Upcoming SlideShare
×

# CFD T section pipe flow benchmarking

1,725 views
1,526 views

Published on

CFD Project during Masters Degree.

0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total views
1,725
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
20
0
Likes
0
Embeds 0
No embeds

No notes for slide

### CFD T section pipe flow benchmarking

1. 1. ME – 259 Introduction to Computational Fluid Dynamics Prof. Dongmei Zhou
2. 2. Introduction  CFD Model
3. 3. Introduction  Applications River channel Bifurcation Living Cardiovascular system
4. 4. Fluent Settings  CFD Simulation: 3ddp (3-D Double Precision)  Convergence criteria:  Continuity = 1e-06  X- velocity = 1e-06  Y- velocity = 1e-06  Z- velocity = 1e-06  Discretization :  Pressure : PRESTO  Momentum equation setting = Second Order Upwind  Solver : Coupled
5. 5. Boundary Conditions (BC)  BC 1 : Main channel Velocity Inlet  BC 2 : Main channel Pressure Outlet  BC 3 : Branch Velocity outlet
6. 6. Procedure For study  Grid Independent Study  Creation of Different Mesh Files in GAMBIT ®  Simulated in FLUENT® 3D  Find Reattachment Length in Zone A  Plot Truncation Error  Parameter Study  Simulated Scenario 1 : Used Cases In Benchmark Paper  Scenario 2 : Change Fluid from water to Hydrogen  Scenario 3 : Keeping Reynolds Number constant changed  Discharge Ratio
7. 7. Grid Independent Study  Simulation results of Reattachment Length in Zone A Reattachment Length in Zone A % Error % Error Analytical Re- From From Best Result attachment Error Error From Analytical Mesh Size from Mesh Size Length From Best Or Or Liepsch in Zone A Analytical Mesh Size Truncation Truncation Paper (meters) error error 148176 2.42857 0.44847 15.58789589 0.43507 15.19290134 453600 2.48654 0.3905 13.57297778 0.3771 13.16855471 2.87704 1185408 2.64287 0.23417 8.139268137 0.22077 7.709418782 4000752 2.85714 0.0199 0.691683119 0.0065 0.226983839 4634784 2.86364 0.0134 0.465756472 0 0
8. 8. Grid Independent Study  Truncation Error Plots Comparing with Liepsch Paper Comparing with Best Mesh Size
9. 9. Grid Independent Study  Streamline plots of velocity of Case 1 at Z = 2.0
10. 10. Grid Independent Study  Comparison of velocity profiles at Z=4.0 plane
11. 11. Grid Independent Study  Skin Friction Plots At Outer wall Of The Main Skin Friction Plots At Branch Left wall Right Wall Channel
12. 12. Grid Independent Study  Z-plots of Vorticity Profiles at different positions of Y keeping X constant
13. 13. Grid Independent Study  Z-plots of Vorticity Profiles at different positions of X keeping Y constant
14. 14. Parameter Study  Mesh Size Used : 81 x 70 x 80  Scenario Used 1. Study of Cases in Paper 2. Change of Fluid to Hydrogen 3. Keeping Re Constant Change Discharge ratio ‘r’
15. 15. Parameter Study  Scenario 1 : Study of Cases in Paper Reynold Discharge Main channel Branch Velocity Outlet Case Ratio Velocity inlet V2 (m/sec) AR Number r V1 = Ub (m/sec) 1 515 8 0.23 0.000258738 0.000059509 2 496 8 0.44 0.00024919 0.000109643 3 525 8 0.64 0.000026376 0.000168806 4 1062 8 0.58 0.000533548 0.000309458 5 496 1 0.44 0.00024919 0.000109643
16. 16. Parameter Study  Scenario 1 : Study of Cases in Paper  Velocity streamline plots of the simulation
17. 17. Parameter Study  Scenario 1 : Study of Cases in Paper  Velocity streamline plots of the Paper or benchmark
18. 18. Parameter Study  Scenario 2 : Change of Fluid to Hydrogen Parameter Study Scenario 2 : Re-attachment Length Discharge Reynolds Reattachment Fluid Ratio number Length Xr (meters) ‘r’ Water 496 0.44 2.48654 Hydrogen 496 0.44 3.2
19. 19. Parameter Study  Scenario 2 : Change of Fluid to Hydrogen
20. 20. Parameter Study  Scenario 3 : Keeping ‘Re’ Constant Change Discharge ratio ‘r’ Reynold Discharge Ratio 'r' Main channel Branch Velocity Number Inlet Velocity Outlet V1 (m/sec) V2 (m/sec) 0.23 0.000059509 0.000258738 0.75 0.000194053 515 1 0.000258738 1.5 0.000388107 2 0.000776214
21. 21. Parameter Study  Scenario 3 Velocity Streamline plot at r = 0.23
22. 22. Parameter Study  Scenario 3 Velocity Streamline plot at r = 0.75
23. 23. Parameter Study  Scenario 3 Velocity Streamline plot at r = 1.00
24. 24. Parameter Study  Scenario 3 Velocity Streamline plot at r = 1.50
25. 25. Parameter Study  Scenario 3 Velocity Streamline plot at r = 2.00
26. 26. Conclusion  Grid Independent Study Comparing with Liepsch Paper Comparing with Best Mesh Size
27. 27. Conclusion  Parameter Study Scenario 1
28. 28. Conclusion  Parameter Study Scenario 1
29. 29. Conclusion  Parameter Study Scenario 2
30. 30. Conclusion  Parameter Study Scenario 3
31. 31. Conclusion  Parameter Study Scenario 3
32. 32. Conclusion  Parameter Study Scenario 3
33. 33. Conclusion  Parameter Study Scenario 3
34. 34. Conclusion  Parameter Study Scenario 3
35. 35. Questions