một thứ đắt tiền nữa, mà là một công cụquý giá trong những ứng dụng khoa học nhất định, nó trở thành một vật thiết yếu trongcông việc hàng ngày, và thông dụng đến mức có thể mua ở những cửa hàng tạp hóa, cóngười dùng nó đo kích thước phòng ở để dán giấy lên tường. Bất kì danh sách nào điểmlại những thành tựu công nghệ chủ yếu của thế kỉ 20 cũng có tên laser nằm ở phần trênđầu. Sự thâm nhập của laser vào mọi mặt đời sống hiện nay có thể được đánh giá đúng
  • 17. nhất bằng phạm vi ứng dụng của công nghệ laser. Ở một phía ngoạn mục của phạm vinày là những ứng dụng trong quân sự, kể cả việc sử dụng laser làm vũ khí chống lại sựtấn công bằng tên lửa. Ở một phạm vi khác là những hoạt động thường nhật như nghenhạc trên đĩa CD, và in ấn hoặc in sao các văn bản giấy. Các thanh laser được bán hàngtrăm đô la mỗi thanh được xem là những món phụ tùng không đắt tiền, cả người thợ mộccũng sử dụng laser, và những dụng cụ đo đạc đơn giản cũng có gắn laser.Vừa kì lạ vừa bình dị, laser được sử dụng rộng rãi trong điều trị y khoa và phẫu thuật, vàtrong việc cắt và hàn các giàn khung bằng thép, cao su, và plastic dùng trong xưởng chếtạo ô tô và dụng cụ. Nhiệt từ laser được dùng để hàn điểm các kim loại, và trong các thủthuật y khoa tinh vi như dán lại võng mạc sau khi mổ tách ra trong kĩ thuật phẩu thuậtmắt người. Những thủ thuật y khoa chính xác cao khác như sửa chữa các mạch máuhỏng, cắt và đốt cháy mô, thường sử dụng laser. Phần lớn mạng viễn thông trên thế giớiđược truyền dẫn bằng việc gởi những tín hiệu laser dạng xung đi hàng dặm đường trongcác sợi cáp quang, và những đồ tạo tác mang ý nghĩa văn hóa, như những bức tranh thờicổ đại, thường được thẩm định sự rạn nứt, hỏng hóc và phục hồi với sự hỗ trợ của laser.Cùng với máy tính điện tử, mạch tích hợp, và vệ tinh nhân tạo, công nghệ laser phát triểnngày càng trở nên quan trọng trong cuộc sống hàng ngày của chúng ta, biến những giấcmơ nhiều năm trước đây của loài người thành sự thật.