Progressões

4,532 views
4,124 views

Published on

Published in: Technology, Health & Medicine
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
4,532
On SlideShare
0
From Embeds
0
Number of Embeds
138
Actions
Shares
0
Downloads
86
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Progressões

  1. 1. PROGRESSÕES
  2. 2. Progressão Aritmética CONDIÇÃO DE EXISTÊNCIA: a 2 – a 1 = a 3 – a 2 TERMO GERAL a 2 = a 1 + r a 3 = a 1 + 2r a 4 = a 1 + 3r a n = a 1 + (n – 1).r
  3. 3. A seqüência (1 – 3x, x – 2, 2x + 1) é uma P.A. Determine o valor de x. a 2 – a 1 = a 3 – a 2 x – 2 – (1 – 3x) = 2x + 1 – (x – 2) x – 2 – 1 + 3x = 2x + 1 – x + 2 4x – 3 = x +3 3x = 6 x = 2
  4. 4. Quantos múltiplos de 5 existem entre 21 e 83. A seqüência é: (25, 30, 35, .......80) a n = a 1 + (n – 1).r 80 = 25 + (n – 1) 5 55 = 5n – 5 60 = 5n n = 12
  5. 5. Quantos múltiplos de 5 existem entre 4 e 96? a n = a 1 + (n - 1)·r 95 = 5 + (n - 1)·5 90 = (n - 1)·5 90/5 = n - 1 18 = n - 1 n = 19 4 96 5 95 a 1 = 5 a n = 95 r = 5
  6. 6. Se os lados de um triângulo retângulo estão em P.A. podemos representá-los por: 3r, 4r e 5r Macetão do Ricardinho
  7. 7. 3r + 4r + 5r = 60 12r = 60 r = 5 Logo o valor da hipotenusa é (5r) 25m 3r 5r 4r O perímetro de um triângulo retângulo vale 60m. Sabendo que seus lados estão em P.A., calcule o valor da hipotenusa.
  8. 8. A soma dos vinte primeiros números pares é: NÚMEROS PARES: 0, 2, 4, 6 ... S 20 = ( 0 + 38 ) · 10 S 20 = 380 a 20 = a 1 + 19·r a 20 = 0 + 19·2 a 20 = 38 P.A. a 1 = 0 e r = 2 S 20 = ( a 1 + a 20 ) · 20 2
  9. 9. Progressão Geométrica CONDIÇÃO DE EXISTÊNCIA: a 1 , a 2 , a 3 , ……., a n EXEMPLO: Determine o valor de x de modo que (1 + x), (13 +x) e (49 + x) sejam termos consecutivos de uma P.G.
  10. 10. (1 + x) (13 +x) (49 + x) a 1 a 2 a 3 (13 + x) 2 = (1 + x)(49 + x) 169 + 26x + x 2 = 49 + x + 49x + x 2 169 + 26x = 49 + 50x 120 = 24x x = 5
  11. 11. TERMO GERAL P.A. a 2 = a 1 + r a 3 = a 1 + 2r a 4 = a 1 + 3r a n = a 1 + (n – 1).r P. G. a 2 = a 1 .q a 3 = a 1 .q 2 a 4 = a 1 .q 3 a n = a 1 .q n - 1
  12. 12. Determinar o 10 o termo da P.G.( 2, 4, 8 ……) a n = a 1 .q n - 1 a 10 = a 1 . q 9 a 10 = 2. 2 9 a 10 = 2 10 a 10 = 1024
  13. 13. Determine o número de termos da P.G (3, 6, …..768) a n = a 1 .q n - 1 768 = 3.2 n - 1 256 = 2 n - 1 2 8 = 2 n - 1 8 = n – 1 n = 9
  14. 14. Numa P.G. de 6 termos a razão é 5. O produto do 1º termo com o último é 12500. Determine o valor do 3º termo. obs.: Considere a P.G. de termos positivos. a 1 , a 2 , a 3 , ……., a 6 a 1 . a 1 .q 5 = 12500 a 1 2 . 5 5 = 12500 a 1 2 . 3125 = 12500 a 1 2 = 4 a 1 = 2 a 3 = a 1 .q 2 a n = a 1 .q n - 1 a 3 = 2.5 2 a 3 = 50
  15. 15. SOMA DOS TERMOS DA P.G. FINITA INFINITA Calcular a soma dos 10 primeiros termos da P.G. (2, 4, 8, ……) S 10 = 2. (1024 – 1) S 10 = 2. (1023) S 10 = 2046
  16. 16. A soma dos termos da P.G. S = 1.2 S = 2
  17. 17. ( UFSC ) Se a, b, c são termos consecutivos de uma P.A. de razão 5 e (a + 2), b, (c - 1) são termos consecutivos de uma P.G., então o valor de a + b + c é: P. A . a, b, c r = 5 b = a + 5 c = a + 10 P. G . (a + 2), b, (c - 1) (a + 5) 2 = (a + 2).(a + 9) a = 7 b = a + 5 c = a + 10 b = 12 c = 17 Portanto a + b + c = 36

×