• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
A holistic lexicon based approach to opinion mining
 

A holistic lexicon based approach to opinion mining

on

  • 984 views

 

Statistics

Views

Total Views
984
Views on SlideShare
984
Embed Views
0

Actions

Likes
0
Downloads
25
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    A holistic lexicon based approach to opinion mining A holistic lexicon based approach to opinion mining Presentation Transcript

    • Xiaowen Ding, Bing Liu and Philip YuPresenter: Quang NguyenDate: 2010.10.18Saltlux Vietnam Development Center
    •  Featured-based Opinion Mining Tasks Task 1: Identify and extract object features F that have been commented on by an opinion holder (e.g., a reviewer). Task 2: Determine whether the opinions on the features F are positive, negative or neutral. Task 3: Group feature synonyms. • Produce a feature-based opinion summary of multiple reviews. This paper focuses on Task 2 assuming that features have been discovered 2
    •  Opinion Words • Positive: beautiful, wonderful, good, amazing, • Negative: bad, poor, terrible, cost someone an arm and a leg (idiom). One effective approach is to use opinion lexicon, opinion words. • Identify all opinion words in a sentence • Aggregate these words to give the final opinion to each feature. 3
    •  Dictionary-based approaches • Start from a seed opinion words • Use Wordnet’s hierarchy and synsets to acquire more opinion words Corpus-based approaches: extract opinion words from large corpora using syntactic rules and co-occurrence patterns Do not deal well with context dependent words! 4
    •  Improve lexicon-based approaches using context dependent opinion words • Negative: “The bedroom is very small” • Positive: “The Nokia N3100 is so small as to be put in any pockets” Propose a function for aggregating multiple opinion words in the same sentence Consider explicit and implicit opinions 5
    •  Intra-sentence conjunction rule Pseudo intra-sentence conjunction Inter-sentence conjunction rule 6
    •  Opinion on both sides of “and” should be the same • E.g., “This camera takes great pictures and has a long battery life”. Not likely to say: • “This camera takes great pictures and has a short battery life.” 7
    •  Sometimes, one may not use an explicit conjunction “and”. • Same opinion in same sentence, unless there is a “but”-like clause • E.g., “The camera has a long battery life, which is great” 8
    •  Peopleusually express the same opinion across sentences • unless there is an indication of opinion change using words such as “but” and “however” • E.g., “The picture quality is amazing. The battery life is long” Not so natural to say: • “The picture quality is amazing. The battery life is short” 9
    •  Opinion lexicon is far from sufficient. It needs special handling: • Negation/But Rule • Non-negation contains negative word, e.g., “I like this camera not just because it is beautiful” • Not contrary, but has a “but”, e.g., ““I not only like the picture quality of this camera, but also its size” • … 10
    •  Implicit Feature is determined through adjectives (implicit feature indicator) • E.g., “This camera is very small” “small” is indicator for “size” • E.g., “This camera is very heavy” • “heavy” is indicator for “weight” 11
    •  An object O is an entity which can be a product, person, event, organization, or topic An object O is represented with a finite set of features, F = {f1, f2, …, fn}. • Each feature fi in F can be expressed with a finite set of words or phrases Wi, which are synonyms. Model of a review: An opinion holder j comments on a subset of the features Sj F of object O. • For each feature fk Sj that j comments on, he/she  chooses a word or phrase from Wk to describe the feature, and  expresses a positive, negative or neutral opinion on fk. 12
    •  Input: a pair (f, s), where f is a product feature and s is a sentence that contains f. Output: whether the opinion on f in s is pos, neg, or neut. wi: opinion word V: set of all opinion words dis(wi, f): distance between wi and f SO: semantic orientation of wi (+1, -1, 0) 13
    • 14
    • 15
    • Precision Recall F-ScoreFBS(M. Hu and B. Liu. Mining and 0.93 0.76 0.83summarizing customerreviews. KDD’04, 2004)OPINE(A-M. Popescu and O. Etzioni.Extracting Product Features 0.86 0.89 0.87and Opinions from Reviews. EMNLP-05, 2005.)Opinion Observer 0.92 0.91 0.91(this paper) 16
    •  Xiaowen Ding, Bing Liu, and Philip S. Yu, A Holistic Lexicon-Based Approach to Opinion Mining, Proceedings of the international conference on Web search and web data mining, USA, 2008 17
    • 18