Função do 2º Grau.
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
1,874
On Slideshare
1,873
From Embeds
1
Number of Embeds
1

Actions

Shares
Downloads
30
Comments
0
Likes
1

Embeds 1

http://ensinodematemtica.blogspot.com 1

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Função do 2º grau Função do 2º grau A função do 2º grau, também denominada função quadrática, é definida pela expressão do tipo: y = f(x) = ax² + bx + c, onde a, b e c são constantes reais e Exemplos: a) y=x²+3x+2 ( a=1; b=3; c=2 ) b) y=x² ( a=1; b=0; c=0 ) c) y=x²-4 ( a=1; b=0; c=-4 )
  • 2. Conteúdo para 8ª série Professor Antonio Carlos Carneiro Barroso Professor de Matemática do Colégio estadual Dinah Gonçalves em Valéria Salvador-Ba Graduado pela UFBA e pós graduado em metodologia e Didática do Ensino Superior www.ensinodematemtica.blogspot.com.br www.profantoniocarneiro.com www.accbarrosogestar.blogspot.com.br
  • 3. Gráficos: Gráfico de uma função do 2º grau: O gráfico de uma função quadrática é uma parábola Podemos visualizar uma parábola em um parque de diversões, simplesmente olhando para a montanha russa.  Sua representação gráfica é dada em torno de eixos:
  • 4. Veja: A Parábola:
  • 5. Professor Antonio Carlos
  • 6. Observe os pontos:  Notem que os pontos: A e A`, B e B`, C e C` são simétricos (estão a mesma distância do eixo de simetria). O ponto V representa o vértice da parábola, é a partir dele que determinamos todos os outros pontos. Coordenadas do vértice  A coordenada x do vértice da parábola pode ser determinada por .  Exemplo: Determine as coordenada do vértice da parábola y=x²-4x+3 Temos: a=1, b=-4 e c=3 Logo, a coordenada x será igual a 2, mas e a coordenada y?
  • 7. Fique atento: Simples: Vamos substituir o valor obtido da coordenada x e determinar o valor da coordenada y. Assim, para determinarmos a coordenada y da parábola y=x²-4x+3, devemos substituir o valor de x por 2. y = (2)²-4.(2)+3 = 4-8+3=-1 Logo, as coordenadas do vértice serão V=(2,-1) Portanto, para determinarmos as coordenadas do vértice de uma parábola, achamos o valor da coordenada x (através de x=-b/2a) e substituindo este valor na função, achamos a coordenada y!!!
  • 8. Raízes: Raízes (ou zeros) da função do 2º grau Denominam-se raízes da função do 2º grau os valores de x para os quais ela se anula. y=f(x)=0 Exemplo: na função y=x²-4x+3, que acima acabamos de determinar as coordenadas de seus vértices, as raízes da função serão x=1 e x`=3. Vejamos o gráfico:
  • 9. O gráfico:
  • 10. Resolva a função: Notem que quando x=1 e x`=3, a parábola intercepta ("corta") o eixo x. Como determinar a raiz ou zero da função do 2º grau? Simplesmente aplicando a resolução de equações do 2º grau, já vista na seção anterior. Exemplo: determine a raiz da função y=x²+5x+6: Fazendo y=f(x)=0, temos x²+5x+6=0 Agora basta resolver a equação aplicando a fórmula de Bháskara. x²+5x+6=0 Acharemos que x = -2 e x` = -3.
  • 11. Concavidade da parábola Explicarei esta parte com um simples desenho. a>0a<0Os desenhos até que ficaram bonitinhos, mas isso não importa neste momento. O que nos importa agora é que quando a>0, a concavidade da parábola está voltada para cima (carinha feliz) e quando a<0, a parábola está voltada para baixo (carinha triste). Exemplos:
  • 12. y = f(x) = x² - 4
  • 13. y = f(x) = -x² + 4
  • 14. Nota: Quando a concavidade está voltada para cima (a>0), o vértice representa o valor mínimo da função. Quando a concavidade está voltada para baixo (a<0), o vértice representa o valor máximo. Quando o discriminante é igual a zero Quando o valor de , o vértice a parábola encontra-se no eixo x. A coordenada y será igual a zero. Exemplo: y=f(x)=x²+2x+1 x²+2x+1=0 x=x`=-b/2a=-1 As coordenadas do vértice serão V=(-1,0)
  • 15. Gráfico:
  • 16. Estudo do delta: Quando o descriminante é maior que zero Quando o valor de , a parábola intercepta o eixo x em dois pontos. (São as raízes ou zeros da função vistos anteriormente). Exemplo: y = f(x) = x²-4x+3 x²-4x+3=0 x=1, x`=3 Gráfico:
  • 17. Gráfico:
  • 18. Delta<0 Quando o discriminante é menor que zero Quando o valor de , a parábola não intercepta o eixo x. Não há raízes ou zeros da função. Exemplo: y = f(x) = x²-x+2 x²-x+2=0
  • 19. Gráfico:
  • 20. a>0 e a<0
  • 21. Olhe o gráfico: Esboçando o gráfico Para finalizarmos (ufa!), vamos desenhar o gráfico da função y=-x²-4x-3 1ª etapa: Raízes ou zeros da função -x²-4x-3=0 Aplicando a fórmula de Bháskara x=-1, x`=-3
  • 22. Veja as etapas: 2ª etapa: Coordenadas do vértice Coordenada x (=-b/2a): -(-4)/2.(-1)=-2 Coordenada y: Basta substituir o valor de x obtido na função y = -x²-4x-3 = -(-2)²-4.(-2)-3 = -4+8-3 = 1 Portanto, V=(-2,1) 3ª etapa: Concavidade da parábola y=-x²-4x-3 Como a=-1<0, a concavidade estará voltada para baixo
  • 23. Olhe o gráfico:
  • 24. Exercício: 1) As equações abaixo definem funções do 2º grau. Para cada uma dessas funções, ache as coordenadas do vértice que a representa: a) f(x)= x² - 4x + 5 b) f(x)= x² +4x - 6 c) f(x)= 2x² +5x - 4 d) f(x)= -x² + 6x - 2 e) f(x)= -x² - 4x +1
  • 25. Resolva: 2) Determine, se existirem, os zeros reais das funções seguintes: a) f(x)= 3x² - 7x + 2 b) f(x)= -x² + 3x - 4 c) f(x)= -x² + 3/2x + 1 d) f(x)= x² -4 e) f(x)= 3x² Não existe zeros em (b)
  • 26. Antonio Carlos carneiro Barroso: 3) Construa o gráfico das seguintes funções: a) f(x)= x² - 16x + 63 b) f(x)= 2x² - 7x + 3 c) f(x)= 4x² - 4x +1 d) f(x)= -x² + 4x - 5 e) f(x)= -2x² +8x- 6
  • 27. Faça: 4) Em uma partida de vôlei, um jogador deu um saque em que a bola atingiu uma altura h em metros, num tempo t, em segundos, de acordo com a relação h(t) = -t² + 8t. a) Em que instante a bola atingiu a altura máxima? [Nota]: observem o vértice b) De quantos metros foi a altura máxima alcançada pela bola? c) Esboce o gráfico que represente esta situação. Respostas: 4: a)4s; b) 16m
  • 28. Função do 1º grau: Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: Correspondência: é qualquer conjunto de pares ordenados onde o primeiro elemento pertence ao primeiro conjunto dado e o segundo elemento pertence ao segundo conjunto dado. Assim: Dado os conjuntos A={1,2,3} e B={1,2,3,4,5,6} consideremos a correspondência de A em B, de tal modo que cada elemento do conjunto A se associa no conjunto B com o seu sucessor. Assim ; ; . A correspondência por pares ordenados seria: 
  • 29. Noção de função: Veja os diagramas:
  • 30. Uma função todo elemento de A tem imagem única em B. Analisando os diagramas acima: O diagrama 1 não satisfaz a condição (1); os diagramas 3, 4 e 5 não satisfazem a condição (2). Logo, somente o diagrama 2 representa uma função
  • 31. Domínio, imagem e contra domínio Observe o diagrama:
  • 32. Função:  Chamemos esta função de f, logo o conjunto de pares ordenados serão:  f={(1,2),(2,3),(3,4)}  O conjunto X={1,2,3} denomina-se domínio da função f.  D(F)=X  O conjunto Y={1,2,3,4,5} denomina-se contradomínio da função f.  C(F)=Y  Dizemos que 2 é a imagem de 1 pela função f.  f(1)=2  Ainda, f(2)=3 e f(3)=4.  Logo o conjunto das imagens de f e dado por:  Im(f)={2,3,4}
  • 33. Determinação de função: Observe a figura:
  • 34. Veja: Associe cada elemento de X com um elemento de y:
  • 35. Determine a imagem de cada função: a) D(f) = {1,2,3} y = f(x) = x + 1 [Sol] f(1) = 1+1 = 2 f(2) = 2+1 = 3 f(3) =3+1 = 4 Logo: Im(f)={2,3,4} b) D(f) = {1,3,5} y = f(x) = x² [Sol] f(1) = 1² = 1 f(3) = 3² = 9 f(5) = 5² = 25 Logo: Im(f)={1,9,25}
  • 36. Plano cartesiano : Eixo Cartesiano:
  • 37. Eixos x e y: Consideremos dois eixos x e y perpendiculares em 0, os quais determinam o plano A. Dado um plano P qualquer, pertencente ao plano A, conduzamos por ele duas retas: x // x' e y // y' Denominemos P1 a interseção de x com y' e P2 a interseção de y com x'
  • 38. Continuação: Nessas condições, definimos: - Abscissa de P é um número real representado por P1 - Ordenada de P é um número real representado por P2 - A coordenada de P são números reais x' e y' , geralmente indicados na forma de par ordenado ( x' , y' ) - O eixo das abscissas é o eixo x - O eixo das ordenadas é o eixo y - A origem do sistema é o ponto 0 - Plano cartesiano é o plano A.
  • 39. Depois dessa revisão veja a função do 1º grau: Exemplo: Numa loja, o salário fixo mensal de um vendedor é 500 reais. Além disso, ele recebe de comissão 50 reais por produto vendido. a) Escreva uma equação que expresse o ganho mensal y desse vendedor, em função do número x de produto vendido. [Sol] y=salário fixo + comissão y=500 + 50x
  • 40. Cont. Quanto ele ganhará no final do mês se vendeu 4 produtos? [Sol] y=500+50x , onde x=4 y=500+50.4 = 500+200 = 700 Quantos produtos ele vendeu se no final do mês recebeu 1000 reais? [Sol] y=500+50x , onde y=1000 1000=500+50x » 50x=1000-500 » 50x=500 » x=10
  • 41. Cont. A relação assim definida por uma equação do 1º grau é denominada função do 1º grau, sendo dada por: y=f(x)=ax+b com ,a e b pertencente aos números reais 
  • 42. Gráfico: Gráfico da função do 1º grau: O gráfico de uma função do 1º grau de R em R é uma reta. Exemplo: 1) Construa o gráfico da função determinada por f(x)=x+1: [Sol] Atribuindo valores reais para x, obtemos seus valores correspondentes para y.
  • 43. Olhe os pares: O conjunto dos pares ordenados determinados é f={(-2,-1), (-1,0),(0,1),(1,2),(2,3)}
  • 44. 2º Exemplo: Construa o gráfico da função determinada por f(x)=-x+1. [Sol] Atribuindo valores reais para x, obtemos seus valores correspondentes para y. xy=f(x)=-x+1-2 3-1 20 11 02-1O conjunto dos pares ordenados determinados é f={(-2,3),(-1,2), (0,1),(1,0),(2,-1)}
  • 45. Continuação: O gráfico:
  • 46. y = x+1 ( a> 0 ) ; onde a = 1 Função crescente:
  • 47. y = -x+1 ( a<0 ); onde a=-1 Função decrescente:
  • 48. Raízes ou zeros: Para determinarmos a raiz ou zero de uma função do 1º grau, definida pela equação y=ax+b, como a é diferente de 0, basta obtermos o ponto de intersecção da equação com o eixo x, que terá como coordenada o par ordenado (x,0). 1) Considere a função dada pela equação y=x+1, determine a raiz desta função. [Sol] Basta determinar o valor de x para termos y=0 x+1=0 » x=-1 Dizemos que -1 é a raiz ou zero da função
  • 49. Veja a raiz dessa função: Onde corta o eixo x é a raiz da função
  • 50. Determine a raiz da função y=-x+1 e esboce o gráfico Veja:
  • 51. Sinal de uma função de 1º grau  a>o e a<o
  • 52. Cont. Note que para x=-b/a, f(x)=0 (zero da função). Para x>-b/a, f(x) tem o mesmo sinal de a. Para x<-b/a, f(x) tem o sinal contrário ao de a. Exemplos: 1) Determine o intervalo das seguintes funções para que f(x)>0 e f(x)<0. a) y=f(x)=x+1 [Sol] x+1>0 » x>-1 Logo, f(x) será maior que 0 quando x>-1  x+1<0 » x<-1 Logo, f(x) será menor que 0 quando x<-1
  • 53. 2º exemplo: b) y=f(x)=-x+1 [Sol]* -x+1>0 » -x>-1 » x<1 Logo, f(x) será maior que 0 quando x<1  -x+1<0 » -x<-1 » x>1 Logo, f(x) será menor que 0 quando x>1 (*ao multiplicar por -1, inverte-se o sinal da desigualdade
  • 54. Exercício: ) Represente graficamente a função definida por: a) f(x) = 2x-1 b) f(x) = -1/2x+3 c) f(x) = 4x d) f(x) = 1/3x+2 e) f(x) = -3x+6
  • 55. Cont. 2) Determine a raiz ou zero de cada uma das seguintes equações: a) f(x) = 2x+5 b) f(x) = -x+2 c) f(x) = 1/3x+3 d) f(x) = 1-5x e) f(x) = 4x
  • 56. Determine a expressão da função representada pelo gráfico abaixo: Faça:
  • 57. Cont. Pelo gráfico, concluímos: Quando x=0, y=2; portanto, o valor de b na expressão é igual a 2 Quando y=0, x=-4 (raiz ou zero da função) Substituindo os valores em y=ax+b: 0 = -4a + 2 a = 1/2 Logo, a expressão é y = 1/2x+2.
  • 58. Determine as expressões que as definem. Descreva as funções abaixo.