Your SlideShare is downloading. ×
0
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Bigdata summit.key
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Bigdata summit.key

1,240

Published on

The Big Data story from holidayextras. …

The Big Data story from holidayextras.

Slides I presented at the big data summit on the 28th June 2012.

Any questions / queries / feedback - drop me a line

@nilanp

Published in: Technology, Economy & Finance
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,240
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
31
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Achievingcustomer drivenonline growth atholidayextras.com @nilanp #BigDataSummit
  • 2. Big data @nilanp #BigDataSummit
  • 3. Big data @nilanp #BigDataSummit
  • 4. Data science @nilanp #BigDataSummit
  • 5. Data science
  • 6. Introducing the data scientist @nilanp #BigDataSummit
  • 7. Introducing the data scientsit @nilanp #BDLDN
  • 8. Data introductions...But first science
  • 9. @nilanp Nilan Peiris CMTODisruptive tehcnolognogyst Chief Marketing @nilanp Technology Officer
  • 10. £200m @nilanp #BigDataSummit
  • 11. £200m
  • 12. 30 year old start up
  • 13. We believeholidays should be hassle-free.
  • 14. 32m Trips
  • 15. Our role in the holiday value chain. Parking Insurance Books the most efficient way of Hotels FX Car HireCustomer monetising trips on the internet. Lounges Ski Hire Essentials
  • 16. A holiday engine. A platform
  • 17. Nilan Peiris CMTODisruptive tehcnolognogyst @nilanp
  • 18. Data sciencedriven growth
  • 19. ✦ 3 practical examplesData science 3 practical examples... @nilanp #BigDataSummit
  • 20. 1. Speed @nilanp #BigDataSummit
  • 21. Whyspeed ? @nilanp #BigDataSummit
  • 22. “every 100 ms (that’s 1 tenth of a second) increase in page load time of Amazon.comdecreased sales by 1%”
  • 23. Subsecond searches within 12 months Text
  • 24. 2. Matching products to customers @nilanp #BigDataSummit
  • 25. Size ?
  • 26. How do you match Size ?customers to products ?
  • 27. The most efficient way of monetising trip data on the internet
  • 28. ?
  • 29. Recommendation @nilanp #BigDataSummit
  • 30. Personalisation
  • 31. Recommendation @nilanp #BigDataSummit
  • 32. Segmentation @nilanp #BigDataSummit
  • 33. Data science
  • 34. Segmentation @nilanp #BigDataSummit
  • 35. In a world where everyclick, can be tracked and recorded - we shouldn’t be managing customersby putting them in groups of similar people @nilanp #BigDataSummit
  • 36. Personalisation @nilanp #BigDataSummit
  • 37. Carregistration Product type Customer flikr house
  • 38. Decision trees @nilanp #BigDataSummit
  • 39. @nilanp#BigDataSummit
  • 40. Bayesianstatistics @nilanp #BigDataSummit
  • 41. @nilanp#BigDataSummit
  • 42. Graphdatabases @nilanp #BigDataSummit
  • 43. Carregistration Credit Card Customer Email Address house
  • 44. 3. Conversion
  • 45. 3 millioncustomers @nilanp #BigDataSummit
  • 46. 30 million visitors @nilanp #BigDataSummit
  • 47. 200 million clicks @nilanp #BigDataSummit
  • 48. Why are wedown / up?
  • 49. GA picture
  • 50. 0 USER JOURNEY! Only 6.3% of customers who enter the funnel from airport hotel pages end up converting! Holiday Extras domain! Commentary! Performance! Availability page! 1 in 7 visitors proceed to the upgrades page! !  lack of information?! 15%! !  lack of urgency?! Upgrades! Almost all proceed to the payment page! 98%! !  Performing well ! !  Can additional upgrades be presented to increase order value which may offset the impact of conversion rates?! Payment! 43%! Just under 1 in 2 then proceed to make a payment! !  Suggests the payment form is performing very well! Confirmation! Summary! At present only 6.3% of users who enter the funnel make a purchase. The Total funnel efficiency! largest hurdle is on the availability page where only 15% make it through to the 6.3%! next phase.! We therefore focus our recommendations on the availability page in order to prevent customers falling out of the funnel at the availability page, there are a number of solutions:! a)  Provide user with sufficient information to assist in the decision process ! b)  Provide user with clear steps to purchase so that they are able to clearly understand where they are in the funnel!
  • 51. Why ? @nilanp #BigDataSummit
  • 52. Causality ! @nilanp #BigDataSummit
  • 53. Qualitative data +Quantitative data = Causality @nilanp #BigDataSummit
  • 54. Exit survey
  • 55. nformation!e more Sample feedback!rmation.! Images! 13%! “Cant see a picture of the hotel. I like to see what I am getting not just have thewas more symbols for the ameneties”! Descriptions and Info! 65%!roduct “cant find enough info about the undercover hotel”! Extras! 21%!down by “for early flights, would be useful to see times of transfers. also info as to how to get to hotel if travelling by train.”!
  • 56. ✦recap The data innovationData science process...
  • 57. Capture Slice data dataLaunch Innovate @nilanp #BigDataSummit
  • 58. The dangers of processThe dangers of process optimisation optimisation @nilanp #BigDataSummit
  • 59. Speed correlates with browser type @nilanp #BigDataSummit
  • 60. But why is conversion 10% ? @nilanp #BigDataSummit
  • 61. Process optimisation ≠Changing behaviour @nilanp #BigDataSummit
  • 62. Behvioural causality is anorder of magnitude more difficult to understand than process causality @nilanp #BigDataSummit
  • 63. Understanding whypeople do things is difficult @nilanp #BigDataSummit
  • 64. ✦recapData Recap... science
  • 65. 1. Data is your largest untapped asset @nilanp #BigDataSummit
  • 66. 2. You can use it todrive revenue growthwhen times are tough @nilanp #BigDataSummit
  • 67. 3. Storing, analysing,innovating... 3 steps to success @nilanp #BigDataSummit
  • 68. HolidayExtras
  • 69. Nilan Peiris CMTODisruptive tehcnolognogyst @nilanp

×