Matsangas And Mc Cauley (2005) Model For Predicting Motion Sickness, Adaptation Asne

590 views
494 views

Published on

Matsangas & McCauley (2005) - A Linear Physiological Visual-Vestibular Interaction Model for the Prediction of Motion Sickness Incidence: Adaptation and Habituation Issues - ASNE Conference

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
590
On SlideShare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Matsangas And Mc Cauley (2005) Model For Predicting Motion Sickness, Adaptation Asne

  1. 1. A Linear Physiological Visual-Vestibular Interaction Model for the Prediction of Motion Sickness Incidence: Adaptation and Habituation Issues By Lt P. Matsagas, M.Sc., Hellenic Navy, and M.E. McCauley, Ph.D., Naval Postgraduate School Human Systems Integration Symposium 2005 "Enhancing Combat Effectiveness Through Warfighter Performance"
  2. 2. Motion Sickness <ul><li>Motion sickness is a general term that describes the discomfort and associated emesis (vomiting) induced by many kinds of motions. </li></ul><ul><li>Motion sickness effects are evident in numerous provocative motion environments, such as ships, aircraft, automobiles, and air-cushioned vehicles. </li></ul>
  3. 3. Cause of motion sickness <ul><li>Neural mismatch theory </li></ul>Current sensory input Neural store Vestibular system Vision Proprioception Error signal
  4. 4. Effects on performance <ul><li>The consequences on human performance and operational efficiency are: </li></ul><ul><ul><li>Ataxia ( lack of muscular coordination ) </li></ul></ul><ul><ul><li>Decreased spontaneity </li></ul></ul><ul><ul><li>Carelessness </li></ul></ul><ul><ul><li>Incoordination </li></ul></ul><ul><ul><li>Reductions in subject motivation </li></ul></ul><ul><ul><li>Mood changes </li></ul></ul><ul><ul><li>Sleepiness, drowsiness (through sopite syndrome) </li></ul></ul>
  5. 5. Motion Sickness Incidence (MSI) <ul><li>A historically common index of motion sickness severity is the Motion Sickness Incidence (MSI), which is the percentage of people who vomit when exposed to a nauseogenic environment. </li></ul>
  6. 6. HFR model (1974)
  7. 7. Proposed model <ul><li>Conceptually based on existing theories </li></ul><ul><li>Combined with observer theory concepts </li></ul><ul><li>MSI estimation based on: </li></ul><ul><ul><li>Gravity estimation error </li></ul></ul><ul><ul><li>Residual optical flow </li></ul></ul><ul><li>Model input parameters </li></ul><ul><ul><li>Vertical acceleration frequency and amplitude </li></ul></ul>
  8. 8. Model Overview
  9. 9. Predicted MSI
  10. 10. Model Validation
  11. 11. Model Validation Comparison plot
  12. 12. MSI accumulation
  13. 13. Adaptation to nauseogenic motion
  14. 14. MSI Habituation
  15. 15. MSI Habituation and Retention
  16. 16. Model significance <ul><li>Parametric </li></ul><ul><li>Easily extended to various combinations of sensory cues </li></ul><ul><li>Validated but not “tuned” </li></ul><ul><li>Precise </li></ul><ul><li>Etiologic </li></ul><ul><li>Linear and time invariant </li></ul>
  17. 17. Why is the model useful? <ul><li>Current state </li></ul><ul><ul><li>True motion detection </li></ul></ul><ul><ul><li>Seated subject </li></ul></ul><ul><ul><li>No voluntary motions </li></ul></ul><ul><li>Future state </li></ul><ul><ul><li>True and apparent motion detection </li></ul></ul><ul><ul><li>Proprioception </li></ul></ul><ul><ul><li>Refinement of Neural Store model </li></ul></ul><ul><ul><li>Parametric input of other human physiology parameters </li></ul></ul>
  18. 18. Future Research <ul><li>Include motion in 6 degrees of freedom </li></ul><ul><li>Implementation of “all” physiological systems </li></ul><ul><li>Central Nervous System (CNS) non-linear characteristics </li></ul>
  19. 19. <ul><li>Questions? </li></ul>
  20. 20. Adaptation mechanism detail + + Exponential Increase Exponential Decrease + + Perceived Linear Acceleration Perceived Gravity Adaptation signal Neural Store Σ
  21. 21. Future Research Current State Future State Inputs <ul><li>True motion </li></ul><ul><li>True motion </li></ul><ul><li>Visually detected motion </li></ul>Human systems involved <ul><li>Vestibular </li></ul><ul><li>Central Vision </li></ul><ul><li>Vestibular </li></ul><ul><li>Central Vision </li></ul><ul><li>Peripheral Vision </li></ul><ul><li>Proprioception </li></ul>Neural Store <ul><li>One average motion </li></ul><ul><li>Multiple motion characteristics </li></ul>Cue errors contributing to MSI <ul><li>Gravity vector estimation </li></ul><ul><li>Retinal Slip </li></ul><ul><li>Gravity vector estimation </li></ul><ul><li>Retinal Slip </li></ul><ul><li>Difference between true motion and vection </li></ul>
  22. 22. Current efforts Modeling of Inputs <ul><li>True motion </li></ul><ul><li>Visually detected motion </li></ul>Human systems involved <ul><li>Vestibular </li></ul><ul><li>Central Vision </li></ul><ul><li>Peripheral Vision </li></ul><ul><li>Proprioception </li></ul>Neural Store <ul><li>Multiple motion characteristics </li></ul>Cue errors contributing to MSI <ul><li>Gravity vector estimation </li></ul><ul><li>Retinal Slip </li></ul><ul><li>Difference between true motion and vection </li></ul>

×