• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
LTE Basics
 

LTE Basics

on

  • 2,514 views

LTE Basics

LTE Basics
LTE Tutorial Part - 1

Statistics

Views

Total Views
2,514
Views on SlideShare
2,277
Embed Views
237

Actions

Likes
5
Downloads
288
Comments
0

23 Embeds 237

http://3g4gtechinfo.blogspot.in 96
http://3g4gtechinfo.blogspot.com 69
http://3g4gtechinfo.blogspot.com.br 11
http://3g4gtechinfo.blogspot.de 9
http://3g4gtechinfo.blogspot.kr 9
http://3g4gtechinfo.blogspot.it 5
http://3g4gtechinfo.blogspot.com.es 5
http://3g4gtechinfo.blogspot.tw 5
http://3g4gtechinfo.blogspot.com.au 4
http://3g4gtechinfo.blogspot.fr 4
http://3g4gtechinfo.blogspot.jp 3
http://3g4gtechinfo.blogspot.ca 3
http://3g4gtechinfo.blogspot.sk 2
http://3g4gtechinfo.blogspot.hu 2
http://3g4gtechinfo.blogspot.se 2
http://3g4gtechinfo.blogspot.ch 1
http://3g4gtechinfo.blogspot.co.uk 1
http://3g4gtechinfo.blogspot.com.tr 1
http://3g4gtechinfo.blogspot.mx 1
http://3g4gtechinfo.blogspot.com.ar 1
http://3g4gtechinfo.blogspot.ro 1
http://3g4gtechinfo.blogspot.pt 1
http://www.3g4gtechinfo.blogspot.in 1
More...

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    LTE Basics LTE Basics Presentation Transcript

    • 1Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn LTE Tutorial part 1 LTE Basics Marius Pesavento - marius.pesavento@mimoOn.de Willem Mulder - willem.mulder@mimoOn.de
    • 2Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Agenda  Part 1, LTE Basics 9:30 – 10:30  Introduction to LTE  FDD/TDD frame structures and reference signals  Physical channels, logical channels  PHY signal processing architecture  H-ARQ processing, H-ARQ timing  UE categories  Part 2, Advanced topics in LTE 11:00 – 12:30  The LTE MIMO modes  Codebook-based precoding  Closed loop operation  CQI reporting modes  Using antenna port 5 (SDMA) techniques  Simulation results  Outlook LTE Advanced  Q & A 12:30 – 13:00
    • 3Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn 3G Evolution  HSPA evolution  Gradually improved performance at low additional cost in 5MHz spectrum allocation  Next step: dual carrier allocation (10MHz)  LTE  LTE is new Radio Access Network (RAN)  significantly improved performance in up to 20MHz allocation  Peak data rates up to 300Mbps  LTE-Advanced  natural evolution of LTE, next major step  toward IMT-Advanced  support spectrum aggregation up to 100MHz and data rate up to 1Gbps SPRING 2011
    • 4Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn LTE Targets  Cell-capacity (Control plane): 200 user per cell in 5MHz  Peak data rate  DL: 300MBit/s  UL: 75 MBit/s  Control plane latency: 50/100ms (idle to active)  User Plane Latency: <5ms (unload condition)  Interworking with UMTS, WCDMA, GSM/EDGE  Access technology:  OFDMA in DL  SC-FDMA in UL (reduced PAPR)  Basis antenna configuration:  eNB: Tx 1 to 4; Rx ≥ 1  UE: Tx = 1; Rx ≥ 2 (depending on UE category )
    • 5Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn E-UTRA frequency bands TDDN/A2400 MHz-2300 MHz2400 MHz-2300 MHz40 TDDN/A1920 MHz-1880 MHz1920 MHz-1880 MHz39 TDDN/A2620 MHz–2570 MHz2620 MHz–2570 MHz38 TDDN/A1930 MHz–1910 MHz1930 MHz–1910 MHz37 TDDN/A1990 MHz–1930 MHz1990 MHz–1930 MHz36 TDDN/A1910 MHz–1850 MHz1910 MHz–1850 MHz35 TDDN/A2025 MHz–2010 MHz2025 MHz–2010 MHz34 TDDN/A1920 MHz–1900 MHz1920 MHz–1900 MHz33 ... FDD20768 MHz–758 MHz798 MHz–788 MHz14 FDD21756 MHz–746 MHz787 MHz–777 MHz13 FDD[TBD][TBD]–[TBD][TBD]–[TBD]12 FDD23 MHz1500.9 MHz–1475.9MHz1452.9 MHz–1427.9MH z 11 FDD340 MHz2170 MHz–2110 MHz1770 MHz–1710 MHz10 FDD60 MHz1879.9 MHz–1844.9MHz1784.9 MHz–1749.9MHz9 FDD10 MHz960 MHz–925 MHz915 MHz–880 MHz8 FDD50 MHz2690 MHz–2620 MHz2570 MHz–2500 MHz7 FDD35 MHz885 MHz–875 MHz840 MHz–830 MHz6 FDD20 MHz894MHz–869 MHz849 MHz–824 MHz5 FDD355 MHz2155 MHz–2110 MHz1755 MHz–1710 MHz4 FDD20 MHz1880 MHz–1805 MHz1785 MHz–1710 MHz3 FDD20 MHz1990 MHz–1930 MHz1910 MHz–1850 MHz2 FDD130 MHz2170 MHz–2110 MHz1980 MHz–1920 MHz1 FDL_low-FUL_highFDL_low – FDL_highFUL_low – FUL_high Duplex Mode UL-DL Band separation Downlink (DL) eNode B transmit UE receive Uplink (UL) eNode B receive UE transmit E-UTRA Band UMTS band extension band
    • 6Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Basic Transmission Schemes Transmission Bandwidth 1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz Sampling Frequency 1.92 MHz 3.84 MHz 7.68 MHz 15.36 MHz 23.04 MHz 30.72 MHz FFT Size 128 256 512 1024 1536 2048 #RBs (12 subcarrier) 6 15 25 50 75 100 (110)
    • 7Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Frame Structure Type 1 Frame Structure Type 1 frame structure type 1 is applicable to FDD (frequency division duplex), full-duplex and half-duplex #0 #1 #2 #3 #18 #19 one slot, Tslot = 15360*TS = 0.5 ms one radio frame, Tf = 307200*TS = 10 ms one subframe Transmission Time Interval (TTI)= 1ms TS basic time unit corresponding to sampling frequency 30.72MHz
    • 8Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Slot Structure normal cyclic prefix extended cyclic prefix, ∆f = 15 KHz normal cyclic prefix #2normal cyclic prefix #1 2048*TS 144*TS 2048*TS2048*TS2048*TS2048*TS2048*TS2048*TS 160*TS 144*TS144*TS144*TS144*TS144*TS slot #0 #6 extended cyclic prefix #0 #5 2048*TS 512*TS 2048*TS 512*TS 2048*TS 512*TS 2048*TS 512*TS 2048*TS 512*TS 2048*TS 512*TS slot
    • 9Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn subframe 1 ms one radio frame, Tf = 307200*TS = 10 ms Frame Structure Type 2: TDD DL #0 S #1 UL #2 UL/DL #3 UL/DL #4 S/DL #6 DL #5 UL/DL #7 UL/DL #8 UL/DL #9 Downlink subframe Uplink subframe Special guard subframe for DL to UL switch Special guard subframe or Downlink SF Uplink or Downlink subframe special subframe: DL to UL switching S #1 or #6 DwPTS GP UpPTS DwPTS: DL pilot time slot shortend DL subframe (3,8,9,10,11, or 12 OFDM symbols) reference signals, primary sync and control, PDSCH GP: Guard period (1,2,3,4,7,8,9,10 OFDM symbols) UpPTS: UL pilot time slot (1 or 2 OFDM symbols) sounding reference or RACH SSS RSand Control PSS 0 1 2
    • 10Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Frame Structure Type 2: TDD Tx Rx Tx Rx DL UL Tx #2 UL Tx #3 GP UpPTS DwPTS DL UL Rx #2 UL Rx #3 GP UpPTS DwPTS DL Tx #0 DL Tx #4 DL Tx #6 DL Tx #5 GP UpPTS DwPTS DL DL Rx #4 DL Rx #6 DL Rx #5 GP UpPTS DwPTS path delay path delay UL/DL switching must be accomplished within the CP length (e.g. if path delay is zero)
    • 11Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn DwPTS, GP, UpPTS length (in OFDM symbols) Format Normal CP Extended CP DwPTS GP UpPTS DwPTS GP UpPTS 0 3 10 1 3 8 666.7µs  200Km 11 9 4 8 3 2 10 3 9 2 3 11 2 10 1 4 12 1 3 7 25 3 9 2 8 2 6 9 3 9 1 7 10 2 - - - 8 11 1 - - -
    • 12Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Resource Blocks 7 OFDM symbols 12 subcarriers frame structure 1 normal cyclic prefix ∆f = 15 KHz DC 1 DL RB −N resource block resource block 0 all subframes
    • 13Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Physical Channels Downlink (DL)  Physical Broadcast Channel (PBCH)  System Information (Master Information Block MIB) approx. every 40 ms  Physical Downlink Control Channel (PDCCH)  DL Control Information Format (DCI-format), DL- grants (current TTI), UL-grants (+4 TTI), uplink power control  Physical DL Shared Channel (PDSCH)  DL transport blocks (TBs), DL Control Information, System Information Block (SIB), Paging Channel (PCH), Multicast Channel (MCH)  Physical Control Format Indicator Channel (PCFICH)  location of the PDCCH  Physical Hybrid ARQ Indicator Channel (PHICH)  UL ACK/NACK  Physical Multicast Channel (PMCH)
    • 14Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Physical Channels Uplink (UL)  Physical Random Access Channel (PRACH)  UL timing estimation (path delay), UL scheduling request (SR)  Physical Uplink Control Channel (PUCCH)  Channel Quality Indicater (CQI), Precoding Matrix Indicator (PMI), Rank Indicator (RI), ACK/NACK, SR  Physical Uplink Shared Channel (PUSCH)  UL TBs, ACK/NACK, CQI, PMI, RI, SR
    • 15Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn PHY Signals Downlink  Primary and Secondary Synchronization Signal  cell-search, DL-frame synchronization, time, frequency, drift,  Cell-specific reference signals (antenna port 0 - 3), orthogonal (non-overlapping) in time-frequency-domain  MIMO channel estimation, fine frequency estimation, UL-CQI estimation  UE-specific reference signals  implicit signaling of DL-transmit beamforming weights Uplink  Demodulaton Reference Signal  Sounding Reference Signal  UL wideband CQI estimation  Random-Access Sequence  for UL timing synchronization
    • 16Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn one antenna port (frame structure 1, normal cyclic prefix) reference signal 0 two antenna ports (frame structure 1, normal cyclic prefix) reference signal 0 reference signal 1 not used for transmission on this antenna port slot slot slot Cell-Specific Reference Signals carrier frequency: 2.6GHz LTE requirement max speed: 350km/h max Doppler frequency: 843Hz Clarke's model coherence time: T > 9/(16π fm) approx. 3 OFDM symbols pilot spacing in frequency coherence bandwidth B ≥ 6x15KHz B ¼ 1 / (2 π τ) ⇒delay spead τ : τ ¼ 1 / (2 π B) =1.77µsec (¼ 54 smpls; corresp. to 531 meter ) Port 0 Port 1 Port 0 Tx Tx
    • 17Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn reference signal 0 reference signal 1 not used for transmission on this antenna port reference signal 2 reference signal 3 four antenna ports (frame structure 1, normal cyclic prefix) slot slot even slot odd slot even slot odd slot Cell-Specific Reference Signals Port 3 Port 2 Port 1 Port 0 Tx
    • 18Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn DL time-frequency structure •DL payload on DL Shared Channel •Primary synchronization signal •Secondary synchronization signal •Broadcast Channel •DL Control Channel •Reference signal 20MHz 30.72MHz guard band
    • 19Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn UL time-frequency structure demodulation reference signal (DRS) sounding reference signal (SRS) PUSCH PUCCH time / OFDM symbol number frequency
    • 20Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn MAC PDU CBSeg- mentation Modulation Layer Mapping MIMO Precoding P/S Sync Signals Ref Signal Frame Builder IFFT CP Adding Pulse Shape ChannelCoding Turbo HARQ Support & Rate Matching •HARQ hard buffer for S1, P1, P2 • Subblock interleaver •Rate Matcher, RVs Scrambling to DACs TBCRC CBCRC CB Concatenation PDSCH Tx numberof antennas number of Transport Blocks (TBs) number of streams
    • 21Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn MAC PDU frame/RB demapper Rotator Freq. Off. CP Removal FFT Channel Estimation Measure- ments MIMO Detector From ADCs Layer Demapper P/S-Sync Processing CBConcate- nation Soft Demodulator 8bit Turbo Decoder HARQ Support & Rate Matching: •HARQ soft buffer for S1, P1, P2, •Subblock interleaver •Soft-Combiner 8 bit, RVs Descrambling TBCRC CBCRC CBsementation: transitionfrom OFDMwiseto CB-wise processing antenna ports Down- sampling filter Fine Frequency estimation Rotator Samp.D. other CWs smple drift PDSCH Rx
    • 22Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Transform Precoding Mixed-Radix DFT Demod. Ref. Signal RB Resource Mapper IFFT CP Adding Pulse Shape DAC Rotator Freq. Cor. MAC PDU CBSeg- mentation Modulation Channel TurboCoding Data&Control Mux Scrambling TBCRC CBCRC CB Concatenation HARQ Support & Rate Matching •HARQ hard buffer for S1, P1, P2 • Subblock interleaver •Rate Matcher, RVs Rotator Samp. Drift Sound. Ref. Signal control TS36.212Figure 5.2.2-1 Channel Interleaving ACK RI Length 32 block code CQI and/or PMI report CQI <= 11 bit CQI and/or PMI report CQI > 11 bit 32bit Channel Conv. Coding CBCRC Rate Matching PUSCH Tx number of Transport Blocks (TBs) of different users to reduce PAPR
    • 23Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn control TS36.212Figure 5.2.2-1 MAC PDU CBConcate- nation Soft demodulator 8.bit Turbo Decoder Descrambling TBCRC CBCRC CBSegmentation: Transitionfrom OFDM-toCB-wise processing Tranform (De)Precoding (mixed-Radix DFT) frame/RB Demapper CP Removal FFT Demod. Ref. Channel Estimation Measure- ments Multi- Antenna Receiver Sounding Ref. Processing Data&Control Demux Frame timing HARQ Support & Rate Matching: •HARQ soft buffer for S1, P1, P2, •Subblock interleaver •Soft-Combiner 8 bit, RVs From ADCs Channel deinterleaver ACK RI Block decoder (32,11) Rate DeMatching: •Subblock interleaver •Soft-Combiner 8 bit, RVs ViterbiCB CRC PUSCH Rx
    • 24Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Downlink Control Indicator Format (DCI format)  DCI format 0 is used for the transmission of UL-SCH assignments  DCI format 1 is used for the transmission of DL-SCH assignments for single antenna operation  DCI format 1A is used for a compact transmission of DL-SCH assignments for single antenna operation  DCI format 1B is used to support closed-loop single-rank transmission with possibly contiguous resource allocation  DCI format 1C is for downlink transmission of paging, RACH response and dynamic BCCH scheduling  DCI format 2 is used for the transmission of DL-SCH assignments for MIMO operation  DCI format 3 is used for the transmission of TPC commands for PUCCH and PUSCH with 2-bit power adjustments  DCI format 3A is used for the transmission of TPC commands for PUCCH and PUSCH with single bit power adjustments
    • 25Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn CRC scrambling with RNTI / (UE Tx port) specific CRC generation L=16 DCI tail bit convolutional encoder, rate 1/3 interleaver, rate-matching PDCCH multiplexing <NIL>element insertion cell-specific scrambling other DCIs QPSK modulation sub-block interleaver (on quadruples of modulated symbols), remove <NULL> elements Resource Mapper, (mapping to RE groups) time first – then frequency layer mapping, pre-coding: single antenna port or transmit diversity antenna ports 0,...,3 other DL channels IFFT and CP attachment MIMO channel FFT and CP removal, frequency and timing correction Resource demapper (1-3 OFDM symbols, according to CFI) sub-block de-inter- leaver equalizer, MIMO detector, (requires channel estimation) soft- demodulator rate- dematching, deinterleaving Viterbi decoder cell specific de- scrambling 44 blind decoding attempts (common- and UE-specific- search-space), 44 PDCCH candidates code bit extraction CRC calculation XOR CRC extraction RNTI skip some decodes if RNTI is found PDCCH processing chain RNTI: radio network temporary identifier DCI User specific search space (aggregation level) 1-CCE (2x6attempts) 2-CCE (2x6attempts) 4-CCE (2x2attempts), 8-CCE (2x2attempts) Cell specific search space (aggregation level) 4-CCE (2x4attempts) 8-CCE (2x2attempts)
    • 26Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn spreading with sequence Scheduling request (SR) (presence/absence) Block code Length 20 never simultaneously with PUSCH CQI, PMI, RI report (2) <= 4bit ACK/NACK (1a,1b) 1 or 2 bit to map on CQI resource concatenation: •only CQI (2: 20 bit) •CQI + ACK/NACK (2a: 21 bit, 2b: 22bit) to map on SR resource •w/o ACK/NACK (1);d(0)=1 •w ACK/NACK d(0) = 1,-1 d(0) = 1,j,-1,-j to map on ACK/NACK resource ACK/NACK w/o CQI or SR, 1a: d(0)= 1,-1 1b: d(0)= 1,j,-1,-j 20bit for mapping to outer RBs for mapping to in RBs Pseudo-Random sequence generator cell IDinit Nc = (2) RBN (1) csN ),(cell cs lnn s )()( , nr vu α 12PUCCH seq =N spreading with orthogonal sequence 12symbols )(oc iwn 4PUCCH SF =N UE specific cell specific scrambling spreading with sequence )()( , nr vu α 12PUCCH seq =N modulation: d(0),…d(19) on QPSK (BPSK) 36.211, 7.1 d(20), d(21) according to 36.211, Table 5.4.2-1 resource index (2) PUCCHn determines cyclic shiftα Resourcem apper (k,l,slot#) IFFT CP attach include demodulation reference signals for format 1 (see below) (1) PUCCHnresource index determines cyclic shift and orthogonal sequence 12symbols include demodulation reference signals for format 2 (see below) “d” “z” PUCCH processing chain Tx all formats
    • 27Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Resource de-mapper (k,l,slot#) format2,2a,2b (CQI,PMI,RI) CP removal FFT (2048) format 1,1a,1b ACK/NCK w or w/o SR (see next page) multiplication with conjugate of )()( , nr vu α 12PUCCH seq =N resource index (2) PUCCHn determines cyclic shiftα IDFTlength12 separate users according to cyclic shift in time- domain multiplication with conjugate of )()( , nr vu α 12PUCCH seq =N resource index (2) PUCCHn determines cyclic shiftα IDFTlength12 channel estimation separate users according to cyclic shift in time- domain tap M(<12) channel coefficient vector M depends on number of shifts in use matched filtering with tap M coef. vector user m user m harddemodulator UE specific cell specific descrambling segmentation SR •w/o ACK/NACK (1);d(0)=1 •w ACK/NACK d(0) = 1,-1 d(0) = 1,j,-1,-j ACK/NACK (1a,1b) Block decoding (bit-level matched filter) CQI, PMI, RI report (2) QPSK PUCCH processing Rx format 2, 2a, 2b
    • 28Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Resource de-mapper (k,l,slot#) on SR resource format1,1a,1b (SRandACK/NACK) CP removal FFT (2048) format 2,2a,2b (CQI,PMI,RI) multiplication with conjugate of )()( , nr vu α 12PUCCH seq =N resource index (2) PUCCHn determines cyclic shiftα IDFTlength12 separate users according to cyclic shift in time- domain multiplication with conjugate of )()( , nr vu α 12PUCCH seq =N resource index (2) PUCCHn determines cyclic shiftα IDFTlength12 channel estimation 1 separate users according to cyclic shift in time-domain tap M(<12) channel coefficient vector M depends on number of shifts in use matched filtering with tap M coef. vector user m user m harddemodulator UE specific cell specific descrambling ACK/NACK channelestimation2 separateusersaccordingtoorthogonal coversequence(despreading) despreading separateusereaccordingto orthogonalsequence SR PUCCH processing Rx format 1
    • 29Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Resource de-mapper (k,l,slot#) on ACK/NACK resource format1,1a,1b (SRandACK/NACK) CP removal FFT (2048) format 2,2a,2b (CQI,PMI,RI) multiplication with conjugate of )()( , nr vu α 12PUCCH seq =N resource index (2) PUCCHn determines cyclic shiftα IDFTlength12 separate users according to cyclic shift in time- domain multiplication with conjugate of )()( , nr vu α 12PUCCH seq =N resource index (2) PUCCHn determines cyclic shiftα IDFTlength12 channel estimation 1 separate users according to cyclic shift in time-domain tap M(<12) channel coefficient vector M depends on number of shifts in use matched filtering with tap M coef. vector user m user m harddemodulator UE specific cell specific descrambling ACK/NACK channelestimation2 separateusersaccordingtoorthogonal coversequence(despreading) despreading separateusereaccordingto orthogonalsequence PUCCH processing Rx format 1a, 1b
    • 30Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn spreading with sequence for mapping to outer RBs for mapping to in RBs Pseudo-Random sequence generator cell IDinit Nc = (2) RBN (1) csN ),(cell cs lnn s )()( , nr vu α 12PUCCH seq =N spreading with orthogonal sequence 12symbols )(oc iwn 4PUCCH SF =N UE specific cell specific scrambling spreading with sequence )()( , nr vu α 12PUCCH seq =N modulation: d(0),…d(19) on QPSK 36.211, 7.1 d(20), d(21) according to 36.211, Table 5.4.2-1 resource index (2) PUCCHn determines cyclic shiftα Resourcem apper (k,l,slot#) IFFT CP attach (1) PUCCHnresource index determines cyclic shift and orthogonal sequence 12symbols input sequence for format 1 input sequence for format 2 Demodulation reference signals for PUCCH format 2
    • 31Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn 3 x repetition ACK/NACK 1 bit BPSK (I or Q) symbol level Spreading, length 4 orthogonal sequence 3bit super-position of different ACK/NACKS 3 symbols 12 symbols resource mapper, PHICH group is mapped to 3 groups of 4 REs scrambling 12symbols layer mapper SISO or MIMO TD FFT / CP insertion MIMO channel CP removal/IFFT resource demapper MIMO detectordescrambling matched filter length(12) ACK/NACK 1 bit other ACK/NACK 1 bit other ACK/NACK 1 bit Location depends on the index of the first RB of the corresponding PUSCH transmission PHICH (DL HARQ) Max. 8 different sequences Selection depends on the index of the first RB of the corresponding PUSCH transmission
    • 32Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn MIB cell specific scrambling scrambling tail bit convolutional encoder, rate 1/3 QPSK modulation layer mapping for single antenna or transmit diversity precoding SFD resource mapping IFFT CP inclusion MIMO channel CP removel FFT Equalization (SISO, MISO, or TD) soft demodulator (QPSK) channel estimates Viterbi decoder interleaver, rate-matching rate matching buffer CRC attach CRC mask code bit extraction, CRC computation antenna config CRC extaction XOR antenna config frame no 0,1,2,3 PBCH PBCH carries important PHY information: system bandwidth, number of transmit antennas, PHICH configuration and system frame number,… masked CRC mask MIB After successful reception of PBCH, UE can read D-BCH in PDSCH (including PCFICH and PDCCH) which carries system information not including in PBCH
    • 33Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn possible cell specific root-sequences,(conjugate) RACH sequence extends over several slots CP inclusion (3168, 21024, 6240) add to OFDM frame in time domain UL Tx signal in time domain: PUSCH, PUCCH,DRS,SRS, including CP Channel phase rotation, (mixing,frequency shift to DC) decimation 1/24 LP filter 1/24 DFT 1024Multiplication IDFT 1024 (results in change of sampling rate) Peak dection, path delay estimation RACH sequence, associated timing-advance RACH sequence, associated timing-advance Zadoff-Chu sequence (L=839), selectec from set of 64 sequences), different root-sequences or different cyclic shifts, Create in 839 sequence in frequency domain Zero padding to 1024 IDFT of length 1024 Upsampling by 24, LP filtering Rotator, frequency shift PRACH correlation (convolution) in time domain replaced by multiplication in frequency domain
    • 34Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn PCFICH DL Control Format block code L=16 2 bits scambling cell and subframe dependent modulator QPSK layer mapping FFT / CP insertion power boosting power control MIMO channel resource mapper (4 blocks of 4REs = 1RE group) cell ID precoding SISO or Tx diversity CP removalII FFT resource demap MIMO detection demodulatordescrambling block detection number of OFDM symbols reserve for control 1,2,3
    • 35Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Rate matching and HARQ processing systematic parity 1 parity 2 sub-block interleaver column permutation write-in row-wise read-out column-wise S1 P1 P2 MUX S1 P1/P2 RV0 RV2 RV3 RV1
    • 36Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn HARQ timing
    • 37Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn UE Categories  synchronous HARQ in UL, ACK/NACK in 4 TTI after UL reception, re-transmission (UL) in 8 TTI after initial transmission, total of 8 HARQ processes  asynchronous HARQ in DL, ACK/NACK in 4 TTI after DL reception, retransmission with DL scheduling grant, total number of 8 HARQ processes Downlink physical layer parameter values set by UE Category UE Category Maximum number of DL-SCH transport block bits received within a TTI Maximum number of bits of a DL-SCH transport block received within a TTI Total number of soft channel bits Maximum number of supported layers for spatial multiplexing in DL Category 1 10296 10296 250368 1 Category 2 51024 51024 1237248 2 Category 3 102048 75376 1237248 2 Category 4 150752 75376 1827072 2 Category 5 302752 151376 3667200 4 Uplink physical layer parameter values set by UE Category UE Category Maximum number of bits of an UL-SCH transport block transmitted within a TTI Support for 64QAM in UL Category 1 5160 No Category 2 25456 No Category 3 51024 No Category 4 51024 No Category 5 75376 Yes ≈ 8HARQ buffer x(3(S1,P1,P2)x10296+ 12(termination))
    • 38Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn UE Categories
    • 39Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn TDD: DL grants and ACK/NACK reporting  FDD: only one DL (and one UL) grant per TTI. Corresponding DL TBs need to be ACK/NACK 4 TTIs after reception (1 or 2 bits).  TDD: ACK/NACK required for detected PDSCH and for DL SPS release on PDCCH.  TDD: usually one DL grant (but up to 2 DL grants, in special case of UL-DL config. 0) can be received within one TTI.
    • 40Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn subframe 1 ms one radio frame, Tf = 307200*TS = 10 ms TDD ACK/NACK Recall: Frame Structure Type 2: TDD DL #0 S #1 UL #2 UL/DL #3 UL/DL #4 S/DL #6 DL #5 UL/DL #7 UL/DL #8 UL/DL #9 Downlink subframe Uplink subframe Special guard subframe for DL to UL switch Special guard subframe or Downlink SF Uplink or Downlink subframe special subframe: DL to UL switching S #1 or #6 DwPTS GP UpPTS DwPTS: DL pilot time slot shortend DL subframe (3,8,9,10,11, or 12 OFDM symbols) reference signals, primary sync and control, PDSCH GP: Guard period (1,2,3,4,7,8,9,10 OFDM symbols) UpPTS: UL pilot time slot (1 or 2 OFDM symbols) sounding reference or RACH SSS RSand Control PSS 0 1 2
    • 41Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn TDD: UE ACK/NACK procedure (PUSCH transmission and PHICH reception) TDD UL/DL Configuration subframe number i 0 1 2 3 4 5 6 7 8 9 0 6,7 4 6,7 4 1 4 6 4 6 2 6 6 3 6 6 6 4 6 6 5 6 6 6 4 7 4 6 •ACK/NACK received on PHICH in subframe i •for UL transmission in subframe i - k, where the values for k are given in the table. k for TDD configurartion 0-6 TDD UL/DL Configuration subframe number i 0 1 2 3 4 5 6 7 8 9 0 4 7 6 4 7 6 1 4 6 4 6 2 6 6 3 6 6 6 4 6 6 5 6 6 4 6 6 4 7 UE Rx Perspective •for UL transmission in subframe i, •ACK/NACK received on PHICH in subframe i + k, where the values for k are given in the table. k for TDD configurartion 0-6 UE Tx Perspective
    • 42Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn DL control issues in TDD DL HARQ TDD UL/DL Config. DL subframe number n 0 1 2 3 4 5 6 7 8 9 0 4 6 4 6 1 7 6 4 7 6 4 2 7 6 4 8 7 6 4 8 3 4 11 7 6 6 5 5 4 12 11 8 7 7 6 5 4 5 12 11 9 8 7 6 5 4 13 6 7 7 7 7 5 •reception of PDSCH in subframe n •ACK/NACK on PUSCH or PUCCH in subframe n + k k for TDD configurartion 0-6 TDD UL/DL Config. DL subframe number n 0 1 2 3 4 5 6 7 8 9 0 6 4 6 4 1 7,6 4 7,6 4 2 8,7,4,6 8,7,4,6 3 7,6,11 6,5 5,4 4 12,8,7,11 6,5,4,7 5 13,12,9,8,7,5,4,11 6 7 7 5 7 7 •ACK/NACK on PUSCH or PUCCH in subframe n •for reception of PDSCH insubframe n - k k for TDD configurartion 0-6 UE Rx Perspective UE Tx Perspective Multiple ACK/NACK in one subframe: Requieres ACK/NACK bundling (logical AND of codewords) or ACK/NACK multiplexing.
    • 43Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn TDD: Downlink Assignment Index DAI to prevent ACK/NACK errors due to bundling k‘ for TDD configurartion 0-6 and DAI in DCI format 0 (UL assignments) •DAI indicates the number of subframes with PDSCH receptions and SPS releases detected within n-k and n (k 2 K) that need to be bundeled in the UL ACK/NACK signaling. •DAI is used only for TDD TDD UL/DL Config. DL subframe number n 0 1 2 3 4 5 6 7 8 9 0 DAI 6 4 DAI 6 4 1 DAI 6 4 DAI DAI 6 4 DAI 2 4 DAI 4 DAI 3 DAI 4 4 4 DAI DAI 4 4 4 DAI DAI 5 4 DAI 6 DAI DAI 7 7 5 DAI DAI 7 7 DAI TDD UL/DL Config. DL subframe number n 0 1 2 3 4 5 6 7 8 9 0 DAI DAI 6 4 DAI DAI 6 4 1 DAI 7,6 4 DAI DAI 7,6 4 DAI 2 8,7,4,6 DAI 8,7,4,6 DAI 3 DAI 7,6,11 6,5 5,4 DAI DAI 4 12,8,7,11 6,5,4,7 DAI DAI 5 13,12,9,8,7,5,4,11 DAI 6 DAI DAI 7 7 5 DAI DAI 7 7 DAI k for TDD configurartion 0-6 and DAI in DCI formats 1/1A/1B/1D/2/2A (DL) 0 or 4 or 841,1 3 or 731,0 2 or 620,1 1 or 5 or 910,0 Number of subframes with PDSCH transmission DAI MSB, LSB UL DAIV DL DAIVor
    • 44Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn End of Part 1 Thank you!!!
    • 45Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn Backup slides
    • 46Marius Pesavento, Willem Mulder, Femto Forum Plenary, June 2010, Reading, UK © mimoOn 3GPP LTE roadmap