Upcoming SlideShare
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Standard text messaging rates apply

972 B3102005 Xray3

887

Published on

Published in: Technology, Spiritual
2 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

Views
Total Views
887
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
30
0
Likes
2
Embeds 0
No embeds

No notes for slide

Transcript

• 1. Diffraction theory: diffraction by crystals
• 2. Fig. 3.1 Diffraction of a parallel primary beam by a small crystal.
• 3. (3.1) … .structure factor (3.2) After summation over all atoms:
• 4. (3.3)
• 5. (3.4)
• 6. Let
• 7. (3.6) (3.5)
• 8. Maximum I p happens only when h’, k’ and l’ are integers.
• 9. Fig. 3.2 The function (sin 2 Nx)/sin 2 x for N=20. The function peaks at values of x which are integral multiples of π, and it is essentially zero everywhere else.
• 10.
• 11.
• 12.
• 13. (3.10) Fig. 3.3 Representation of the basis vector r n in terms of the fractional coordinates x n , y n , and z n . Structure factor =
• 14. For face-centered crystals: (3.11) hkl unmixed ： hkl mixed ：
• 15. For body-centered crystals: h+k+l = even ： h+k+l = odd ：
• 16. For rock salt, NaCl hkl unmixed ： hkl mixed ： hkl all even ： hkl all odd ： hkl mixed ：
• 17. In the Zinc blende form of ZnS hkl unmixed ： h+k+l = 4n ： h+k+l =(2n+1)2 ： hkl all odd ： hkl mixed ：
• 18. For copper hkl unmixed ： hkl mixed ： For Tungsten h+k+l = even ： h+k+l = odd ：
• 19. For Zn (hcp): For hexagonal close-packed structure h+2k =3n , l =even ： h+2k =3n  1 , l =odd : h+2k =3n  1 , l =even ： h+2k =3n , l =odd ：
• 20. Hexagonal close-packed Zn, Mg, Be,  -Ti
• 21. Thermal diffuse scattering: Let
• 22.
• 23.
• 24. For single kind of atom: Thermal diffuse scattering: Debye-Waller factor:
• 25.  = Debye Temperature  Appendix 13 h = Planck’s constant k = Boltzmann’s constant m = mass of the vibration atom x =  /T  (x)  Appendix 13 For Cubic element:
• 26. For iron at 20  C
• 27. Diffraction method variable fixed powder variable (in part) fixed Rotating- crystal fixed variable Laue   method
• 28. -S 0 /  S/  [hkl]* (hkl)   P Ewald sphere construction for a crystal
• 29. For powder sample: Each reciprocal lattice point circulates around the origin to form a sphere, which intersects the Ewald sphere in a Debye ring, see next page.
• 30. A Debye ring of a powder sample
• 31. Debye ring of a powder sample: intersection of two spheres
• 32.
• 33.
• 34.
• 35.
• 36.
• 37.
• 38. Diffractometer
• 39. ＊ Detector travels along the measuring circle ＊ Detector intersects each Debye ring in one arc
• 40. [2h 2k 2l]* Increasing  Increasing  A crystal in a diffractometer
• 41. A powder sample in a diffractometer
• 42.
• 43. Pinhole camera
• 44.
• 45. Laue camera
• 46.
• 47. (a) Transmission (b) back-reflection Laue W radiation, 30kV, 19mA
• 48.
• 49. Rotating crystal method
• 50.
• 51. Rotating crystal method