• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content

Loading…

Flash Player 9 (or above) is needed to view presentations.
We have detected that you do not have it on your computer. To install it, go here.

Like this document? Why not share!

System Engineering ISO 15288 Supported by PLM

on

  • 1,361 views

This White Paper is about Systems Engineering, the ISO 15288 standard and the PLM support

This White Paper is about Systems Engineering, the ISO 15288 standard and the PLM support

Statistics

Views

Total Views
1,361
Views on SlideShare
1,356
Embed Views
5

Actions

Likes
0
Downloads
29
Comments
0

1 Embed 5

http://www.linkedin.com 5

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    System Engineering ISO 15288 Supported by PLM System Engineering ISO 15288 Supported by PLM Document Transcript

    • ISO 15288 - System Engineering Supported by PLM White Paper October 2010 Copyright 2010 – InsidePLM GmbH October 2010 -3
    • Table of Contents Introduction......................................................................................................................... 3 What is a System and System Engineering? ........................................................................ 3 What is PLM......................................................................................................................... 3 ISO/IEC 15288 ...................................................................................................................... 4 PLM Capabilities .................................................................................................................. 4 ISO 15288 enabled by PLM.................................................................................................. 5 Aligning Processes with ISO 15288...................................................................................... 6 Company Challenges ........................................................................................................... 6 Copyright 2010 – InsidePLM GmbH October 2010 -3
    • Introduction System Engineering is a standard based (ISO 15288) framework to support the development of complex and safety critical products and integrates the validation and verification processes to assure that the product complies to a set of defined and agreed requirements. PLM is an all-encompassing approach for innovation, new product development and introduction and ‘product information’ management, from idea to end of life. PLM is capable to support the System Engineering processes and makes compliance to the standard ‘easier’. The business challenges how PLM can potentially support this, is subject of this White Paper. What is a System and System Engineering? Systems engineering (SE) is an interdisciplinary, cross-functional set of processes ensuring that a customer’s needs are satisfied throughout a system’s entire life cycle. A system can be broadly defined as an integrated set of elements that accomplish a defined ‘product’ purpose. People from different engineering disciplines have different perspectives of what a ‘system’ is. For example, software engineers often refer to an integrated set of computer programs as a ‘system’. Electrical engineers might refer to complex integrated circuits or an integrated set of electrical units as a ‘system’. For a mechanical engineer a ‘system’ may be a set of reusable product modules. So, a ‘system’ depends on one’s perspective or ‘product’ view. System engineering is concerned with effective requirements engineering, system/solution design, testing, production, installation, training, operations, maintenance, refinement, retirement, and ultimate disposal. System Engineering principles apply to several industries, however the extent and depth varies. Typically industries that engineer and produce products that require major capital investment, comprise specific safety attributes to develop, but also to prepare for ‘ownership’, requires a System Engineering approach. Also products that require several disciplines to collaborate in the product development, for example mechanical engineers, electrical engineers, civil engineers, production engineers, software engineers, reliability engineers etc. require a system engineering approach to assure that ‘customer’ requirements are met by each discipline and that the product produced and/or constructed conforms to what has been agreed. What is PLM Product lifecycle management or PLM is an all-encompassing approach for innovation, new product development and introduction and product information management, from idea to end of life. With product we may refer to mechanical, electrical or software Copyright 2010 – InsidePLM GmbH October 2010 -3
    • products. PLM is an enabling technology that integrates organisations/people, data, processes, and business systems and provide a backbone for product information management for companies and the partners that collaborate developing, sustaining, or using these products. ISO/IEC 15288 The ISO/IEC 15288 is a Systems Engineering standard covering processes and life cycle stages. Its development has a long history. The standard defines high level processes divided into four categories: Technical processes, Project processes, Agreement processes, and Enterprise processes. Each description contains a purpose, outcomes, and activities. Example lifecycle stages described in the standard are: concept, development, production, utilisation, support, and retirement. The standard states that: Each life cycle process can be invoked, as required, at any time throughout the lifecycle and there is no definitive order in their use. And further: This International Standard is intended neither to be in conflict with any organization’s policies, procedures, and standards nor with any National laws and regulations. However, any such conflict needs to be resolved before using this International Standard. The standard may be used in one or more of the following modes:  A way of working by an organisation to establish an environment of ‘desired’ processes.  For a project , within an organization.  Between a buyer and a supplier, via an agreement. As stated earlier, different industries may adopt the SE principles, its applicability is industry wide. The standard is not specific on how industries should adapt their processes. The standard has generic applicability and has been through many iterations during the lifecycle of its development and it is still being developed. In addition, the standard does not mandate the life cycle processes in terms of methods or procedures required to meet the objectives and requirements ....(conformance to the standard). There are three levels of conformance: Full, Tailored or Conformance according to an Agreement of Project. PLM Capabilities Parallel to the standard development, PDM emerged. Over the last decade many capabilities were developed and these gradually became part of PLM. There are several PLM vendors and each vendor has developed the PLM capabilities from different angles. There is no ‘standard’ list of capabilities and neither is there a standard regarding the minimum functionality that a potential buyer could expect from these capabilities. As a matter of fact, it is rather difficult to compare PLM capabilities from different Vendors. Copyright 2010 – InsidePLM GmbH October 2010 -3
    • That said, the core capabilities, e.g. access and change control, workflow, etc. - are mostly similar. The main differences are in the range of applications and the market they are targeted for. These issues are compounded by the ‘mergers & acquisitions’ of merged earlier capability versions and the acquisition of additional capabilities. PLM capabilities in focus are obviously the various CAx applications and in addition, there is requirement management, risk management (Programme, FMEA, fault tree), the product functional, physical and the installation decomposition (work breakdown structure), project management (Stage-Gate), task management, change and configuration management and finally workflows supporting the verification process. How these functions are deployed is focus of InsidePLM’s PLM Success Planning approach. There are basically two types of PLM offerings. Those supporting the ‘design’ process and those supporting collaborative development and interaction with stakeholders. Companies that are in the process to select a PLM vendor requires careful analysis to avoid costly mistakes For example the Siemens PLM (part of Siemens Industrial Automation and formally UGS), Teamcenter Engineering originated as Unigraphic’s iMAN (design process), while their Teamcenter Enterprise (collaborative development) originated as Metaphase from SDRC which in turn was acquired from Metaphase. Another example is Dassault’s Enovia and MatrixOne and further Oracle’s acquisition of Agile PLM and Eigner PLM. How different PLM capabilities are merged is not straight forward because they followed different development paths. What core capabilities will become the ‘base’ is unclear also given that there is no PLM ‘standard’.. ISO 15288 enabled by PLM PLM is a critical enabler to make ISO 15288 adoption ‘easier’. As PLM is a generic industry concept with applicability to many industries, the same as with ISO 15288, how companies adopt these PLM capabilities (see section PLM capabilities) is driven by business value, i.e. fix those processes that hurts most realizing your ISO 15288 business objectives. As the industry tend to adopt a business model: Design anywhere, build anywhere, this enforces the need for greater collaboration. The PLM adoption rate across the industry is high, and one could say that, PLM has reached a certain market maturity and may have reached the ‘late majority’ phase of firms adopting the PLM concept. As these companies acquire these PLM capabilities from different vendors and aim to collaborate across the product lifecycle, the data exchange realities are very challenging. This is further compounded by non-PLM applications, home grown applications, portals etc. playing an important role. Interoperability is a major challenge and again this is compounded by the need for ‘one version of the truth’ regarding what has been exchanged. Note that collating information from different sources in not the same as creating a coherent and consistent set that is ‘fit for purpose’. For example Business Intelligence solutions display information to a user, but that information may not be consistent – i.e. how it is ‘connected’ and how any duplication is verified and resolved. Copyright 2010 – InsidePLM GmbH October 2010 -3
    • There have been attempts to formulate a standards for data exchange between PLM capabilities, some are successful and some are not. Some PLM vendors claim to be ‘compliant’ where others depend literally on ‘system integrators’ and/or ‘partners’. As a general rule much of this ‘plumbing’ to ‘join’ PLM capabilities to other systems falls on the owner. The adoption rate of ISO 12588 and other standards to date with or without PLM does not reflect the effort and hours that were spent, defining the standard. It is not likely that this will change in the years to come. Some companies, and the ISO 12588 does not inhibit this, combine additional process functions. For example the German ‘V’-Model, which has international recognition. The logical flow of the “V” model is strong and it further provides more explicit examples how specific disciplines are supported by robust methods executing SE planning, conducting ‘trade’ studies, exercising integrated risk management, mandated configuration management at specific points in time and also technical performance measures, conducting efficient and effective reviews points, and finally having strong decision analysis. Companies may want to consider (and integrate) this model as programme partners may have done the same. Aligning Processes with ISO 15288 As with adoption of the ‘standards’ in PLM, the same applies to company processes. Many companies struggle regarding the level of accuracy of the documented processes and also how to optimize these. With non up-to-date process documentation it is more difficult to re-engineer processes to a new or more efficient model. There are two process re-engineering models; ‘zero’ base or evolution. Of these two the last is the less drastic and robust approach. Considering KAIZEN as an improvement model, one of the key elements is the ‘small’ (continuous) improvement steps a company makes. Many small steps make one big step after 52 weeks. Key in KAIZEN is a ‘process standard’, consider it an ‘internal’ process standard. In order to knowing what to improve, you need a standard. The ‘internal’ standard is THE enabler of the ISO 15288 standard. That ‘internal’ standard is/should be ‘technology’ enabled, and here is the difficulty. How would you align the ‘non standard’ PLM technology a company acquired from a specific vendor. Company Challenges The following challenges and choices should be considered...  The ISO 15288 standard is a framework. There is no off-the-shelf way to implement it.  What is the delta between where you are today and where you need to be tomorrow, what is the urgency, and how do you minimize the disruption in your organisation.  PLM solutions provide several generic capabilities that can support your processes and ISO 15288 in different ways. Copyright 2010 – InsidePLM GmbH October 2010 -3
    •  How do you select and implement the right PLM capabilities in the right order to meet you business objectives and supporting your process alignment /improvement initiatives.  In a collaborative environment there may be more than one PLM ‘system’, so the ‘standards-based’ information exchange cannot be tied to one vendor solution alone or a specific add-on module that is hardwired to a specific vendor PLM capability version.  Companies wanting to implement the standard supported by PLM, may need consider what other functions or capabilities are needed in support of the standard. A PLM Strategy is more than just selecting a technology - it is knowing your destination before you start the journey. It requires a comprehensive understanding of business processes, organizational structures, product development strategies, and capabilities needed to make your business work more effective using PLM. InsidePLM GmbH provides PLM consulting services and PLM Success Planning is at the basis to help you make the right PLM choices before you start your journey. We are PLM vendor independent and partner with several PLM service providers in Switzerland and Russia. Our geographic focus is Europe. With our industry specific consulting, we help firms define how PLM can enable corporate goals, analyse operational challenges and information needs with the aim to optimise product lifecycle functions enabled by cost effective PLM capabilities. We cover the full PLM implementation lifecycle from early business and solution alignment analysis till sustainment. Business value focussed PLM strategies are key, and the PLM Success Planning approach helps firms focus on the things that bring the right business value. Following a PLM business value analysis engagement we can support firms with the actual selection of PLM solution components and architecture, and may further provide services for the solution configuration, and finally provide deployment support and solution sustainment. Our consultants bring many years of industrial automation experience. We covers the Industry segments: Industrial machinery and installations, Automotive, Aerospace & Defence, Power Generation, Shipbuilding, Life Sciences and Consumer Packaged Goods. Our consultants have each well over 20 years of PLM experience, have deep knowledge of engineering principles such as CMII and worked in PLM with the top 500 companies in Europe. Contact Information: InsidePLM GmbH Gemperenstrasse 26 CH-9442 Berneck Switzerland Phone: +41 71 727 10 22 Email: peter.strookman@insideplm.com Website: www.insideplm.com Copyright 2010 – InsidePLM GmbH October 2010 -3