David Serrano - Towards a Sustainable Energy System: Technological Challenges

689
-1

Published on

Towards a Sustainable Energy System: Technological Challenges
By David Serrano

Published in: Business, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
689
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

David Serrano - Towards a Sustainable Energy System: Technological Challenges

  1. 1. Towards a Sustainable Energy System: Technological Challenges David Serrano Rey Juan Carlos University IMDEA Energy Institute
  2. 2. The past and the present energy system
  3. 3. World primary energy consumption2010 world energy balance: •  Global energy consumption: +5.6% •  Oil: +3.1%; Gas: +7.4%; Coal: +6.3%
  4. 4. Coal/peat Coal/peat Oil Oil Natural gas Natural gas Nuclear Nuclear Hydro Hydro Biofuels and waste Biofuels and waste Other* Other* 1973 Share 2009fuel shares of TPES 1973and 2009 primary energy sources and of the fuel shares of TPES 1973 1973 2009 2009 Biofuels Biofuels Biofuels Biofuels Hydro and waste Other* Hydro and waste Other* Hydro and waste Hydro and waste Other* 1.8% 10.6% 1.8% 10.6% 0.1% Other* 0.1% 2.3% 10.2% 2.3% 10.2% 0.8% 0.8% Nuclear Nuclear Coal/peat Nuclear Coal/peat Nuclear Coal/peat Coal/peat 0.9% 0.9% 24.6% 24.6% 5.8% 5.8% 27.2 % % 27.2 Natural Natural gas gas Natural Natural 16.0% 16.0% gas gas 20.9% 20.9% Oil Oil Oil Oil 46.0% 46.0% 32.8% 32.8% 6 6 111 Mtoe 111 Mtoe 12 150 Mtoe 12 150 Mtoe66 *Other includes geothermal, solar, wind, heat, etc. *Other includes geothermal, solar, wind, heat, etc. Fossil fuels: 86% 80.9%
  5. 5. 2 000 0 1971 1975 1980 1985 1990 1995 2000 2005 2009 OECD Middle East Non-OECD Europe and Eurasia China Asia* Latin America Africa Bunkers** Regional share of the primary energy sources 1973 and 2009 regional shares of TPES 1973 2009 Latin Latin America Africa Asia* 3.5% America Africa 3.4% Bunkers** Asia* 4.4% 5.5% Bunkers** 5.6% 3.0% 2.7% China 12.0% 7.0% Non- China OECD 18.7% Europe and Eurasia Non-OECD Europe OECD 15.4% Middle East OECD and Eurasia Middle East 43.3% 0.8% 61.3% 8.6% 4.8% 6 111 Mtoe 12 150 Mtoe *Asia excludes China.8 **Includes international aviation and international marine bunkers.
  6. 6. Oil reserves versus oil production: the oil peak AAPG Explorer, March 2007•  New oil discoveries: 6 billion barrels/year•  Oil production: 30 billion barrels/year•  Proven reserves versus unconventional resources•  Real proven reserves could be overestimated
  7. 7. 40 20 30 20 10 Non-uniform distribution of the Reserves-to-production (R/P) ratios North Years America S. & Cent. Europe & America Middle Eurasia East Africa Asia Pacific 0 80 85 90 95 00 World proved oil reserves in 2010 were sufficient to meet 46.2 years of global production, down slightly from the 2009 R/P ratio because of a large increase in world 05 10 0 fossil fuel reserves production;regionproved reserves rose slightly last year. An increase in Venezuelan official reserve estimates drove Latin America’s R/P ratio to 93.9 years – the world’s 2010 by global History largest, surpassing the Middle East. 200 800production (R/P) ratios North America Middle East S. & Cent. America Asia Pacific Europe & Eurasia Worldn History Africa Distribution of proved reserves in 1990, 2000 and 2010 100 160 Percentage World 160 North America 150 S. & Cent. America 600 Europe & Eurasia Middle East 140 Africa S. & Cent. America Middle East 130 Europe & Eurasia 80 Asia Pacific Africa 120 120 North America 3.3 54.4 Asia Pacific 110 5.4 400 100 60 3.6 63.1 80 90 6.2 9.5 80 70 3.6 65.7 8.5 200 40 2010 60 9.6 40 Total 1383.2 thousand million 50 2000 10.1 barrels 5.9 Total 1104.9 1990 thousand million 40 9.8 Total 1003.2 barrels 20 8.1 thousand million 30 North barrels S. & Cent. Europe & Middle Africa Asia 0 80 85 90 95 00 05 10 0 America America Eurasia East Pacific 20 7.1 8.9 World natural gas proved reserves in 2010 were sufficient to meet 58.6 years of global production. R/P ratios declined for each region, driven by rising production. 10 The Middle East once again had the highest regional R/P ratio, while Middle East and Former Soviet Union regions jointly hold 72% of the world’s gas reserves. 17.3& Cent. Europe & Middle Africa Asia 0 80 85 90 95 00 05 10 0s-to-productionmerica Eurasia (R/P) ratios East Pacific reserves in 2010 were sufficient to meet 46.2 years of global production, down slightly from the 2009 R/P ratio because of a large increase in worldal proved reserves rose slightly last year. An increase in Venezuelan official reserve estimates drove Latin America’s R/P ratio to 93.9 years – the world’s Distribution of proved reserves in 1990, 2000 and 2010 regionng the Middle East. History Percentage 7 200 800 North America Middle East S. & Cent. America Asia Pacific Europe & Eurasia World Middle East Africa Europe & Eurasiaof proved reserves in 1990, 2000 and 2010 Asia Pacific Africa 160 North America 4.0 40.5 600 S. & Cent. America 5.3 ericaasiaa 120 4.5 38.3 7.9 3.3 54.4 4.9 5.4 400 4.1 30.2 8.1 2010 3.6 63.1 80 7.6 Total 187.1 8.7 6.2 9.5 trillion cubic 2000 metres 6.8 8.0 Total 154.3 trillion cubic 19903.6 65.7 8.5 200 metres Total 125.7 2010 7.8 40 Total 1383.2 trillion cubic thousand million metres 2000 10.1 barrels 43.4 Total 1104.9 1990 thousand million 36.3 9.8 33.7 al 1003.2 barrelssand million 0 80 85 90 95 00 05 10 0barrels & Cent. S. Europe & Middle Africa Asia America Eurasia East Pacific 8.9ural gas proved reserves in 2010 were sufficient to meet 58.6 years of global production. R/P ratios declined for each region, driven by rising production.e East once again had the highest regional R/P ratio, while Middle East and Former Soviet Union regions jointly hold 72% of the world’s gas reserves. 17.3 21
  8. 8. 2005 49.35 54.52 55.69 56.59 2006 61.50 65.14 67.07 66.02 2007 68.19 72.39 74.48 72.20 2008 94.34 97.26 101.43 100.06 2009 61.39 61.67 63.35 61.92 2010 78.06 79.50 81.05 79.45 *1972-1985 Arabian Light, 1986-2010 Dubai dated. Source: Platts. †1976-1983 Forties, 1984-2010 Brent dated. High oil cost and volatility ‡1976-1983 Posted WTI prices, 1984-2010 Spot WTI (Cushing) prices. Crude oil prices 1861-2010 US dollars per barrel World events Yom Kippur war Fears of shortage in US Post-war reconstruction Iranian revolution Growth of Venezuelan Loss of Iranian Netback pricing Asian financial crisis production supplies introduced Pennsylvanian Russian Sumatra Discovery of East Texas field Suez crisis Iraq Invasion oil boom oil exports production Spindletop, discovered invaded of Iraq began began Texas Kuwait 120 110 100 90 80 70 60 50 40 30 20 10 1861-69 1870-79 1880-89 1890-99 1900-09 1910-19 1920-29 1930-39 1940-49 1950-59 1960-69 1970-79 1980-89 1990-99 2000-09 2010-19 0 $ 2010 1861-1944 US average. $ money of the day 1945-1983 Arabian Light posted at Ras Tanura. 1984-2010 Brent dated. 15•  Energy imports in Spain (2008): 55,000 millions of euros•  It accounts for about 19% of the total imports (over 50% of the commercial deficit)
  9. 9. Are we entering a new coal age?
  10. 10. China Asia** Latin America Africa Regional shares of coal production 1973 and 2010 regional shares of hard coal* production 1973 2010 Non-OECD Europe China Asia** Latin Non-OECD and Eurasia China 18.7% 4.8% America Europe and Eurasia 23.2% 0.2% 6.6% 51.1% Africa 3.0% Asia** OECD 13.0% 50.1% OECD Africa Latin America 23.7% 4.2% 1.4% 2 235 Mt 6 186 Mt *Includes recovered coal.14 **Asia excludes China.
  11. 11. Evolution of the atmospheric CO2 concentration •  2011: 392 ppm •  2015: 400 ppm •  2035: 440 ppm •  2050: 470 ppm
  12. 12. Fuel share of CO2 emissions 1973 and 2009 fuel shares of CO2 emissions** 1973 2009 Other*** Natural gas 0.1% Coal/peat Other*** 14.4% Natural gas 0.4% Coal/peat 34.9% 19.9% 43.0% Oil Oil 50.6% 36.7% 15 624 Mt of CO2 28 999 Mt of CO2 *World includes international aviation and international marine bunkers. **Calculated using the IEA’s energy balances and the Revised 1996 IPCC Guidelines. CO2 emissions are from fuel combustion only. ***Other includes industrial waste44 and non-renewable municipal waste.
  13. 13. Non-OECD Europe and Eurasia Middle East Bunkers 1973 and 2009 regional shares of Regional shares of CO2 emissions CO2 emissions** 6 1973 2009 Non-OECD Europe Non-OECD Europe Middle East China and Eurasia 0.9% and Eurasia Middle EastAsia*** 5.7% 16.2% China 8.6% 3.0% Bunkers 5.2% 23.7% 3.6% Bunkers Latin 3.5%America 2.6% Asia*** Africa 10.9% Latin 1.9% OECD America Africa OECD 66.1% 3.4% 3.2% 41.5% 15 624 Mt of CO2 28 999 Mt of CO2 *World includes international aviation and international marine bunkers, which are shown together as Bunkers. **Calculated using the IEA’s energy balances and the Revised 1996 IPCC Guidelines. CO2 emissions are from fuel combustion only. ***Asia excludes China. 45
  14. 14. Evolution of the energy self-sufficiency in Spain Evolución grado de autoabastecimiento !"#"$ %&#"$ %"#"$ %" "$ &#"$ "#"$ )*+,-. 0.1+23*4 !""# $#!# :*4 .*9;+*7 /$ "#"!$ +1.56*,714 (!#($ 819+-715Secretaría de Estado de Energía )*+,-. (&#"$ %&#/$ "#!$ 0.1+23*4 +1.56*,714 ("#"$ ndustria !!$ ercio <;=71*+Ministerio de In ETurismo y Come !/$ &#"$ <;=71*+ 819+-715 !%#>$ #&$ :*4 .*9;+*7 %#/$ "#"$M (>>" (>> (>>! (>>? (>>/ """ "" ""! ""? ""/ "("TS 23
  15. 15. Primary energy share by source in Spain (2009)
  16. 16. Power generation by source in Spain Estructura generación eléctrica 2010* !""# !"$" %&()*+,&- ./)0&1&+ 2/)3&1+ %&()*+,&- ./)0&1&+ 2/)3&1+ 4(5 6 )7)1 4(5 6 )7)1 !./01 8+9- 0!/21 8+9- ()$& ()$& !"#$%& *+:- *+,- !"#$%& @A$/#& 8;+<- @A$/#& *,+9- 8*+<- 8B+9- =/>)%$?#7/#& <+E- C&2AD C&2AD 8*+B- =/>)%$?#7/#& .)02%) <+F- 8B+8-Secretaría de Estado de Energía 8+,- GH G%7)$IJ%)1 GH G%7)$IJ%)1 B+9- B+8- ndustria C)3%D%&#/AD 3&1 C)3%D%&#/AD .)02%) D&7"&$ C)3%D%&#/AD ercio GHG%7)$IJ%)1 8+,- 8,+,- GHG%7)$IJ%)1Ministerio de In 8+E- 8 E- ETurismo y Come C)3%D%&#/AD 3&1 8+*- K&1 D&7"&$ D&7"&$ K&1 D&7"&$ **+*- E+E- *;+,- !#2 345 0"" 345MTS $/01 12 * Producción bruta
  17. 17. The future energy system: scenarios
  18. 18. World primary energy demand by scenarios•  Current Policies Scenario: extrapolation of present trends.•  New Policies Scenario: - Enhanced saving and energy efficiency - Accelerated deployment of technologies currently under development.•  450 Scenario: - The atmospheric CO2 concentration is stabilized at 450 ppm. - This requires a true revolution in many social and political aspects. - Currently emerging technologies should progress to get the commercial scale.
  19. 19. carbon-dioxide equivalent (ppm CO2-eq). In the New Policies Scenario, world primary energy demand is projected to increase from 12 150 million tonnes of oil equivalent (Mtoe) in 2009 to 16 950 Mtoe in 2035, an increase of 40%, or 1.3% growth per year (Figure 2.1).1 Global energy demand increases more quickly in the Current Policies Scenario, reaching 18 300 Mtoe in 2035, 51% higher than 2009, and representing average growth of 1.6% per year. World primary energy demand by scenarios Figure 2.1 World primary energy demand by scenario 20 000 Current Policies Scenario Mtoe 18 000 New Policies Scenario 450 Scenario 16 000 14 000 12 000 10 000 8 000 6 000 1980 1990 2000 2010 2020 2030 2035© OECD/IEA, 2011 1. Compound average annual growth rate. 70 World Energy Outlook 2011 - GLOBAL ENERGY TRENDS
  20. 20. Evolution of CO2 concentration by scenarios
  21. 21. Current Policies ScenarioWorld primary energy demand
  22. 22. Current Policies ScenarioWorld primary energy demand
  23. 23. Current Policies ScenarioPer capita primary energy consumption
  24. 24. S Secretaría de Estado de Energía E M Ministerio de In ndustria T Turismo y Come ercio " "#$%&())*+ , -! !!! $(" $(# $" $# $&" $&# $%" $%# !"" !"# $%% %" $%% %$ $%% %! $%% %) $%% %* $%% %# $%% %( $%% % $%% %& $%% %% !"" "" !"" "$ !"" "! !"" ") IEP=-14,1% !"" "* !"" "# !"" "( !"" " IEP=1,2% !"" "& !"" "% !"$ $" Evolución primary energy intensity in20 Evolution of theintensidad energética primaria Spain
  25. 25. Evolution of the equivalents CO2 emissions in Spain EVOLUCIÓN DE LAS EMISIONES DE CO2 EQUIVALENTE EN ESPAÑA. COMPARACIÓN CON COMPROMISO Cuadro 9.4 DE KIOTO Miles de tCO2 eq. 170 1990 283.168 1991 290.626 160 149,7 150,9 1992 298.180 147,0 150 144,8 1993 286.867 139,3 139,4 1994 303.269 140 137,0 131,0 131,1 Índices 1995 314.875 126,8 130 126,4 1996 307.538 122,1 116,6– 267 – 1997 328.100 120 113,2 1998 337.937 108,7 100 102,9 104,7 106,1 1999 366.302 100,3 2000 379.619 97,7 99,0 110 2001 379.898 90 2002 396.847 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2003 403.750 2004 419.523 2005 433.809 2006 425.975 Compromiso Kioto para 2008-2015: Índice 115. 2007 437.159 2008 403.935 La cifra exacta del año base tomada para el cálculo de la cantidad asignada fue de 289.773.205,032 toneladas de CO2-eq; y la cantidad asignada 2009 367.543 para el compromiso del cumplimiento del Protocolo de Kioto en el período 2008-2012 es de 1.666.195.929 toneladas de CO2 -eq. 2010 341.815 Fuente: Elaboración propia con datos de Ministerio de Medio Ambiente, MR y M. 9
  26. 26. The global challenge:a sustainable energy system 450 Scenario?
  27. 27. the Outlook period, more expensive abatement options take a larger share, and the annualshare in abatement of efficiency measures falls to 44% in 2035. The increased adoption ofrenewable energy (including biofuels) is the second-most important source of CO2 abatement,relative to the New Policies Scenario, growing from a combined 19% in 2020 to 25% in 2035, ora cumulative 24% over the period as 450 Scenario a whole. Nuclear power grows rapidly in importance andaccounts for a cumulative 9%, while CCS also accounts for an increasing share, growing from World energy-related CO2 emissions abatementonly 3% of total abatement in 2020 to 22% in 2035, or a cumulative 18%.Figure 6.4 World energy-related CO2 emissions abatement in the 450 Scenario relative to the New Policies Scenario 38Gt New Policies Scenario Abatement 36 2020 2035 34 Efficiency 72% 44% 32 Renewables 17% 21% 30 Biofuels 2% 4% 28 Nuclear 5% 9% 26 CCS 3% 22% 24 Total (Gt CO2) 2.5 14.8 450 Scenario 22 20 2010 2015 2020 2025 2030 2035Box 6.3 Reaping abatement through efficiency in the 450 Scenario In the 450 Scenario, energy efficiency policies and measures are the cheapest abatement option available and the most important source of abatement. Efficiency is responsible for half of cumulative global abatement relative to the New Policies Scenario, or 73 Gt, between 2011 and 2035. The role of energy efficiency varies by
  28. 28. Alternatives for a sustainable energy system•  Energy consumption savings•  Energy efficiency: - Generation - Transportation and transmission - End-use•  Decarbonization of power production - Carbon capture and sequestration - Renewable energies - Nuclear energy•  Decarbonization of the transport sector - Biofuels - Electrification - Hydrogen
  29. 29. 450 ScenarioTechnologies for CO2 emissions abatement
  30. 30. Potential role of Chemical Engineering in achieving the global energy challenge•  Combustion: Highly efficient systems: cogeneration, combined cycle system, supercritical steam.•  CO2: capture and sequestration. Valorization.•  Solar energy: CSP, solar fuels.•  Biomass and biofuels: non-edible raw materials, new transformation routes, sustainability.•  Energy storage: thermal, thermochemical and electrochemical systems.•  Novel energy vectors: hydrogen, methanol.•  End-use devices: fuel cells.
  31. 31. CO2 capture and sequestration •  CO2 confinement capacity •  Stability •  Environmental effects
  32. 32. Net efficiencies of coal power plants
  33. 33. CO2 capture alternatives
  34. 34. Chemical looping combustion flue gas N2, O2 CO2, H2O 2 MyOx 1 Air- Fuel- reactor reactor 3 MyOx-1 H2O fuel Noncondensable and Air Fuel CO2 combustible gases air bleed Figure 1: Chemical-looping combustion (CLC). MyOx and MyOx-1 symbolizes oxidized and Figure 2: Chemical-looping combustion reduced oxygen carrier particles. using two interconnected fluidized beds.high velocity fluidized bed where the oxygen carrier particles are transported together withthe air stream to the top of the air reactor, where they are then transferred to the fuel reactor(3) using a cyclone (2). The fuel reactor is a bubbling fluidized bed reactor, from which thereduced oxygen carriers are transported back to the air reactor by means of an overflow pipe.After condensation of the water in the exit gas from the fuel reactor, the remaining CO2 gas iscompressed and cooled to yield liquid CO2, which can be disposed of in various ways. Threeimportant design criteria are directly related to properties of the oxygen carrier: [2]1. The amount of oxygen carrier necessary in the two reactors, i.e. the bed masses, is inversely proportional to the rate of conversion of the oxygen carrier, i.e. the rates of
  35. 35. Potential role of Chemical Engineering in achieving the global energy challenge Solar fuels
  36. 36. Potential role of Chemical Engineering in achieving the global energy challenge Solar fuels
  37. 37. Potential role of Chemical Engineering in achieving the global energy challenge HydrogenCO2-free production, infrastructures, on board storage
  38. 38. Potential role of Chemical Engineering in achieving the global energy challenge Fuel cells Efficiency, cost, fuels
  39. 39. Potential role of Chemical Engineering in achieving the global energy challenge Energy storageElectrical:•  Superconducting magnets•  Supercapacitors… Supercapacitor Superconducting module magnetMechanical:•  Pumped hydro•  Compressed air Flywheel•  Flywheels…Thermal:•  Phase Change Materials•  Molten salts Molten salt tank in CSP plant•  Steam…Chemical:•  Batteries•  Hydrogen… Vanadium flow Li-ion battery battery plant pack
  40. 40. The global challenge:a sustainable energy system Is it feasible?
  41. 41. Evolution of the public R&D funding in energy programmes (IEA countries)
  42. 42. IMDEA Energy•  Sustainable fuels: biofuels, hydrogen and waste-derived fuels.•  Solar energy: CSP, solar fuels.•  Energy storage: chemical and electrochemical.•  CO2 valorization.•  LCA
  43. 43. The global challenge: a sustainable energy system“If we do not change direction soon,we will end up where we are heading” Lao-Tsé (IV b.c.)

×