Matrices+y+determinantes

  • 2,792 views
Uploaded on

como resolverlos

como resolverlos

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
  • muy buenas laminas gracias por tu informacion sigue asi :)
    Are you sure you want to
    Your message goes here
    Be the first to like this
No Downloads

Views

Total Views
2,792
On Slideshare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
119
Comments
1
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. MATRICES Y DETERMINANTES Definición de matriz Se llama matriz de orden m×n a todo conjunto rectangular de elementos a ij dispuestos en m líneas horizontales (filas) y n verticales (columnas) de la forma: Abreviadamente suele expresarse en la forma A =( a ij ), con i =1, 2, ..., m, j =1, 2, ..., n. Los subíndices indican la posición del elemento dentro de la matriz, el primero denota la fila ( i ) y el segundo la columna ( j ). Por ejemplo el elemento a 25 será el elemento de la fila 2 y columna 5.
  • 2. MATRICES Y DETERMINANTES
    • Matriz fila: Es una matriz que solo tiene una fila, es decir m =1 y por tanto es de orden 1 x n .
    Matriz columna: Es una matriz que solo tiene una columna, es decir, n =1 y por tanto es de orden m x 1 . Tipos de matrices :
  • 3. MATRICES Y DETERMINANTES Tipos de matrices:
    • Matriz cuadrada: Es aquella que tiene el mismo número de filas que de columnas, es decir m = n . En estos casos se dice que la matriz cuadrada es de orden n , y no n x n .
    • Los elementos a ij con i = j , o sea a ii forman la llamada diagonal principal de la matriz cuadrada, y los elementos a ij con i + j = n +1 la diagonal secundaria.
  • 4. MATRICES Y DETERMINANTES
    • Matriz traspuesta: Dada una matriz A, se llama traspuesta de A, y se representa por A t , a la matriz que se obtiene cambiando filas por columnas. La primera fila de A es la primera fila de A t , la segunda fila de A es la segunda columna de A t , etc.
    • De la definición se deduce que si A es de orden m x n , entonces A t es de orden n x m .
    Tipos de matrices : Matriz simétrica: Una matriz cuadrada A es simétrica si A = A t , es decir, si a ij = a ji  i, j . Matriz antisimétrica: Una matriz cuadrada es antisimétrica si A = –A t , es decir, si a ij = – a ji  i, j .
  • 5. MATRICES Y DETERMINANTES
    • Matriz nula es aquella que todos sus elementos son 0 y se representa por 0
    La matriz La matriz es una matriz nula de orden 3 es una matriz nula de orden 2 x 4 Tipos de matrices :
  • 6. MATRICES Y DETERMINANTES Tipos de matrices : Matriz diagonal: Es una matriz cuadrada, en la que todos los elementos no pertenecientes a la diagonal principal son nulos. Matriz escalar: Es una matriz diagonal con todos los elementos de la diagonal iguales Matriz unidad o identidad: Es una matriz escalar con los elementos de la diagonal principal iguales a 1.
  • 7. MATRICES Y DETERMINANTES Tipos de matrices : Matriz Triangular: Es una matriz cuadrada que tiene nulos todos los elementos que están a un mismo lado de la diagonal principal. Las matrices triangulares pueden ser de dos tipos: Triangular Superior: Si los elementos que están por debajo de la diagonal principal son todos nulos. Es decir, a ij = 0  i < j. Triangular Inferior: Si los elementos que están por encima de la diagonal principal son todos nulos. Es decir, a ij = 0  j < i. matriz triangular inferior matriz triangular superior
  • 8. MATRICES Y DETERMINANTES Operaciones con matrices Trasposición de matrices Suma y diferencia de matrices Producto de una matriz por un número Propiedades simplificativas Producto de matrices Matrices inversibles
  • 9. MATRICES Y DETERMINANTES Trasposición de matrices Operaciones con matrices Dada una matriz de orden m x n, A = ( aij ), se llama matriz traspuesta de A, y se representa por A t , a la matriz que se obtiene cambiando las filas por las columnas (o viceversa) en la matriz A. Es decir: Propiedades de la trasposición de matrices: 1ª.- Dada una matriz A, siempre existe su traspuesta y además es única. 2ª.- La traspuesta de la matriz traspuesta de A es A.  (A t ) t = A.
  • 10. MATRICES Y DETERMINANTES
    • La suma de dos matrices A=(a ij ), B=( bij ) de la misma dimensión, es otra matriz S=( sij ) de la misma dimensión que los sumandos y con término genérico sij=aij+bij . Por tanto, para poder sumar dos matrices estas han de tener la misma dimensión.
    • La suma de las matrices A y B se denota por A+B.
    • Ejemplo
    Suma y diferencia de matrices Operaciones con matrices La diferencia de matrices A y B se representa por A–B, y se define como: A–B = A + (–B)                                                         Sin embargo,                            no se pueden sumar.
  • 11. MATRICES Y DETERMINANTES
    • 4ª. La matriz –A, que se obtiene cambiando de signo todos los elementos de A, recibe el nombre de matriz opuesta de A, ya que A + (–A) = 0.
    Suma y diferencia de matrices Operaciones con matrices Propiedades de la suma de matrices 1ª. A + (B + C) = (A + B) + C Propiedad Asociativa 2ª. A + B = B + A Propiedad conmutativa Matriz Nula 3ª. A + 0 = A (0 es la matriz nula)
  • 12. MATRICES Y DETERMINANTES Producto de una matriz por un número Operaciones con matrices El producto de una matriz A = (aij) por un número real k es otra matriz B = (bij) de la misma dimensión que A y tal que cada elemento bij de B se obtiene multiplicando aij por k , es decir, bij = k·aij. Ejemplo: El producto de la matriz A por el número real k se designa por k·A . Al número real k se le llama también escalar, y a este producto, producto de escalares por matrices
  • 13. MATRICES Y DETERMINANTES
    • .
    Producto de una matriz por un número Operaciones con matrices Propiedades del producto de una matriz por un escalar Elemento unidad 4ª. 1 · A = A · 1 = A 1ª. k (A + B) = k A + k B Propiedad distributiva 1ª 2ª. (k + h)A = k A + h A Propiedad distributiva 2ª Propiedad asociativa mixta 3ª. k [h A] = (k h) A
  • 14. MATRICES Y DETERMINANTES Propiedades simplificativas Operaciones con matrices Si A + C = B + C  A = B Si k A = k B  A = B si k es distinto de 0 Si k A = h A  h = k si A es distinto de 0
  • 15. MATRICES Y DETERMINANTES Producto de matrices Operaciones con matrices Dadas dos matrices A y B , su producto es otra matriz P cuyos elementos se obtienen multiplicando las filas de A por las columnas de B . De manera más formal, los elementos de P son de la forma: Es evidente que el número de columnas de A debe coincidir con el número de filas de B . Es más, si A tiene dimensión m x n y B dimensión n x p , la matriz P será de orden m x p , Es decir: P ij =  a ik b kj no se pueden multiplicar Ejemplo:
  • 16. MATRICES Y DETERMINANTES
    • Operaciones con matrices
    Producto de matrices Propiedades del producto de matrices A·(B·C) = (A·B)·C (Propiedad asociativa) Si A es una matriz cuadrada de orden n se tiene A·I n = I n ·A = A. Dada una matriz cuadrada A de orden n, no siempre existe otra matriz B tal que A·B = B·A = I n . Si existe dicha matriz B, se dice que es la matriz inversa de A y se representa por A –1 . El producto de matrices es distributivo respecto de la suma de matrices, es decir: A·(B + C) = A·B + A·C El producto de matrices en general no es conmutativo.
  • 17. MATRICES Y DETERMINANTES Operaciones con matrices Producto de matrices Consecuencias de las Propiedades Si A · B = 0 no implica que A = 0 ó B = 0 Si A · B = A · C no implica que B = C En general (A+B) 2  A 2 + B 2 +2AB, ya que A · B  B · A En general (A+B) · (A–B)  A 2 – B 2 , ya que A · B  B · A
  • 18. MATRICES Y DETERMINANTES Una matriz cuadrada que posee inversa se dice que es inversible o regular; en caso contrario recibe el nombre de singular. Matrices inversibles
  • 19. MATRICES Y DETERMINANTES Propiedades de la inversión de matrices (A t ) –1 = (A -1 ) t La matriz inversa, si existe, es única A -1 ·A = A·A -1 = I (A·B) -1 = B -1· A -1 (A -1 ) -1 = A (kA) -1 = (1/k) · A -1 Matrices inversibles
  • 20. MATRICES Y DETERMINANTES
    • Por el método de Gauss-Jordan
    • Usando determinantes
    • Directamente
    Observación: Podemos encontrar matrices que cumplen A·B = I , pero que B·A  I , en tal caso, podemos decir que A es la inversa de B &quot;por la izquierda&quot; o que B es la inversa de A &quot;por la derecha&quot;. Hay varios métodos para calcular la matriz inversa de una matriz dada:
  • 21. MATRICES Y DETERMINANTES La matriz que se ha calculado realmente sería la inversa por la &quot;derecha&quot;, pero es fácil comprobar que también cumple A -1 · A = I, con lo cual es realmente la inversa de A. Dada la matriz buscamos una matriz que cumpla A·A -1 = I, es decir Para ello planteamos el sistema de ecuaciones: Cálculo Directo de la Matriz Inversa
  • 22. MATRICES Y DETERMINANTES
    • Por el método de Gauss-Jordan
    • Usando determinantes
    • Directamente
    Observación: Podemos encontrar matrices que cumplen A·B = I , pero que B·A  I , en tal caso, podemos decir que A es la inversa de B &quot;por la izquierda&quot; o que B es la inversa de A &quot;por la derecha&quot;. Hay varios métodos para calcular la matriz inversa de una matriz dada:
  • 23. MATRICES Y DETERMINANTES Para aplicar el método se necesita una matriz cuadrada de rango máximo. Sabemos que no siempre una matriz tiene inversa, por lo cual comprobaremos que la matriz tenga rango máximo al aplicar el método de Gauss para realizar la triangulación superior. Si al aplicar el método de Gauss (triangulación inferior) se obtiene una línea de ceros, la matriz no tiene inversa. Método de Gauss-Jordan para el cálculo de la matriz inversa El método de Gauss-Jordan para calcular la matriz inversa de una dada se basa en una triangulación superior y luego otra inferior de la matriz a la cual se le quiere calcular la inversa. Ejemplo 1 Ejemplo 2 Ejemplo Dada una matriz A de orden n , para calcular su inversa hay que transformar la matriz ( A I I n ) mediante transformaciones elementales por filas en la matriz ( I n I B ). La matriz B será, evidentemente , la inversa de A . VOLVER
  • 24. En consecuencia al transformar ( A I In ) en ( I n I B ) realmente lo que estamos haciendo son las siguientes multiplicaciones: A -1 ·A= I n y A -1 · In = A -1 =B Cuando hacemos transformaciones elementales en una matriz, esto es equivalente a multiplicarla por otra matriz dada. Ejemplo: Esta transformación es equivalente a la siguiente multiplicación: Cálculo de la Matriz Inversa por el método de Gauss - Jordan VOLVER F 2 – 2F 1  F 2 F 1 + F 3  F 3
  • 25. Cálculo de la Matriz Inversa por el método de Gauss - Jordan VOLVER
    • Aplicando el método de Gauss-Jordan a la matriz                      
    • En primer lugar triangulamos inferiormente:
    •                                                                                                                                           
    • Una vez que hemos triangulado superiormente lo hacemos inferiormente:
    •                                                                                                                                                                   
    • Por último, habrá que convertir la matriz diagonal en la matriz identidad:
    •                                                                                                                                                                          
    •             
    • De donde, la matriz inversa de A es                                     
  • 26. Aplicando el método de Gauss-Jordan a la matriz                              se tiene:                                                                                                                                                                       Como hay una fila completa de ceros, la matriz A no tiene rango máximo, en este caso 2, por tanto no tiene inversa pues es una matriz singular Cálculo de la Matriz Inversa por el método de Gauss - Jordan VOLVER
  • 27.                                                                  Gauss, Carl Friedrich Original name JOHANN FRIEDRICH CARL GAUSS German mathematician who also made contributions to other sciences. VOLVER b. April 30, 1777, Brunswick [Germany] d. Feb. 23, 1855, Göttingen, Hanover
  • 28. Cálculo de la Matriz Inversa por el método de Gauss - Jordan 2º.- Triangularizamos la matriz A de arriba a abajo y realizamos las mismas operaciones en la matriz de la derecha. VOLVER Queremos calcular la inversa de 1º.- Se escribe la matriz A junto a esta la matriz identidad, Como podemos observar el rango de la matriz es máximo (en este caso 3), por tanto la matriz A es regular (tiene inversa), podemos calcular su inversa. 3º.- Triangularizamos la matriz de abajo a arriba, realizando las mismas operaciones en la matriz de la derecha. 4º.- Por último se divide cada fila por el elemento diagonal correspondiente.
  • 29. MATRICES Y DETERMINANTES Para aplicar el método se necesita una matriz cuadrada de rango máximo. Sabemos que no siempre una matriz tiene inversa, por lo cual comprobaremos que la matriz tenga rango máximo al aplicar el método de Gauss para realizar la triangulación superior. Si al aplicar el método de Gauss (triangulación inferior) se obtiene una línea de ceros, la matriz no tiene inversa. Método de Gauss-Jordan para el cálculo de la matriz inversa El método de Gauss-Jordan para calcular la matriz inversa de una dada se basa en una triangulación superior y luego otra inferior de la matriz a la cual se le quiere calcular la inversa. Ejemplo 1 Ejemplo 2 Ejemplo Dada una matriz A de orden n , para calcular su inversa hay que transformar la matriz ( A I I n ) mediante transformaciones elementales por filas en la matriz ( I n I B ). La matriz B será, evidentemente , la inversa de A . VOLVER
  • 30. MATRICES Y DETERMINANTES
    • Por el método de Gauss-Jordan
    • Usando determinantes
    • Directamente
    Observación: Podemos encontrar matrices que cumplen A·B = I , pero que B·A  I , en tal caso, podemos decir que A es la inversa de B &quot;por la izquierda&quot; o que B es la inversa de A &quot;por la derecha&quot;. Hay varios métodos para calcular la matriz inversa de una matriz dada:
  • 31. VOLVER MATRICES Y DETERMINANTES
  • 32. MATRICES Y DETERMINANTES VOLVER
  • 33. Dada una matriz cuadrada A , se llama matriz adjunta de A , y se representa por Adj(A) , a la matriz de los adjuntos, Adj(A) = (A ij ). Esto es fácil probarlo puesto que sabemos que la suma de los productos de los elementos de una fila por sus adjuntos es el valor del determinante, y que la suma de los productos de los elementos de una fila por los adjuntos de otra fila diferente es 0 (esto sería el desarrollo de un determinante, que tiene dos filas iguales, por los adjuntos de una de ellas). MATRICES Y DETERMINANTES Cálculo de la matriz inversa usando determinantes Si tenemos una matriz tal que det (A)  0 , se verifica: Ejemplo Ejemplo
  • 34. MATRICES Y DETERMINANTES VOLVER
  • 35. Por tanto, el rango no puede ser mayor al número de filas o de columnas. MATRICES Y DETERMINANTES Rango de una matriz Se llama “ menor” de orden p de una matriz al determinante que resulta de eliminar ciertas filas y columnas hasta quedar una matriz cuadrada de orden p . Es decir, al determinante de cualquier submatriz cuadrada de A (submatriz obtenida suprimiendo alguna fila o columna de la matriz A ). En una matriz cualquiera A m×n   puede haber varios menores de un cierto orden p dado. Definición: El RANGO (o característica) de una matriz es el orden del mayor de los menores distintos de cero. El rango o característica de una matriz A se representa por rg(A) . Consecuencia
  • 36. Las dos primeras filas son L.I. la tercera depende linealmente de las dos primeras MATRICES Y DETERMINANTES Rango de una matriz Vectores fila de una matriz: Las filas de una matriz pueden ser consideradas como vectores. Es posible que sean linealmente Independientes (L.I.) y es posible que unos dependan linealmente de otros. Por ejemplo: Las dos primeras líneas son L.I., las otras dos dependen linealmente de las primeras Sus dos filas son linealmente independientes Se llama rango de una matriz al número de filas Linealmente Independientes
  • 37. Teorema En una matriz el número de filas L.I. coincide con el número de columnas L.I. MATRICES Y DETERMINANTES Rango de una matriz Vectores columna de una matriz: También las columnas de una matriz pueden ser consideradas como vectores. Podríamos definir rango de la matriz como el número de columnas linealmente independientes, pero aparece la duda de si esa definición puede contradecir en algún caso la anterior. Es decir: ¿Es posible que en una matriz el número de filas linealmente independientes sea distinto del número de columnas linealmente independiente?. El siguiente teorema nos asegura que no. Por esto podemos dar una nueva definición de Rango : Rango de una matriz es el número de filas, o columnas, linealmente independientes.
  • 38. El rango de una matriz lo podemos calcular por dos métodos diferentes: MATRICES Y DETERMINANTES Rango de una matriz
    • Por el método de Gauss
    • Usando Determinantes
  • 39. MATRICES Y DETERMINANTES Rango de una matriz Cálculo del rango de una matriz por el método de Gauss Transformaciones elementales: Son las transformaciones que podemos realizarle a una matriz sin que su rango varíe. Las transformaciones elementales son las siguientes:
    • Permutar 2 filas ó 2 columnas.
    • Multiplicar o dividir una línea por un número no nulo.
    • Sumar o restar a una línea otra paralela multiplicada por un número no nulo.
    • Suprimir las filas o columnas que sean nulas,
    • Suprimir las filas o columnas que sean proporcionales a otras.
  • 40. El método de Gauss consiste en aplicar transformaciones elementales a una matriz con objeto de conseguir que los elementos que están por debajo de la diagonal principal se anulen ( a ij = 0,para i > j). Para conseguir &quot;triangular&quot; la matriz debemos dejar en la diagonal principal elementos no nulos, salvo que la fila sea nula. Una vez aplicado este proceso de triangulación, el rango de la matriz es el número de filas no nulas de la matriz obtenida. Esto es fácil probarlo usando las propiedades de los determinantes. MATRICES Y DETERMINANTES Rango de una matriz Cálculo del rango de una matriz por el método de Gauss Ejemplo Más Ejemplos
  • 41. VOLVER MATRICES Y DETERMINANTES Rango de una matriz Cálculo del rango de una matriz por el método de Gauss
  • 42. MATRICES Y DETERMINANTES Rango de una matriz Cálculo del rango de una matriz por el método de Gauss VOLVER                                                                                                                                                                                                                                            
  • 43. El método de Gauss consiste en aplicar transformaciones elementales a una matriz con objeto de conseguir que los elementos que están por debajo de la diagonal principal se anulen ( a ij = 0,para i > j). Para conseguir &quot;triangular&quot; la matriz debemos dejar en la diagonal principal elementos no nulos, salvo que la fila sea nula. Una vez aplicado este proceso de triangulación, el rango de la matriz es el número de filas no nulas de la matriz obtenida. Esto es fácil probarlo usando las propiedades de los determinantes. MATRICES Y DETERMINANTES Rango de una matriz Cálculo del rango de una matriz por el método de Gauss Ejemplo Más Ejemplos
  • 44. Dada una matriz cuadrada se llama determinante de A , y se representa por |A| ó det(A), al número: , con (S n es el grupo de las permutaciones del conjunto {1, 2,.. n }, e i (s) es la signatura de la permutación) MATRICES Y DETERMINANTES Determinantes