Your SlideShare is downloading. ×
Green Site Project results
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Saving this for later?

Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime - even offline.

Text the download link to your phone

Standard text messaging rates apply

Green Site Project results

97
views

Published on

Intervento di Petra Scanferla, CVR …

Intervento di Petra Scanferla, CVR
Conferenza Finale Progetto GREEN SITE: “Supercritical fluid technologies for river and sea dredge sediment remediation”. LIFE 10 ENV/IT/343.
Venezia, 13 dicembre 2013

Published in: Technology

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
97
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
3
Comments
0
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide
  • We expect to demonstrate that samples (e.g. contaminated soils and sediments) tested in prototype
    will have a very low amount of PAH, hydrocarbons and halogenated contaminants (e.g. PCB), after
    the treatment trains. The expected clean-up efficiency should be higher than 95%; every by– and
    end-products generated should be easily managed and discharged without further expensive or
    complex treatment, and the oxidation should not cause unexpected emergency stop or need for extra
    maintenance. Expected results are also practical guidelines and report on optimal use of prototype.
  • CVR is also involved in EU-funded project EURODEMO (European Co-ordination Action for Demonstration of Efficient Soil and Groundwater Remediation; http://www.eurodemo.info/) focusing on technology demonstration in the field of soil and groundwater remediation. Finally, CVR has experience in technologies validation (Scanferla P. et al. 2009. An Innovative Stabilization/Solidification Treatment for Contaminated Soil Remediation: the Murano (Venice, Italy) Demonstration Project. Journal of Soils and Sediments 9: 229-236).
     
    CVR is also involved in EU-funded project EURODEMO (European Co-ordination Action for Demonstration of Efficient Soil and Groundwater Remediation; http://www.eurodemo.info/) focusing on technology demonstration in the field of soil and groundwater remediation. Finally, CVR has experience in technologies validation (Scanferla P. et al. 2009. An Innovative Stabilization/Solidification Treatment for Contaminated Soil Remediation: the Murano (Venice, Italy) Demonstration Project. Journal of Soils and Sediments 9: 229-236).
     
  • Cvr is the leader of action 4 another benificiary is ALLES
  • Cvr is the leader of action 4 another benificiary is ALLES
  • Cvr is the leader of action 4 another benificiary is ALLES
  • Cvr is the leader of action 4 another benificiary is ALLES
  • Cvr is the leader of action 4 another benificiary is ALLES
  • Transcript

    • 1. GREEN SITE Action 4 – Technology assessment CONSORZIO VENEZIA RICERCHE – dott. Petra Scanferla
    • 2. Action 4 – Technology assessment Sub – Action 4.1: Technical preparation (CVR) Sub – Action 4.2: Evaluation (ALLES) • AIM: assessing the prototype developed in order to investigate its treatment efficacy of SFE and SCWO processes under real conditions with selected contaminated soil and sediment samples. •EXPECTED RESULTS: clean-up (extraction) efficiency should be higher than 90% (SFE) and over 90 % of efficiency in oxidation (SCWO) of target organic compounds; improvement (by 30’-60’) of kinetic rates of extraction/oxidation of target organic compounds; end-products generated should be easily managed and discharged without further expensive or complex treatment; possibility to realize compact equipment, easy to transport and to install in the intervention sites; practical guidelines on optimal use of prototype.
    • 3. Action 4 – Technology assessment Starting points for the assessment 1. Definition of the target organic pollutants A) characterizing the sediment contamination of the forthcoming industrial channel that need to be dredged… “ISAP - Indagine sui sedimenti e sulle acque dei canali di Porto Marghera e delle aree lagunari antistanti” MAV/CVN - ICRAM Primarily: PAHs
    • 4. Action 4 – Technology assessment Starting points for the assessment 1. Definition of the target organic pollutants A) characterizing the sediment contamination of the forthcoming industrial channel that need to be dredged… B) characterizing the contaminated soil and groundwater of the industrial area Primarily PAHs than amines and organochlorine PAHs
    • 5. Action 4 – Technology assessment Starting points for the assessment Chemical PAH: 50 and 100 mg/kg d.m. As Cd Cr Cu Hg Ni Pb Zn Tot. Hydrocabons Total PAHs PCBs Chlor.Pesticides Class B Class C Class C+ mg/Kg d.w. 2. Definition of the concentration levels of the selected contaminants in the samples that will be used for the evaluation of process performance. Class A mg/Kg d.w. mg/Kg d.w. mg/Kg d.w. 15 1 20 40 0.5 45 45 200 30 1 0.01 0.001 25 5 100 50 2 50 100 400 500 10 0.2 0.02 50 20 500 400 10 150 500 3000 4000 20 2 0.5 >50 >20 >500 >400 >10 >150 >500 >3000 >4000 >20 >2 >0.5 DISPOSAL SITES: A,B,C: in lagoon C+: no contact with lagoon
    • 6. Action 4 – Technology assessment Protocols and Procedures A. Definition of procedures for the collection and preparation of ad hoc sediment samples to be used for the evaluation tests of the processes. B. Identification of the matrices (solid, liquid and gaseous) that need to be characterized during the tests. C. Definition of protocols :  Starting run and blank test Protocol  Processes optimization Protocol
    • 7. Action 4 – Technology assessment A. Collection and preparation of ad hoc sediment samples IPA Naftalene Acenaftilene Acenaftene Fluorene Fenantrene Antracene Fluorantene Pirene Crisene Benzo(a)antracene Benzo(b+j)fluorantene Benzo(k)fluorantene Benzo(a)pirene Benzo(e)pirene Indeno(1,2,3-cd)pirene Dibenzo(a,h)antracene Benzo(g,h,i)perilene IPA TOTALI mg/Kg s.s. mg/Kg s.s. mg/Kg s.s. mg/Kg s.s. mg/Kg s.s. mg/Kg s.s. mg/Kg s.s. mg/Kg s.s. mg/Kg s.s. mg/Kg s.s. mg/Kg s.s. mg/Kg s.s. mg/Kg s.s. mg/Kg s.s. mg/Kg s.s. mg/Kg s.s. mg/Kg s.s. mg/Kg s.s. 1194.7 39.4 403.0 361.3 1452.4 230.6 565.5 335.8 233.6 212.6 186.5 116.2 134.7 117.6 52.4 64.5 78.9 5779.6 Idrocarburi totali mg/Kg s.s. 13807
    • 8. Action 4 – Technology assessment A. Collection and preparation of ad hoc sediment samples SAMPLE A PAH ≈ 50 ppm α β γ m g/kg d.w . Naphthalene Acenaphthylene Acenaphthene Fluorene Fenentrene Anthracene Fluorantrene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (j) fluoranthene Benzo (e) pyrene Benzo (a) pyrene Perylene Indeno (1,2,3-cd) Pyrene Dibenzo (a, h) anthracene Benzo (g, h, i) perylene Dibenzo (a, i) pyrene Dibenzo (a, e) pyrene Dibenzo (a, l) pyrene Dibenzo (a, h) pyrene Total PAHs Total hydrocarbons 1,900 0,540 4,700 8,900 14,700 1,750 8,700 5,400 1,730 1,490 1,100 0,480 0,540 0,700 0,940 0,272 0,490 0,161 0,470 0,049 0,047 0,076 0,012 55,0 53,0 1,800 0,430 3,800 5,600 13,100 1,580 8,200 4,800 1,660 1,390 1,030 0,570 0,440 0,670 0,910 0,263 0,460 0,152 0,450 0,045 0,046 0,071 0,013 48,0 48,2 Mean conc. st.dev. 1,700 0,457 4,000 6,400 13,367 1,667 8,033 4,800 1,737 1,500 1,100 0,520 0,527 0,710 0,960 0,278 0,500 0,165 0,487 0,049 0,050 0,080 0,013 49,3 54,4 α β γ m g/kg d.w . m g/kg d.w . 1,400 0,400 3,500 4,700 12,300 1,670 7,200 4,200 1,820 1,620 1,170 0,510 0,600 0,760 1,030 0,300 0,550 0,181 0,540 0,053 0,056 0,092 0,013 45,0 62,0 SAMPLE B PAH ≈ 75 ppm 0,3 0,1 0,6 2,2 1,2 0,1 0,8 0,6 0,1 0,1 0,1 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 5,1 7,0 8 kg of sediment sample A Naphthalene Acenaphthylene Acenaphthene Fluorene Fenentrene Anthracene Fluorantrene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (j) fluoranthene Benzo (e) pyrene Benzo (a) pyrene Perylene Indeno (1,2,3-cd) Pyrene Dibenzo (a, h) anthracene Benzo (g, h, i) perylene Dibenzo (a, i) pyrene Dibenzo (a, e) pyrene Dibenzo (a, l) pyrene Dibenzo (a, h) pyrene Total PAHs Total hydrocarbons 2,700 0,710 6,500 8,700 22,800 2,900 15,000 8,900 3,000 2,640 1,740 0,960 0,760 1,140 1,560 0,460 0,820 0,280 0,790 0,073 0,079 0,132 0,021 83,0 122,0 2,600 0,650 5,400 7,200 19,800 2,800 11,800 6,900 2,800 2,570 1,770 0,840 0,780 1,110 1,550 0,460 0,810 0,264 0,790 0,081 0,079 0,131 0,023 71,0 130,0 Mean conc. st.dev. m g/kg d.w . 2,900 0,570 5,700 7,000 20,500 2,510 10,500 6,100 2,400 2,100 1,550 0,730 0,630 0,970 1,290 0,380 0,690 0,225 0,700 0,080 0,081 0,131 0,024 68,0 141,0 2,733 0,643 5,867 7,633 21,033 2,737 12,433 7,300 2,733 2,437 1,687 0,843 0,723 1,073 1,467 0,433 0,773 0,256 0,760 0,078 0,080 0,131 0,023 74,0 131,0 8 kg of sediment sample B 0,2 0,1 0,6 0,9 1,6 0,2 2,3 1,4 0,3 0,3 0,1 0,1 0,1 0,1 0,2 0,0 0,1 0,0 0,1 0,0 0,0 0,0 0,0 7,9 9,5
    • 9. Action 4 – Technology assessment B. Identification of the matrices : SFE Sediment sampling point after SFE Sampling points for SFE Stocks/extracs sampling point
    • 10. Action 4 – Technology assessment B. Identification of the matrices Sediment sampling point after SFE Sampling points for SFE Stocks/extracs sampling point
    • 11. Action 4 – Technology assessment C. Protocols realization Sediment sampling after SFE
    • 12. Action 4 – Technology assessment C. Protocols realization Stocks/extracs sampling after SFE
    • 13. Action 4 – Technology assessment B. Identification of the matrices : SCWO Emissions control after SCWO Sampling points for SCWO Liquid sample control after SCWO
    • 14. Action 4 – Technology assessment C. Protocols realization
    • 15. Action 4 – Technology assessment SFE results 1^ Test Mean conc. Sample treated m g/kg d.w . PAH ≈ 50 ppm 2^ Test m g/k g d.w . Naphthalene Acenaphthylene Acenaphthene Fluorene Fenentrene Anthracene Fluorantrene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (j) fluoranthene Benzo (e) pyrene Benzo (a) pyrene Perylene Indeno (1,2,3-cd) Pyrene Dibenzo (a, h) anthracene Benzo (g, h, i) perylene Dibenzo (a, i) pyrene Dibenzo (a, e) pyrene Dibenzo (a, l) pyrene Dibenzo (a, h) pyrene Total PAHs Total hydrocarbons 1,700 0,457 4,000 6,400 13,367 1,667 8,033 4,800 1,737 1,500 1,100 0,520 0,527 0,710 0,960 0,278 0,500 0,165 0,487 0,049 0,050 0,080 0,013 49,3 54,4 Extraction % 0,013 0,004 0,003 0,006 0,018 0,005 0,006 0,006 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 <0,001 0,061 8,900 90 min. Sample treated 3^ Test Extraction % m g/kg d.w . 99,2 99,1 99,9 99,9 99,9 99,7 99,9 99,9 100,0 100,0 100,0 99,9 99,9 99,9 99,9 99,8 99,9 99,7 99,9 99,0 99,0 99,4 96,1 99,9 83,6 0,006 <0,001 0,003 0,012 0,076 0,008 0,094 0,062 0,007 0,012 0,009 0,004 0,004 0,007 0,003 0,001 0,004 0,001 0,005 <0,001 <0,001 <0,001 <0,001 0,320 <5 90 min. Sample treated 4^ Test Extraction % m g/kg d.w . 99,6 99,9 99,9 99,8 99,4 99,5 98,8 98,7 99,6 99,2 99,2 99,2 99,2 99,0 99,7 99,6 99,2 99,4 99,0 99,0 99,0 99,4 96,1 99,4 95,4 0,051 <0,001 <0,001 <0,001 0,071 0,004 0,156 0,092 0,013 0,021 0,032 0,011 0,004 0,019 0,006 0,001 0,005 <0,001 0,010 <0,001 <0,001 <0,001 <0,001 0,490 5,000 60 min. Sample treated Extraction % m g/k g d.w . 97,0 99,9 100,0 100,0 99,5 99,8 98,1 98,1 99,3 98,6 97,1 97,9 99,2 97,3 99,4 99,6 99,0 99,7 97,9 99,0 99,0 99,4 96,1 99,0 90,8 0,041 0,012 0,011 0,051 0,253 0,027 0,245 0,144 0,024 0,033 0,031 0,013 0,015 0,021 0,012 0,003 0,008 0,003 0,010 <0,001 0,002 0,002 <0,001 0,960 <5 60 min. 97,6 97,4 99,7 99,2 98,1 98,4 97,0 97,0 98,6 97,8 97,2 97,5 97,2 97,0 98,8 98,9 98,4 98,2 97,9 99,0 96,0 97,5 96,1 98,1 100,0
    • 16. Action 4 – Technology assessment SFE results 1^ Test Mean conc. m g/kg d.w . PAH ≈ 75 ppm Sample treated m g/kg d.w . Naphthalene Acenaphthylene Acenaphthene Fluorene Fenentrene Anthracene Fluorantrene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (j) fluoranthene Benzo (e) pyrene Benzo (a) pyrene Perylene Indeno (1,2,3-cd) Pyrene Dibenzo (a, h) anthracene Benzo (g, h, i) perylene Dibenzo (a, i) pyrene Dibenzo (a, e) pyrene Dibenzo (a, l) pyrene Dibenzo (a, h) pyrene Total PAHs Total hydrocarbons 2,733 0,643 5,867 7,633 21,033 2,737 12,433 7,300 2,733 2,437 1,687 0,843 0,723 1,073 1,467 0,433 0,773 0,256 0,760 0,078 0,080 0,131 0,023 74,0 131,0 0,013 0,005 0,009 0,054 0,211 0,025 0,174 0,107 0,025 0,032 0,023 0,009 0,010 0,017 0,009 0,003 0,007 0,002 0,008 <0,001 <0,001 <0,001 <0,001 0,740 <5 Extraction % 2^ Test Sample treated 3^ Test Extraction % m g/kg d.w . 99,524 99,223 99,847 99,293 98,997 99,086 98,601 98,534 99,085 98,687 98,636 98,933 98,618 98,416 99,386 99,308 99,095 99,220 98,947 99,359 99,372 99,619 97,794 99,000 100,000 90 min. 0,068 0,010 0,023 0,087 0,170 0,016 0,320 0,207 0,034 0,046 0,056 0,024 0,021 0,039 0,019 0,006 0,015 0,004 0,019 <0,001 0,003 0,002 <0,001 1,190 6,700 90 min. Sample treated 4^ Test Extraction % mg/kg d.w . 97,5 98,4 99,6 98,9 99,2 99,4 97,4 97,2 98,8 98,1 96,7 97,2 97,1 96,4 98,7 98,6 98,1 98,4 97,5 99,4 96,2 98,5 97,8 98,4 94,9 0,036 0,003 <0,001 <0,001 0,028 0,003 0,074 0,052 0,020 0,027 0,046 0,015 0,025 0,038 0,021 0,008 0,014 0,004 0,021 <0,001 0,001 0,001 <0,001 0,440 8,700 60 min. Sample treated Extraction % m g/kg d.w . 98,7 99,5 100,0 100,0 99,9 99,9 99,4 99,3 99,3 98,9 97,3 98,2 96,5 96,5 98,6 98,2 98,2 98,4 97,2 99,4 98,7 99,2 97,8 99,4 93,4 0,041 0,011 0,022 0,098 0,380 0,039 0,300 0,186 0,032 0,045 0,030 0,012 0,017 0,023 0,014 0,004 0,011 0,004 0,014 <0,001 0,002 0,003 <0,001 1,290 16,100 60 min. 98,5 98,3 99,6 98,7 98,2 98,6 97,6 97,5 98,8 98,2 98,2 98,6 97,6 97,9 99,0 99,1 98,6 98,4 98,2 99,4 97,5 97,7 97,8 98,3 87,7
    • 17. Action 4 – Technology assessment SFE results Σ PAH on the extracts from sample at 50 ppm Σ PAH on the extracts from sample at 75 ppm
    • 18. Action 4 – Technology assessment SFE results 90%
    • 19. Action 4 – Technology assessment SFE results C+ C B Class A 27 KWh 22 KWh
    • 20. Action 4 – Technology assessment SFE results Capacity of SFE pilot plant = 5 kg/h B Class A 27 KWh 22 KWh
    • 21. Action 4 – Technology assessment SCWO results Extract treated in 50’: 14,35 Kg (~7% of organic contaminants) Emission limit D.Lgs 152/2006 1st TEST pH Mineral oil Conductivity TDS N nitrogen Chlorides Sulphates Cu Zn mg/L µS/cm mg/L mg/L mg/L mg/L mg/L mg/L Liquid output during the Liquid output (discharge Blank sample - oxidation with during the into Contaminated Liquid before isopropyl oxidation with surface DM water Extract flame ignition alcohol (7,5%) extract w ater) 6,45 5,98 6,00 4,58 2,59 68400 <0,1 <0,1 <0,1 5 18,3 63,8 29,5 343 <10 <10 <10 80 <0,1 <0,1 0,68 20 0,79 0,728 0,62 1200 11,1 0,75 21,6 1000 <0,01 <0,01 <0,01 0,4 0,323 <0,05 0,448 0,5 99,99 %
    • 22. Action 4 – Technology assessment SCWO results Extract treated in 53’: 17,1 Kg (~7% of organic contaminants) Emission limit D.Lgs 152/2006 2nd TEST pH Mineral oil Conductivity TDS N nitrogen Chlorides Sulphates Cu Zn Capacity of SCWO pilot plant = 20 kg/h mg/L µS/cm mg/L mg/L mg/L mg/L mg/L mg/L Liquid output during the Liquid output (discharge Blank sample - oxidation with during the into Contaminated Liquid before isopropyl oxidation with surface DM water Extract flame ignition alcohol (7,5%) extract w ater) 6,45 6,14 5,65 3,71 2,21 66700 <0,1 <0,1 7,5 5 18,3 52,4 50,3 878 <10 <10 <10 80 0,139 <0,1 0,87 20 1,36 0,371 0,666 1200 5,26 5,15 93 1000 <0,01 <0,01 0,0136 0,4 2,74 0,43 0,394 0,5 99,99 %
    • 23. Action 4 – Technology assessment SCWO results Air emission during the oxidation with isopropyl alcohol (7,5%) 2nd TEST vapour water TVOC Air emission during the oxidation with contaminated extract % <1 8,4 Emission (com bustion limit plant w ith D.Lgs w aste 152/2006 incinerator) <1 mg/Nmc Emission limit Dlgs 133/2005 9,3 O2 % v/v 9 4,7 CO2 % v/v 8,77 11,77 CO mg/Nmc 156 14,2 100 NOx mg/Nmc <0,1 <0,1 200 SO2 mg/Nmc 4,2 1,5 200 single PAH congeners ng/Nmc <2 Σ PAH - upper bound ng/Nmc 25 100.000 10.000 0,003 2,4 10.000 500.000 0,1 Σ PCDD+PCDF - upper bound ng/Nmc (I-TEQ) ng/Nmc Σ PCB - dioxin upper bound
    • 24. Action 4 – Technology assessment Conclusions • EXPECTED RESULTS:  extraction efficiency should be higher than 90% (SFE) and over 90 % of efficiency in oxidation (SCWO) of target organic compounds;  improvement (by 30’-60’) of kinetic rates of extraction/oxidation of target organic compounds;  end-products generated should be easily managed and discharged without further expensive or complex treatment;  possibility to realize compact equipment, easy to transport and to install in the intervention sites;  practical guidelines on optimal use of prototype
    • 25. GRAZIE PER L’ATTENZIONE Contatto: sp.cvr@vegapark.ve.it Le informazioni contenute nel presente documento possono essere riservate e sono, comunque, destinate esclusivamente alla persona o all'ente sopraindicati. La diffusione, distribuzione e/o copia del documento trasmesso da parte di qualsiasi soggetto diverso dal destinatario è proibita. Se avete ricevuto questo documento per errore, Vi preghiamo di contattarci immediatamente. Grazie.