Emeca SPE-USA Pile Joint Product

4,109 views

Published on

Slideshow on the use of Pile Joint Product from SPE-USA

www.canadianpile.com

Published in: Technology, Business
1 Comment
3 Likes
Statistics
Notes
  • Why is the CEO of Emeca SPEShown only as the Independat Engineer on this presentation and why is he presenting it under Ryan Structural Engineers rather than as John Ryan CEO Emeca SPE USA. A little mis;leading isnt it? I would assume by design.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Views
Total views
4,109
On SlideShare
0
From Embeds
0
Number of Embeds
363
Actions
Shares
0
Downloads
109
Comments
1
Likes
3
Embeds 0
No embeds

No notes for slide
  • Photo of piles segments being joined in Finland The splice component is identical: -simplifies casting and storage of piles Discuss anatomy of splice
  • Photo of piles segments being joined in Finland The splice component is identical: -simplifies casting and storage of piles Discuss anatomy of splice
  • Emeca SPE-USA Pile Joint Product

    1. 1. Design, Testing, and Use of an Innovative Prestress Concrete Pile Joint
    2. 2. Long Pile Handling <ul><li>Handling equipment relatively large </li></ul><ul><li>Special permit loads </li></ul><ul><li>Escort requirements </li></ul>
    3. 3. Driving Long Piles <ul><li>Pile Installation </li></ul><ul><ul><li>2 Cranes </li></ul></ul><ul><ul><li>Power Pak /Air Compressor </li></ul></ul><ul><ul><li>Hammer and Leads </li></ul></ul><ul><ul><li>5 or 6-man crew </li></ul></ul><ul><ul><li>Difficult Handling </li></ul></ul><ul><ul><li>Fuel for 3-Large Engines </li></ul></ul><ul><ul><li>Maintenance of 3 Machines </li></ul></ul><ul><ul><li>& Hammer </li></ul></ul>
    4. 4. Up to 65 ft-long pile segments: (4 Fork-truck and spreader for unloading & staging Spliced-Pile Alternative
    5. 5. Spliced-Pile Alternative <ul><li>110-ft Spliced Pre-stress Pile: </li></ul><ul><ul><li>Purpose-built driving rig </li></ul></ul><ul><ul><li>2-man crew </li></ul></ul><ul><ul><li>Reduced Fuel Cost </li></ul></ul><ul><ul><li>Reduced Transportation Cost </li></ul></ul><ul><ul><li>Reduced Maintenance </li></ul></ul><ul><ul><li>High Production Rate </li></ul></ul><ul><ul><li>Increased Job Site Safety </li></ul></ul>
    6. 6. Emeca Pile Joint Male Stud Female Socket Locking pin hole Cover Plate Reinforcing
    7. 7. Emeca Pile Joint Automated Robotic Fabrication
    8. 8. Tension Limit States 3. & 7.: Weld rupture at reinforcing/locking mechanism interface Note: Welds are designed to develop reinforcing Butt-Joint at female socket Lap-Joint at Male Stud
    9. 9. Structural Analysis <ul><li>1. Develop loads to be transferred across splice </li></ul><ul><ul><li>- L-pile analysis (bending, shear) </li></ul></ul><ul><ul><li>- Driving stresses (compression, tension) </li></ul></ul><ul><ul><li>- Structural uplift requirements (tension) </li></ul></ul><ul><li>2. Provide splice that adequately transfers: </li></ul><ul><ul><li>- Compression </li></ul></ul><ul><ul><li>- Shear </li></ul></ul><ul><ul><li>- Tension </li></ul></ul><ul><ul><li>- Bending </li></ul></ul>
    10. 10. Compression Compression is transferred directly through bearing of faying surfaces Assembly Diagram of Emeca Joint
    11. 11. Shear <ul><li>Shear capacity is typically controlled by the shear capacity of the reinforced concrete section </li></ul><ul><li>Shear capacity at the splice is based on shear yield mechanical fixture: </li></ul>Shear failure plane
    12. 12. Tension Tensile Limit States 1.&9. Transfer tensile force from prestress to mild reinforcing 2.&8. Tensile yield of mild reinforcing 3. Weld rupture at female socket 4. Tensile rupture of female socket 5. Shear rupture of pin 6. Tensile rupture male stud 7. Weld rupture at male stud
    13. 13. Tension Limit States 1 & 2: CASE 2: L embed. < L d for strand: * Bond Limit (Strand) OR Mild Reinforcing Steel Limit * Ref: ACI 12.9.1 CASE 1: L embed. ≥ L d for strand: Rupture Limit (Strand) OR Mild Reinforcing Steel Limit
    14. 14. Tension In General: <ul><li>When mechanical joining mechanism are designed to develop reinforcing: </li></ul><ul><li>strand slip, </li></ul><ul><li>(2) strand rupture OR </li></ul><ul><li>(3) yield of reinforcing will control over all tensile limit states </li></ul>
    15. 15. Auxiliary Reinforcing Auxiliary Reinforcing Auxiliary Reinforcing
    16. 16. Tension Summary: <ul><li>Welds and locking mechanisms develop reinforcing </li></ul><ul><li>Controlling Limit States: </li></ul><ul><li>(1) Strand slip </li></ul><ul><li>(2) Strand Rupture, or </li></ul><ul><li>(3) Yield of Reinforcing </li></ul><ul><li>With Auxiliary Reinforcing , </li></ul><ul><li>(1) Strand Slip will NOT control </li></ul><ul><li>The limits states of the tension component of the bending couple are analogous </li></ul>
    17. 17. Bending Analysis at Joint Critical Sections: S2-Prestress Section S1-Section at Joint
    18. 18. Bending Analysis at Joint S1- Reinforced Section (12-in. pile)
    19. 19. Bending Analysis at Joint S1- Reinforced Section (12-in. pile) M n = 41.7 ft-k
    20. 20. Bending Analysis at Joint max. stress in strand = f ps = 173 ksi S2- Prestress Section (12-in. pile)
    21. 21. Bending Analysis at Joint S2- Prestress Section (12-in. pile) PCI Figure 4.12.4 (p. 4-122) 30 in. 173 ksi
    22. 22. Bending Analysis at Joint f ps = 173 ksi M n = 33.5 ft-k S2- Prestress Section (12-in. pile)
    23. 23. Analysis at Joint Summary: Unreduced Capacities of Pile at Joint 12-in. Pile Splice 14-in. Pile Splice Limit Tension - T n 95.6 kips 150 kips Yield of Mild Reinforcing Bending - M n 33.5 ft-kips 55.2 ft-kips Strand Slip reinforcing added - M n 41.5 ft-kips 73.7 ft-kips Yield of Mild Reinforcing Shear - V n 19.0 kips 26.4 kips Shear Capacity of Pile
    24. 24. Interaction of 12-inch Piles vs. Emeca Joint Cross Section
    25. 25. Interaction of 14-inch Piles vs. Emeca Joint Cross Section
    26. 26. Bending Tests – University of South Carolina Test Set-up: Recorded Data: - Load - Displacement at ¼ points - Rotation at Joint Loading Protocol: - Quasi-static loading
    27. 27. Bending Tests – University of South Carolina Test Specimens (12 Total): I. Splice only (6) 28-ft. long piles, spliced at midpoint (3) 14-in. Specimens (6 strand) (3) 12-in. Specimens (4 strand) II. Splices with “Auxiliary Reinforcing” (6) 28-ft. long piles, spliced at midpoint (3) 14-in. Specimens (6 strand) (3) 12-in. Specimens (4 strand) Auxiliary reinforcing – (4) #5’s x 60”
    28. 28. Bending Tests Results: <ul><li>Failure Mode 1: </li></ul><ul><li>Exhibited by all Type I Specimens </li></ul><ul><li>Characterized by strand slip at </li></ul><ul><li>critical bending section (S2) </li></ul><ul><li>Failure Mode 2: </li></ul><ul><li>Exhibited by all Type II Specimens </li></ul><ul><li>Characterized by rupture of mild </li></ul><ul><li>reinforcing at critical section (S1) </li></ul>
    29. 29. Bending Tests Moment Strength Results (ft-kips): M n ′ –Calculated theoretical moment using tested material strength: F y = 73 ksi f c ′ = 7,000 psi Theoretical Test Results Mean Low M n M n ′ Mean Low M n ′ M n ′ Splice Only 12 in. 37 47 53.6 52.7 114% 111% 14 in. 61 79 85.4 77 108% 97% Auxiliary Reinforcing Added 12 in. 37 53 63 59.7 119% 112% 14 in. 67 93 99.3 90.5 107% 97%
    30. 30. Recommendations for Use <ul><li>1. SDC C: Pile joints must be located > 20 ft below pile cap </li></ul><ul><li>SDC D, E, and F: Pile joints must be located outside of the “ductile-zone” in defined in IBC 1809.2.3 (35 ft below pile cap, minimum) </li></ul><ul><li>M n (joint) > 50% M n (pile) </li></ul><ul><li>4. Minimum 28-day compressive strength of concrete = 6,000 psi </li></ul><ul><li>5. Design strength of pile at the splice can be determined using: </li></ul><ul><li>- Strain compatibility, and </li></ul><ul><li>- Standard ACI development length formulation (for prestress & mild reinforcing) </li></ul>General:
    31. 31. <ul><li>Vitol Oil - Port Canaveral, FL </li></ul><ul><li>6,300 - 100-ft spliced piles </li></ul><ul><li>Spliced pile solution saved $10M+ </li></ul><ul><li>30%-35% cost savings to project </li></ul>Emeca Pile Joint PDCA National Project of the Year, 2008
    32. 32. Casting Splices <ul><li>Casting the Emeca Pile Joint: </li></ul><ul><li>Casting guides used to square and center </li></ul><ul><li>joints in piles </li></ul><ul><li>Proper production fit-up between any two </li></ul><ul><li>piles is facilitated with use of casting guides </li></ul>
    33. 33. Casting Splices <ul><li>Piles removal from forms: </li></ul><ul><li>Pile handling efficiency greatly improved </li></ul><ul><li>Removal can be done with small machines </li></ul>
    34. 34. Casting Splices <ul><li>Piles stored after casting: </li></ul><ul><li>No match-casting </li></ul><ul><li>Any two piles can be spliced </li></ul>
    35. 35. Casting Splices <ul><li>Preparation after casting: </li></ul><ul><li>Strands ground flush </li></ul><ul><li>Square end verified </li></ul>
    36. 36. Installation <ul><li>Production: </li></ul><ul><li>30 – 100 ft. long spliced piles / rig / day </li></ul><ul><li>2 men per rig </li></ul>
    37. 37. Installation <ul><li>Pile Splicing in the Field: </li></ul><ul><li>Precision fabrication facilitates proper fit-up </li></ul><ul><li>Splicing piles takes 3-5 minutes </li></ul>
    38. 38. Projects Owner: Vitol Oil Company Contractor: Sun Marine Project Status: Complete Emeca Product: 12-in. Pile Joints Notes: 6300, 100-ft-long piles installed Vitol Oil Tank Farm, Seaport Canaveral, FL
    39. 39. Projects Owner: Northrup Grumman Contractor: Ford Pile Foundations Project Status: Active Emeca Product: 12-in. Pile Joints Notes: Piles and splices designed to resist hydrostatic tension Northrup Grumman Naval Shipyard - Dry Dock Facility, Newport News, VA
    40. 40. Projects Contractor: Junttapojat Oy Emeca Product: 14-in. Pile Joints Notes: - 8000 Emeca Pile Joints used on project - 656,000 total pile length - Up to 105 foot long piles driven in 3 sections - Battered piles driven at 4V:1H Vousaari Harbor Project for the Port of Helsinki, Helsinki, Finland
    41. 41. Projects Contractor: Aarsleff Piling Status: Complete Emeca Product: 16-in. Pile Joints Notes: 50 wind turbine foundations constructed using 85-ft-long,16-in. spliced piles Wind Farm, Ransonmoor, Finland
    42. 42. Projects Contractor: Kiewit Construction Project Status: Active Emeca Product: 14-in. Rock Points customized for 30-in.-square concrete piles Notes: Piles driven through concrete mooring anchors at approximately 30-ft. Brayton Point Cooling Tower, Summerset, MA
    43. 43. Projects Anacostia Naval Station Drainage Phase IV, Washington, DC Owner: NAVFAC Project Status: Completed August 2008 General Contractor: Corinthian Contractors Pile Contractor: Coastal Pile Driving, Inc. Property Manager: Whiting-Turner Contracting Product: 12-in. Pile Joints Notes: Up to 83-ft-long spliced piles

    ×