• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Estadistica  I 05
 

Estadistica I 05

on

  • 60,540 views

Mediadas de Variabilidad

Mediadas de Variabilidad

Statistics

Views

Total Views
60,540
Views on SlideShare
60,292
Embed Views
248

Actions

Likes
3
Downloads
742
Comments
0

2 Embeds 248

http://www.slideshare.net 239
http://webcache.googleusercontent.com 9

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Estadistica  I 05 Estadistica I 05 Presentation Transcript

      • UCV/FACES/EAC
      • Estadísticas I
      • Medidas de Dispersión y Variabilidad
      • P rof. Leonardo Simmons
    • PENSAMIENTO ESTADISTICO Y VARIABILIDAD
      • Según vimos anteriormente el pensamiento estadístico es la filosofía de aprender y emprender acciones basada en los siguientes principios:
      • Todo ocurre en un sistema de procesos interconectados
      • La variación existe en todos los procesos
      • Entender y reducir la variabilidad es la clave del éxito
      • Conclusión:
      • Estudiar, medir, entender y reducir la variabilidad de los procesos de negocio de las empresas es vital para la salud éstas y por lo tanto se constituye en la razón de ser de todo aquel que este a cargo de tales procesos.
    • MEDIDAS DE VARIABILIDAD Una medida de tendencia central (media, mediana, modo) representa a la correspondiente distribución de datos de una variable y nos informa acerca de la tendencia de la misma, sin embargo, estas medidas no nos informan nada respecto a la variabilidad o dispersión existente entre los distintos valores de la variable y la medida de tendencia. Por ejemplo, las siguientes series de salarios en Bs. tiene igual media aritmética: Serie A: 2500, 2800, 3000, 3300, 3500 – Media = Bs. 3020 Serie B: 1000, 1500, 1600,4000, 7000 – Media = Bs. 3020 Sin embargo son bien distintas. ¿Cuan representativa es una media de tendencia central? ¿Cuál de dos o mas distribuciones de datos de una misma variable es mas o menos dispersa respecto a una medida de tendencia central?
    • MEDIDAS DE VARIABILIDAD Las medidas de variabilidad tienen por objeto medir la magnitud de los desvíos de los valores de la variable con respecto al valor central de la distribución, o sea, las medidas de variabilidad definen cuan semejante o cuan distinto son cada uno de los valores, de la variable con respecto al valor central. Las medidas de variabilidad son también medidas del grado de representatividad de las medidas de tendencia central. La variabilidad es la característica mas importante de la distribución, ya que se constituye en un eficaz test de validación referido al nivel de significación de las medidas de centralización Las distintas medidas de variabilidad que estudiaremos serán:
      • Rango Intercuartilico (Q)
      • Coeficiente de Variación (CV)
      • Rango o Recorrido (R)
      • Desviación Media (D)
      • Desviación Típica o Estándar (S ,  )
      • Varianza ( S 2 ,  2 )
    • MEDIDAS DE VARIABILIDAD – RANGO O RECORRIDO
      • Definición:
      • El recorrido o Rango de una variable es la diferencia entre sus valores extremos:
      • Características del rango o recorrido:
      • Solo suministra información de los extremos de la variable
      • Informa sobre la distancia entre el mínimo y el máximo valor observado
      • Se limita su uso a una información inicial
      X min X max R x
    • MEDIDAS DE VARIABILIDAD – DESVIACION MEDIA
      • Definición:
      • Es la media aritmética de los valores absolutos de las desviaciones entre los valores de la variable y una medida de tendencia central. Entonces, identificamos tres (3) posibles desviaciones medias:
      • Desviación Media respecto a la Media:
      • Desviación Media respecto a la Mediana:
      • Desviación Media respecto al Modo:
    • MEDIDAS DE VARIABILIDAD – DESVIACION MEDIA x 1 x k La Desviación Media da cuenta de la distancia promedio que existe entre los valores de la variable (x 1 , x 2 , …..x k ) y la medida de tendencia central, por ejemplo la media aritmética
    • Por ejemplo: Dada la siguiente distribución de frecuencia del precio de un producto de consumo masivo (no regulado). MEDIDAS DE VARIABILIDAD – DESVIACION MEDIA En promedio los precios distan en 1,82 Bs del precio promedio
    • Otro ejemplo: Tres alumnos son sometidos a una competencia para probar sus conocimientos en 10 materias diferentes, cada una sustentada con 10 preguntas. La idea del concurso es encontrar al alumno más idóneo para representar al colegio en un torneo a nivel nacional. El número de preguntas buenas por materia se muestra a continuación: MEDIDAS DE VARIABILIDAD – DESVIACION MEDIA SOLUCIÓN Lo primero que analizaremos es la media de los puntajes para cada uno de los alumnos, con el fin de determinar el alumno con mayor promedio de preguntas buenas. Las medias para los resultados de los alumnos coinciden: los tres alumnos tienen responden en promedio 5 preguntas correctas por prueba. ¿Cuál sería entonces el indicador diferenciador entre los alumnos?. Complementemos el análisis anterior calculando la desviación media: Carlos muestra una desviación media de 3,9 indicando que los datos se alejan en promedio de la media en 3,9 preguntas buenas. Pedro disminuye su variación (2,9), siendo Juan el que menos variación presenta con 0,9 preguntas tanto por arriba como por debajo de la media aritmética. Se recomienda al colegio elegir como ganador en este caso a Juan, presenta resultados más constantes que los otros dos alumnos, Juan en promedio acierta 5 preguntas buenas con una variación muy baja (rondando entre 4 y 6).
    • MEDIDAS DE VARIABILIDAD – DESVIACION TIPICA Definición: La desviación típica o desviación estándar mide la dispersión de los valores de una variable respecto a su media aritmética y se basa en la propiedad de ésta que dice que: - La suma de los cuadrados de los desvíos respecto de la media aritmética es un mínimo, es decir: Tomando esta propiedad en consideración calcularemos la desviación típica o estándar de la población de una variable, a la cual denotaremos con la letra  (sigma), con la siguiente expresión:
    • MEDIDAS DE VARIABILIDAD – DESVIACION TIPICA Cuando estamos analizando una muestra a la desviación típica o estándar la denotamos con la letra S y se determina con la siguiente expresión: La desviación estándar es una medida del grado de dispersión de los datos respecto al promedio. Dicho de otra manera, la desviación estándar es simplemente el "promedio" o variación esperada con respecto de la media aritmética. Si S x  0 indica que los valores están cerca de la media (poca dispersión) Si S x  +∞ indica que los valores están lejos de la media (mucha dispersión) La desviación típica, al igual que la media y la varianza, es un índice muy sensible a los valores extremos. Nota: El término desviación estándar fue incorporado a la estadística por Karl Pearson en 1894.
    • MEDIDAS DE VARIABILIDAD – DESVIACION TIPICA Se demuestra que: para la población Y para la muestra:
    • MEDIDAS DE VARIABILIDAD – DESVIACION TIPICA Ejemplo: La siguiente tabla corresponde a la distribución de frecuencias de una muestra de los espesores en pulgadas, de recipientes de acero producidos por cierto proceso: El proceso produce una pieza de espesor promedio 0,319 pulgadas con una variación de 0,005 pulgadas
    • MEDIDAS DE VARIABILIDAD – VARIANZA Definición: Definimos varianza a la media de los cuadrados de las desviaciones respecto a la media, es decir, la varianza es el cuadrado de la desviación típica, por lo tanto: En el ejemplo anterior: S 2 x = (0,005 pulg) 2 = 0,000025 pulg 2
    • PROPIEDADES DE LA DESVIACION TIPICA Y VARIANZA
      • La desviación típica y la varianza de una variable son estadísticos positivos, es decir, S x > 0 y Var(x) = S 2 x > 0
      • la varianza de una constante por una variable es igual al cuadrado de la constante por la varianza de la variable, es decir:
      • Var(cX) = c 2 Var(X) = c 2 S 2 x
      • En consecuencia la desviación típica de una constante por una variable será:
      • S cx = cS x
      • La varianza de la suma de una variable más una constante es igual a la varianza de la variable, es decir:
      • Var(X + c) = Var(X) = S 2 x
      • En consecuencia: S x+c = S x
      • Nota: La varianza de una constante es igual a cero; Var(C) = 0
    • PROPIEDADES DE LA DESVIACION TIPICA Y VARIANZA
      • Si x ʌ y son variables estadísticamente independientes entonces:
        • Var (x ± y) = Var (x) + Var (y) = S 2 x + S 2 y , por lo tanto
        • Var (ax + by+ c) = a 2 Var(x)+b 2 Var(y)= a 2 S 2 x + b 2 S 2 y , por lo tanto:
      • Si x ʌ y son variables que no son estadísticamente independientes entonces:
      • Var(x ± y) = Var(x) + Var(y) ± 2Cov(x,y), donde Cov(x,y) es la Covarianza (*) entre x ʌ y mide la magnitud de la asociación entre las dos variables y se determina por:
    • PROPIEDADES DE LA DESVIACION TIPICA Y VARIANZA Nota (*): El concepto de covarianza se ampliará cuando abordemos el tema de las medidas de asociación entre dos variables
      • Si y S 1 2 , S 2 2 ,…S r 2 representan las medias aritméticas y las varianzas de r muestras de tamaño n 1 , n 2 , …n r de la misma variable entonces la varianza de la unión de las r-muestras será la media de las varianzas más la varianza de las medias, es decir:
    • PROPIEDADES DE LA DESVIACION TIPICA Y VARIANZA Si las r-muestras fuesen del mismo tamaño entonces: Si las r-muestras fuesen del mismo tamaño y tuviesen la misma media entonces:
    • PROPIEDADES DE LA DESVIACION TIPICA Y VARIANZA Ejemplo (1): Hallar la media del número de establecimientos hoteleros que hay en las distintas Comunidades Autónomas de España. Después, con ayuda de la desviación típica, comenta si esta media es representativa de todas las comunidades autónomas. Se trata de la población de establecimientos en España distribuido en las 18 Comunidades Autónomas de ese país, luego: Como la desviación típica es muy alta, esto me indica que los datos reales se diferencian mucho de la media, luego el dato de la media no es representativo.
    • TEOREMA DE CHEBYSHEV Teorema de Chebyshev (Desigualdad de Chebyshev): Para cualquier distribución estadística de datos de una variable (muestra o población), la proporción (  ) mínima de los valores que se encuentran dentro de k desviaciones estándares desde la media es al menos 1 – 1/k 2 , donde k es una constante mayor que 1. P.ej: La distribución de contribuciones al SSO tiene media Bs. 51.54 y desviación estándar Bs. 7.51; ¿Qué porcentaje de contribuyentes como mínimo aportan entre la media más o menos 3.5 veces la desviación: 1-1/k 2 = 1 – 1/(3.5) 2 =0.92 o sea 92% X  ≤ 1-1/k 2 K>1
    • REGLA EMPIRICA Regla Empírica o Regla Normal: Para distribuciones simétricas o en forma de “campana” (Normales), se cumple que: X 99,7% de los datos X 68% de los datos X 95% de los datos
    • MEDIDAS DE VARIABILIDAD – RANGO INTERCUARTIL Definición: El rango intercuartil es una medida de variabilidad adecuada cuando la medida de posición central empleada ha sido la mediana y él se define como la diferencia entre el Tercer Cuartil (Q 3 ) y el Primer Cuartil (Q 1 ), es decir: R Q = Q 3 - Q 1 A la mitad del rango intercuartil se le conoce como Desviación Cuartil (D Q ) : D Q = R Q /2= (Q 3 - Q 1 )/2 Q 1 25% 25% Q 2 Q 3 50%
    • DIAGRAMA DE CAJA El Rango Intercuartil se usa para construir los Diagramas de Caja que sirven para visualizar la variabilidad de una variable y comparar distribuciones de la misma variable; además de ubicar valores extremos: X max X min Q 3 Q 1 Q 2 Q 3 +1.5 R Q Q 1 -1.5 R Q x Dist. A Dist. B Dist. C
    • DIAGRAMA DE CAJA Distribución simétrica o en forma de “campana” (Normal), se cumple que: |X min -Q 1 | =|X max -Q 3 | |Q 2 -Q 1 | =|Q 2 -Q 3 | Q 2 = X Distribución asimétrica negativa se cumple que: X < Q 2 =M e < M o Distribución asimétrica positiva se cumple que: X > Q 2 =M e > M o
    • COEFICIENTE DE DE VARIACION Definición: El coeficiente de variación permite comparar la dispersión entre dos poblaciones distintas e incluso, comparar la variación producto de dos variables diferentes (que pueden provenir de una misma población). Estas variables podrían tener unidades diferentes, por ejemplo, podremos determinar si los datos tomados al medir el volumen de llenado de un envase de cierto líquido varían más que los datos tomados al medir la temperatura de el liquido contenido en el envase al salir al consumidor. El volumen los mediremos en centímetros cúbicos y la temperatura en grados centígrados. El coeficiente de variación elimina la dimensionalidad de las variables y tiene en cuenta la proporción existente entre una medida de tendencia y la desviación típica o estándar.
    • COEFICIENTE DE VARIACION Coeficiente de variación (Cv): Equivale a la razón entre la media aritmética y la desviación típica o estándar. Si envés de la media aritmética se emplea la mediana, obtendremos el coeficiente de variación mediana: P.ej: se han tomado los pesos y las estaturas de los alumnos de una sección hallándose que: X = 68 Kg , S x = 8 Kg; y = 1,70 mts, S y = 0,61 mts ¿en cuál de los dos aspectos los estudiantes son más homogéneos? CVx = 8/68*100=11,7% mientras que CVy = 0,61/1,70*100 = 39,5% Hay mayor homogeneidad (menor variación) en los pesos
    • TIPIFICACION DE VARIABLES Sea X la variable que toma los valores X 1 , X 2 , …..X k , de media X y desviación estándar S x entonces si tomamos cualquier valor de X, digamos X i , la diferencia de dicho valor con la media ( X i - X ) mide la distancia entre estos dos valores y si dividimos tal diferencia entre la desviación típica, obtendremos las cantidad de desviación típicas que dista X i de la media. Si definimos la variable Z como: Se demuestra que Z = 0 y S z = 1 independientemente de los estadísticos de la variable X. A la variable Z la llámanos variable estandarizada o tipificada y se cumple que Z no tiene unidades y siempre Z = 0 y S z = 1 y Z pertenece a (-  , +  ) Z= (X-X)/S x X, X, S x Z, Z=0, S z =1 Tipificación
    • TIPIFICACION DE VARIABLES X 1 X 2 X k Z 1 =(X 1 -X)/S x Z 2 =(X 2 -X)/S x Z 1 Z 2 Z=0 Z=(X - X)/S x =0   Z k =(X k -X)/S x X z
    • TIPIFICACION DE VARIABLES
      • La interpretación de Z es como sigue:
      • Si Z 1 = 1,2 indicaría que X 1 es 1,2 desviaciones típicas mayor que la media de X; es decir si X i > X entonces Z i > 0
      • Si Z 1 = -0.5 indicaría que X 1 esta a 0,5 o ½ desviaciones típicas a la izquierda de la media de X; es decir si X i < X entonces Z i < 0
      • El valor tipificado o estandarizado de la media de la variable siempre será o cero:
    • TIPIFICACION DE VARIABLES Uso de la Tipificación o Estandarización: P.ej.: Dos estudiantes uno de Contaduría (A) y el otro de Administración (B) obtienen las siguientes notas: A: 12 ptos en Auditoria B: 14 Ptos en Investigación de Operaciones Los estadísticos para las clases respectivas fueron: Clase de A: Nota promedio de Auditoría X A = 13 ptos con S A = 6 ptos Clase de B: Nota promedio de IO X B = 15 ptos con S B = 5 ptos Evidentemente no se pueden comparar directamente las notas de los dos estudiantes porque el rendimiento de sus respectivas clases es diferente. La comparación habrá de hacerse a través de la variable tipificada: Para A: ZA = (12 - 13)/6 = 1/6 Para B: ZB = (14 – 15)/5 = -1/5 Se aprecia que la calificación del alumno A es mejor en relación a su clase, que la del alumno B en relación a la suya 0 -1 -2 -3 3 2 1 Z A =1/5 Z B =-1/6 z
    • TIPIFICACION DE VARIABLES P.ej.: Una empresa que posee una fabrica en el país A y otra en B ha realizado una encuesta relativa al porcentaje que de su sueldo gastan sus empleados por concepto de alimentación, obteniéndose los siguientes datos: El porcentaje reportado por los gerentes de producción de ambos países fueron: Gte. Producción A: 32% Gte. Producción B: 42% Respecto a la realidad económica de cada país, cual de ellos se podría decir que gasta menos en alimentación? Tratándose de realidades distintas, la comparación habrá de hacerse a través de la variable tipificada: Para país A: Z = (42 - 30)/12 = 1 Para país B: Z = (32 – 20)/6 = 2 12% 30% B 6% 20% A Desv. Típica Media País
    • TIPIFICACION DE VARIABLES Se aprecia que el gerente del país A, no obstante las apariencias numéricas, en proporción gasta menos en alimentación respecto a la realidad económica de su país que lo que gasta el gerente del país B respecto a la suya 0 -1 -2 -3 3 2 1 GTE. País A Z=2 GTE. País B Z=1 Realidad Económica Media z
    • DETECCION DE VALORES ATIPICOS CON Z SI UNA DISTRIBUCIÓN ES APROXIMADAMENTE “Normal” entonces según la regla empírica aproximadamente el 99.7% de los datos están comprendidos en el intervalo  x ±3  x por lo tanto en la escala estandarizada (Z) ese intervalo se convierte en [-3, 3]. Luego todo valor de X cuyo valor estandarizado este fuera del anterior intervalo se puede considerar atipico. Atípicos Atípicos 0 -1 -2 -3 3 2 1 z
    • MEDIDAS DE ASIMETRIA Definición: Además de la posición (tendencia) y la dispersión de un conjunto de datos, es común usar medidas de forma en la descripción. Una de estas medidas es una estadística que busca expresar la simetría ( o falta de ella ) que manifiestan los datos, denominada coeficiente de asimetría. Para saber si una distribución de frecuencias es simétrica, hay que precisar con respecto a qué. Un buen candidato es la mediana ya que divide a la distribución de frecuencias en dos partes de igual área (50-50). Podemos basarnos en ella para, de forma natural, decir que una distribución de frecuencias es simétrica si el lado derecho de la gráfica (histograma o polígono de frecuencias (a partir de la mediana) es la imagen por un espejo del lado izquierdo
    • MEDIDAS DE ASIMETRIA Coeficiente de Asimetría basado en los tres cuartiles (Yule-Bowley) : Si una distribución es simétrica, es claro que deben haber tantas observaciones entre la que deja por debajo de sí las tres cuartas partes de la distribución y la mediana, como entre la mediana y la que deja por debajo de sí un quarto de todas las observaciones. De forma abreviada esto es, Q 3 – Q 2 = Q 2 – Q 1 Una pista para saber si una distribución de frecuencias es asimétrica positiva es cuando: Q 3 – Q 2 > Q 2 – Q 1
    • MEDIDAS DE ASIMETRIA Por analogía, si es asimétrica negativa, se tendrá: Q 3 – Q 2 < Q 2 – Q 1 Para quitar dimensionalidad al problema, utilizamos como índice de asimetría la cantidad: Coeficiente de Asimetría basado en el momento central de tercer orden: Si la distribución fuese asimétrica positiva, las cantidades , con p impar positivas estarían muy aumentadas al elevarse a p. Esta propiedad nos indica que un índice de asimetría posible consiste en tomar p=3 y definir:
    • MEDIDAS DE ASIMETRIA Apoyándonos en este índice, diremos que hay asimetría positiva si A 3 >0, y que la asimetría es negativa si A 3 <0. Otros Coeficientes de Asimetría: Basándonos en que si una distribución de frecuencias es simétrica y unimodal, entonces la media, la mediana y la moda coinciden, podemos definir otras medidas de asimetría, como: ó Diremos que hay asimetría positiva si A>0 y negativa si A<0
    • MEDIDAS DE ASIMETRIA P.ej: Los días-calle de la población de cuentas x cobrar de una firma se distribuyen de la siguiente forma:  x = 13,15 días  x = 1,94 días M e = Q 2 =13,4 días Q 1 = 12,1 días Q 3 =14,4 días Lo que nos dice que aproximadamente en un rango de (Q 3 -Q 1 ) = 14,4-12,1 = 2,3 días se encuentra el 50% central del total de observaciones. Además: A Q = -0,09 Este resultado nos indica que existe una ligera asimetría a la izquierda (negativa). Un resultado similar se obtiene si observamos que la distribución de frecuencias es unimodal, siendo M o = 13,6 días y
    • MEDIDAS DE FORMA – KURTOSIS (CURTOSIS) Definición: En estadística, la Kurtosis (Curtosis) es una medida de lo &quot;picudo&quot;(concentrada en torno a la media) de la distribución de frecuencia de una variable cuantitativa. Una mayor curtosis implica que la mayor parte de la varianza (variación) es debida a desviaciones infrecuentes en los extremos, que se oponen a desviaciones comunes de medidas menos pronunciadas. La curtosis se determinará a partir del momento central de cuarto orden, esto es : Se cumple que: Si K < 0, la distribución es menos apuntada de lo “normal” –Platicúrtica Si K = 0, la distribución tiene un apuntamiento “normal” – Mesocúrtica Si k > 0, la distribución es más apuntada de lo “normal” - Leptocúrtica
    • MEDIDAS DE FORMA – KURTOSIS (CURTOSIS) En el ejemplo de los días-calle de la población de cuentas x cobrar de una firma, el calculo de la curtosis resulta igual a: K = +0,094 lo que implica que dicha distribución tiene un apuntamiento casi normal. Leptocúrtica                                                                         Mesocúrtica                                                                     Platicúrtica                                                                     Curtosis Positiva Curtosis nula Curtosis Negativa
    • TAREA No.5
      • Tómese unos minutos de su tiempo y lea detenidamente el siguiente articulo: VARIACIÓN, GERENCIA, Y EL DR. W. EDWARDS DEMING
      • Por: Brian L. Joiner y Marie A. Gaudard.
      • JOINER ASSOCIATES INC.
      • Quality Progress, Diciembre de 1990.
      • Compilación, desarrollo y traducción libre: por Rogelio Carrillo Penso
      • http:// sev.cuao.edu.co / mipymes /Documentos/Calidad/ VariacionGerenciayDeming.pdf
      • Ingrese a la página de la Fundación Polar y lea los fascículos 20 y 21 de la serie El Mundo de Las Matemáticas , que trata de la variabilidad estadística:
      • http://www.fundacionempresaspolar.org/matematica2/index.html
      • 3. Resolver del libro Estadística para Administración y Economía – Anderson – 8va. Edición , capitulo 3, los ejercicios del 15 al 26 (pag. 88 al 89); 31 al 37 (pag. 94 al 95); 42 al 46 (pag.98 al 99)