[Nguoithay.vn] hay ung dung vong tron lg de giai bt

237 views

Published on

Tài liệu được giải chi tiết tại http://nguoithay.vn . Chúc các bạn học tốt và thành công trong công việc. Tài liệu vật lý này là một phần của những tài liệu trên trang http://nguoithay.vn

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
237
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
4
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

[Nguoithay.vn] hay ung dung vong tron lg de giai bt

  1. 1. NGUOITHAY.VN TRÇN QUANG THANH-K15-CAO HäC Lý -§H VINH PH¦¥NG PH¸P DïNG §¦êNG TRßN L¦îNG GI¸C øNG DôNG GI¶I BµI TËP DAO §éNG §IÒU HßA§Æt vÊn ®Ò: Nh− chóng ta ®· biÕt viÖc gi¶i c¸c b i tËp trong vËt lý phÇn d®®h cñacon l¾c lß xo, con l¾c ®¬n nãi chung l cã nhiÒu c¸ch. Tïy thuéc v o tõng ng−êi tõng b ito¸n cô thÓ m dïng c¸ch n y hay c¸ch kh¸c. Riªng phÇn b i tËp x¸c ®Þnh thêi ®iÓm vËt®i qua vÞ trÝ cho tr−íc trªn quü ®¹o v kho¶ng thêi gian ng¾n nhÊt ®Ó vËt ®i tõ vÞ trÝ x1 ®ÕnvÞ trÝ x2 hoÆc x¸c ®ùng pha ban ®Çu cña dao ®éng l d¹ng b i tËp ®iÓn h×nh m ta cã thÓdïng Ýt nhÊt l hai c¸ch. §ã l ph−¬ng ph¸p l−îng gi¸c v ph−¬ng ph¸p vÏ ®−êng trßnl−îng gi¸c. víI ph−¬ng ph¸p ®Çu th× phï hîp víi kiÓu l m b i tù luËn, nh−ng trong thêi®iÓm hiÖn nay khi ph¶i l m quen víi h×nh thøc thi tr¾c nghiÖm th× cÇn 1 ph−¬ng ¸n tèi−u kh¸c nhanh h¬n v hiÖu qu¶ h¬n. Víi tinh thÇn ®ã t«i xin m¹nh d¹n ®−a ra ph−¬ngph¸p gi¶i b»ng c¸ch dïng ®−êng trßn l−îng gi¸c. Hy väng phÇn n o ®ã gióp c¸c b¹nhäc sinh ®ang «n thi TN-C§-§H cã mét ph−¬ng tiÖn, c«ng cô h÷u Ých. Mäi th¾c m¾c, ýkiÕn trao ®æi xin göi vÒ theo ®Þa chØ thanh17802002@yahoo.com hoÆc 0904.727271 hoÆc038.3590194. Xin ch©n th nh c¶m ¬nC¥ Së Lý THUYÕT: Dùa v o mèi liªn hÖ gi÷a chuyÓn ®éng trßn ®Òu v D§§H th×kho¶ng thêi gian cÇn tÝnh ®−îc x¸c ®Þnh theo c«ng thøc : α t min = ω ChiÒu quay cña vËt quy −íc quay ng−îc chiÒu kim ®ång hå(nh− HV)Víi α l gãc m vËt quÐt ®−îc khi chuyÓn ®éng tõ vÞ trÝ x1 ®Õn vÞ trÝ x2 trªn trôc oxv t−¬ng øng trªn cung trßn nh− h×nh vÏ sau : x ω Ta coi vËt chuyÓn ®éng trªn trôc ox tõ vÞ trÝ x1 ®Õn vÞ trÝ A +x2 t−¬ng øng trªn vßng trßn vËt quÐt ®−îc cung MNx¸c ®Þnh b»ng gãc α . N X2 α ∆ X1 M -A 2π KTh«ng th−êng ω = = 2π . f = T m hoÆc b i ra cho tr−íc. NhiÖm vô cßn l¹i cñachóng ta l x¸c ®Þnh gãc quÐt α . §Ó tÝnh gãc quÐt αcã c¸c tr−êng hîp x¶y ra nh−sau :TH 1: Khi vËt ®i tõ VTCB ®Õn vÞ trÝ cã täa ®é x1 (d−¬ng) th× t−¬ng øng trªn ®−êng trßnvËt quÐt ®−îc gãc α nh− h×nh vÏ: 1
  2. 2. NGUOITHAY.VN TRÇN QUANG THANH-K15-CAO HäC Lý -§H VINHgãc α = gãc(HOM) HM X 1Ta tÝnh α qua c«ng thøc sin α = OM = A(Chó ý : ®−êng trßn cã b¸n kÝnh b»ng biªn ®é A ) ω +NÕu b i tËp cho gi¸ trÞ x1 cô thÓ th× ta suy ra ngay Agãc α v tõ ®ã suy ra thêi gian cÇn tÝnh M X1 αt min = víi α tÝnh theo rad α ω H π(VD: α =60 O th× lÊy l b»ng 3 ) -ATH2: VËt ®i tõ vÞ trÝ x1(d−¬ng) ®Õn vÞ trÝ biªn ®é Ath× gãc quÐt lóc n y t−¬ng øng trªn h×nh vÏ l α A +víi α =gãc(HOM). Ta dïng c«ng thøc: H X1 M α OH X 1 cos α = = OM AT−¬ng tù suy ra gãc α v thêI gian O α -A t min = ωTH 3: VËt ®i tõ vÞ trÝ x1 ®Õn vÞ trÝ x2 nh− h×nh vÏ bªnth× th−êng gãc αsÏ ®¬n gi¶n h¬n. NÕu tam gi¸cOMN ®Òu th× gãc α = 600 lóc n y chØ cÇn thayv o c«ng thóc l xong: α t min = ωTH 4 : L tr−êng hîp phøc t¹p h¬n tïy v o b ira m ta cã thÓ vÏ b»ng ph−¬ng ph¸p trªn t«i se tr×nh b y trong b i tËp cô thÓ PHÇN BµI TËPBµI 1: mét vËt dao ®éng ®iÒu hßa víi biªn ®é A= 4(cm) v chu kú dao ®éng T=0,1(s).VËt ®i qua VTCB theo chiÒu d−¬ng .1.TÝnh kho¶ng thêi gian ng¾n nhÊt ®Ó vËt ®i tõ vÞ trÝ cã li ®é X1=2(cm) ®Õn X2=4(cm) . 2
  3. 3. NGUOITHAY.VN TRÇN QUANG THANH-K15-CAO HäC Lý -§H VINH 1 1 1 1A. t = (s) B. t = (s) C. t = (s) D. t = (s) 10 100 120 60B i gi¶i: Khi vËt chuyÓ ®éng trªn trôc ox tõ vÞ trÝ 2(cm) ®Õn 4(cm) th× t−¬ng øng trªnvßng trßn vËt M ®Õn Q víi gãc quÐt α =gãc ( HOM) Ta cã A= 4(cm): T=0,1(S) Suy ra 4 Q 2π rad H Mω = 2π T = = 20π ( ) 2 0,1 s αCßn gãc α tÝnh theo c«ng thøc : OH 2 2 1 Ocos α = = = = OM A 4 2 πSuy ra α= (rad ) 3 -4 π α 1vËy thêi gian cÇn tÝnh l t = : min = 3 = ( s) ω 20π 602. TÝnh kho¶ng thêi gian ng¾n nhÊt ®Ó vËt ®i tõ vÞ trÝ X1=-2(cm) ®Õn vÞ trÝ X2=2(cm) 1 1 1 1A. t = (s) B. t = (s) C. t = (s) D. t = (s) 10 100 120 60B i gi¶i: T−¬ng tù nh− trªn lóc n y vËt quÐt ®−îcmét gãc α = gãc(MON) 4Do OM=ON=MN= A=4(cm) nªn tam gi¸c N π 2OMN ®Òu. Suy ra α= 3 α π O α 1VËy thêI gian cÇn t×m l tmin = = 3 = ( s) -2 ω 20π 60 M3. TÝnh thêi gian ng¾n nhÊt ®Ó vËt ®i tõ VTCB O -4®Õn vÞ trÝ cã li ®é X=2(cm) 1 1 1 1A. t = (s) B. t = (s) C. t = (s) D. t = (s) 10 100 120 60B i gi¶i : T−¬ng tù 2 c©u trªn khi vËt ®i tõ VTCB O®Õn vÞ trÝ x=2(cm) t−¬ng øng vËt quÐt ®−îc gãcα = gãc(MOH) HM X 2 1Ta cã sin α = = = = OM A 4 2 3
  4. 4. NGUOITHAY.VN TRÇN QUANG THANH-K15-CAO HäC Lý -§H VINH πSuy ra α= VËy thêi gian cÇn t×m l : 4 6 M π 22 α 1tmin = = 6 = ( s) α ω 20π 120 OO H -4 πB I 2: VËt dao ®éng ®iÒu hßa víi ph−¬ng tr×nh : x = 10 sin( 2πt + )(cm) .T×m thêi 2®iÓm vËt qua vÞ trÝ cã li ®é X=5(cm) lÇn thø hai theo chiÒu d−¬ng? 1 1 11 15A. t = (s) B. t = (s) C. t = ( s) D. t = (s) 6 16 6 6 πB i gi¶i: nhËn xÐt : do pha ban ®Çu ϕ = nªn t¹i thêi ®iÓm ban ®Çu t=0 vËt b¾t ®Çu 2dao ®éng tõ vÞ trÝ biªn d−¬ng ( quay l¹i VTCB) ( trªn h×nh vÏ l ®i tõ A vÒ O) . Ta cãc«ng thøc tÝnh thêi gian vËt ®i qua vÞ trÝ x=5(cm) lÇn thø nhÊt theo chiÒu d−¬ng l : t1 = T − t o(víi to l kho¶ng thêi gian ng¾n nhÊt ®Ó vËt ®i tõ vÞ trÝ biªn d−¬ng dÕn vÞ trÝ cã li ®éx=5(cm) , T l chu kú )ViÖc tÝnh t0 dùa v o ®−êng trßn l−îng gi¸c nh− sau : khi vËt dao ®éng tõ A vÒ P th× vËtchuyÓn ®éng trßn ®Òu tõ A ®Õn M . Kho¶ng thêi gian ng¾n nhÊt t0 ®Ó vËt ®i trªn qu·ng®−êng n y l : α OP 5 1 t0 = víi cos α = = = A ω OM 10 2 π 2π MSuy ra : α= v ω= nªn P 3 T α π .T Tt0 = = = vËy thêi ®iÓm ω 3.2π 6 OvËt ®i qua vÞ trÝ cã li ®é x=5(cm) theochiÒu d−¬ng lÇn thø nhÊt l -A 4
  5. 5. NGUOITHAY.VN TRÇN QUANG THANH-K15-CAO HäC Lý -§H VINH T 5T 5t1 = T − t o = T − = = (S ) 6 6 6Do T= 1(S) . KÕt luËn thêi gian vËt ®i qua vÞ trÝ cã li ®é x=5(cm) theo chiÒu d−¬ng lÇnthø 2 l : 5 11 t 2 = t1 + T = + 1 = (S ) 6 6 πB i 3: Mét vËt dao ®éng ®iÒu hßa theo ph−¬ng tr×nh: x = 10 sin(10πt + )(cm) 2X¸c ®Þnh thêi ®iÓm vËt ®i qua vÞ trÝ cã li ®é x=5(cm) lÇn thø 2002? πB i gi¶i: V× vËt b¾t dao ®éng t¹i vÞ trÝ biªn d−¬ng( do t=o th× x = 10 sin =10 > 0 ) v 2trong mçi chu kú vËt qua vÞ trÝ x=5(cm0 hai lÇn . Cho nªn vËt qua vÞ trÝ x=5(cm) 2002lÇnth× vËt ph¶i thùc hiÖn ®−îc 1001 chu kú dao ®éng . VËy thêi ®iÓm vËt qua vÞ trÝ x=5(cm)lÇn thø 2002 x¸c ®Þnh theo hÖ thøc : t = 1001T − t1 + 2π 2π 10víi T = = = 0,2( S ) cßn t1 l kho¶ng thêi gian ω 10π P Mng¾n nhÊt ®Ó vËt ®i tõ vÞ trÝ x=5(cm0 ®Õn vÞ trÝ 5biªn d−¬ng (x=10cm . Dôa v o h×nh vÏ ta tÝnh 0 OP 5 1thêi gian t1 nh− sau : cos α = = = OM 10 2 π -10Nªn α= 3 α π T t1 = = =VËy ω 3. 2π 6 Suy ra thêi gian cÇn t×m l T T 6005Tt = 1001T − t1 = 1001.T − = = 200,17( S ) 6 6 5
  6. 6. NGUOITHAY.VN TRÇN QUANG THANH-K15-CAO HäC Lý -§H VINHB i 4: Hai vËt dao ®éng ®iÒu ho cïng tÇn sè ,cïng biªn ®é trªn hai trôc song song cïng chiÒu nhau.Khi 2 vËt ®i c¹nh nhau chuyÓn ®éng ng−îc chiÒu nhau A N M 1v ®Òu ë t¹i vÞ trÝ cã li ®é b»ng lÇn biªn ®é . A 2 2TÝnh ®é lÖch pha gi÷a hai dao ®éng lóc n y ? π π π 5π OA. B. C. D. 4 6 2 6B i gi¶i : gi¶ sö khi 2 vËt dao ®éng ng−îc chiÒu nhau trªn -Trôc ox th× vËt 1 ®ang chuyÓn ®éng ng−îc chiÒu OX v A AvËt 2 chuyÓn cïng chiÒu OX nh− h×nh vÏ ( gÆp nhau t¹i to¹ ®é . Khi n y gãc hîp 2 πbëi 2 dao ®éng l α = Do tam gi¸c OMN l tam gi¸c vu«ng . VËy kÕt qu¶ : ®é lªch 2 πpha gi÷a 2 dao ®éng l α = 2B i 5: Mét con l¾c ®¬n dao ®éng ®iÒu ho víi chu kú 4 (s) biªn ®é dao ®éng lS0=6(cm). Chän t=o lóc con l¾c qua vÞ trÝ c©n b»ng theo chiÒu d−¬ng. TÝnh thêi gianng¾n nhÊt ®Ó con l¾c ®i tõ : a. VTCB ®Õn vÞ trÝ S=3(cm) b. VÞ trÝ S=3(cm) ®Õn vÞ trÝ S0=6(cm) B I GI¶I : T−¬ng tù nh− víi c¸c b i tËp trªn ta cã thÓ vÏ vßng trong l−îng gi¸c v suy ra thêi gian cÇn t×m. Víi c©u a khi vËt ®i tõ VTCB ®Õn vÞ trÝ S=3(cm) t−¬ng øng trªn vßng trßn vËt quÐt ®−îc gãc v thêi gian cÇn t× l : α π 1 tmin = = = ( s) π ω 6. π 3 Do ω = (rad ) sin α = MN = 3 = 1 hay 2 OM 6 2 2 π α= H×nh vÏ sau : 6 6
  7. 7. NGUOITHAY.VN TRÇN QUANG THANH-K15-CAO HäC Lý -§H VINH 6 M 3 O N -6Cßn c©u b khi vËt dao ®éng tõ vÞ trÝ S=3(cm) ®Õn vÞ trÝ S0=6(cm) t−¬ng øng trªn vßng πtrßn vËt quÐt ®−îc gãc α = nh− h×nh vÏ Suy ra thêi gian cÇn t×m l : 3 α π 2tmin = = = (s) OP 3 1 π ω 3. π 3 Do cos α = = = nªn α = 3 OM 6 2 2 6 M P O -6B i 6: Mét con l¾c ®¬n dao ®éng theo ph−−ong tr×nh : α = 0,14 sin( 2πt )(rad ) .TÝnhthêi gian ng¾n nhÊt ®Ó con l¾c ®i tõ vÞ trÝ cã li ®é gãc α = 0,07 ( rad ) ®Õn vÞ trÝ biªn gÇnnhÊt ? 1 1 5 1A. ( S ) B. (S ) C. (S ) D. ( S ) 6 12 12 8 7
  8. 8. NGUOITHAY.VN TRÇN QUANG THANH-K15-CAO HäC Lý -§H VINHB×a gi¶i : T−¬ng tù trªn vßng trong l−îng gi¸c khi vËt ®i tõ vÞ trÝ cã li ®é gãcα = 0,07 ( rad ) ®Õn vÞ trÝ biªn gÇn nhÊt l vÞ trÝ cã li ®é gãc cùc ®¹i α 0 = 0,14 ( rad ) πT−¬ng øng trªn vßng trßn vËt quÐt ®−îc gãc α = ( rad ) nh− h×nh vÏ . VËy thêi gian 6 α π 1 MN 0,07 1cÇn tÝnh l : tmin = = = ( s) sin α = = = Suy ra ω 6.2π 12 OM 0,14 2 πα= ( rad ) 6 0,14 M 0,07 O N -0,14KÕt luËn : cßn rÊt nhiÒu b i tËp d¹ng t−¬ng tù chóng ta cã thÓ ¸p dông gi¶ b i tËp. §©y chØl phÇn nhá hy väng c¸c em v c¸c b¹n phÇn n o hiÓu v øng dông tèt. Chóc c¸c em häctèt. Vinh ng y 18/07/2008 8

×