Portafolio de algebra lomas
Upcoming SlideShare
Loading in...5
×
 

Portafolio de algebra lomas

on

  • 861 views

 

Statistics

Views

Total Views
861
Views on SlideShare
861
Embed Views
0

Actions

Likes
0
Downloads
15
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Portafolio de algebra lomas Portafolio de algebra lomas Document Transcript

  • EL SISTEMA DE LOS NÚMEROS REALES __________________________________________ 7 Introducción______________________________________________________________________ 7 Conjunto de los números reales______________________________________________________ 7 Conjunto de los números naturales___________________________________________________ 7 Conjunto de los números enteros ____________________________________________________ 8 Conjunto de los números racionales __________________________________________________ 8 Conjunto de los números reales______________________________________________________ 8 EL CONJUNTO DE LOS NÚMEROS REALES ________________________________________ 9 LOS NÚMEROS REALES Y LA RECTA REAL ________________________________________ 10 PROPIEDADES DE LAS OPERACIONES BINARIAS __________________________________ 13 Propiedad conmutativa. ________________________________________________________ 13 Propiedad Anti conmutativa________________________________________________________ 14 Ejemplos___________________________________________________________________________ 15 Propiedad distributiva. _________________________________________________________ 15 Divisores del cero ________________________________________________________________ 16 Elementos distinguidos ________________________________________________________ 17 Elemento neutro _________________________________________________________________ 17 Elemento involutivo ______________________________________________________________ 18 Elemento absorbente _____________________________________________________________ 18 Operación inversa ________________________________________________________________ 18 POTENCIACION Y RADICACION ________________________________________________ 19 POTENCIACION ____________________________________________________________ 19 Propiedades de la potenciación _____________________________________________________ 20 Potencia de potencia___________________________________________________________________ 20 Multiplicación de potencias de igual base __________________________________________________ 20 División de potencias de igual base _______________________________________________________ 20 Propiedad distributiva__________________________________________________________________ 20 Propiedad conmutativa_________________________________________________________________ 21 Potencia de exponente 0________________________________________________________________ 21 Potencia de exponente 1________________________________________________________________ 21 Potencia de base 10 ___________________________________________________________________ 21 RADICACIÓN ______________________________________________________________ 22
  • Raíz cuadrada____________________________________________________________________ 22 OPERACIONES DE POLINOMIOS CON SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN.______ 24 SUMA:__________________________________________________________________________ 24 RESTA: _________________________________________________________________________ 27 MULTIPLICACIÓN: ________________________________________________________________ 29 DIVISION: _______________________________________________________________________ 35 División entre fracciones________________________________________________________________ 35 División de polinomios entre monomios. ___________________________________________________ 36 División entre polinomios. ______________________________________________________________ 37 PRODUCTOS NOTABLES _____________________________________________________ 38 Otros casos de productos notables (o especiales):______________________________________ 40 Cubo de una suma________________________________________________________________ 43 Cubo de una diferencia ____________________________________________________________ 43 MAXIMO COMUN DIVISOR DE POLINOMIOS_____________________________________ 44 Aplicaciones del m.c.m. ___________________________________________________________ 48 1. Reducir fracciones a común denominador. _______________________________________________ 48 2. Resolver problemas de la vida práctica. __________________________________________________ 49 Aplicaciones del m.c.d. ____________________________________________________________ 49 1. Simplificar una fracción hasta su irreducible. ______________________________________________ 49 2. Resolver problemas de la vida práctica. __________________________________________________ 50 RESOLUCIÓN DE ECUACIONES CUADRÁTICAS POR FACTORIZACIÓN __________________ 51 Descripción: _____________________________________________________________________ 51 Ecuaciones de primer grado __________________________________________________ 53 Ecuaciones literales de primer grado ___________________________________________ 53 ECUACIONES DE SEGUNDO GRADO (O CUADRÁTICAS) _____________________________ 56 Ecuaciones de segundo grado y una incógnita _________________________________________ 56 Solución de ecuaciones cuadráticas__________________________________________________ 56 Solución por completación de cuadrados _____________________________________________ 58 Solución por la fórmula general _____________________________________________________ 61 PROPIEDADES Y OPERACIONES CON LOS NÚMEROS REALES ________________________ 62 Inverso aditivo___________________________________________________________________ 62 Propiedad del doble negativo ______________________________________________________ 62
  • Operaciones con los números Reales ______________________________________________________ 63 1. Sumar números reales _____________________________________________________________ 63 Restar números reales _______________________________________________________________ 64 Multiplicar números reales____________________________________________________________ 64 Propiedades de los números reales. _________________________________________________ 65 APLICACIONES DE ECUACIONES LINEALES _______________________________________ 65 Ecuaciones lineales de primer grado _________________________________________________ 68 a) ecuaciones lineales propiamente tales___________________________________________________ 68 b) ecuaciones fraccionarias______________________________________________________________ 69 c) ecuaciones literales __________________________________________________________________ 69 Sistemas de ecuaciones lineales________________________________________________ 70 Sistema compatible indeterminado ________________________________________________ 70 Sistema lineal de dos ecuaciones con dos incógnitas___________________________________ 70 CLASIFICAMOS LOS SIGUIENTES SISTEMAS DE ECUACIONES LINEALES ________________ 71 Métodos de resolución de sistemas de ecuaciones lineales _________________ 74 Método de reducción _____________________________________________________________ 74 Ejemplo ____________________________________________________________________________ 75 Ejemplo ____________________________________________________________________________ 76 Método de sustitución__________________________________________________________ 77 Ejemplo ____________________________________________________________________________ 77 Método de Gauss ______________________________________________________________ 78 Ejemplo ____________________________________________________________________________ 78 EXPRESIONES ALGEBRAICAS ___________________________________________ 80 10 Ejemplos de Términos Semejantes: __________________________________________ 81 CLASIFICACION DE LAS EXPRESIONES ALGEBRAICA________________________________ 81 MONOMIO. _____________________________________________________________________ 81 BINOMIO _______________________________________________________________________ 81 TRINOMIO.______________________________________________________________________ 81 POLINOMIO._____________________________________________________________________ 82 GRADO DE UN MONOMIOS __________________________________________________ 82 GRADO DE UN POLINOMIO___________________________________________________ 82 ORDENAR UN POLINOMIO ___________________________________________________ 82 NOMENCLATURA ALGEBRAICA________________________________________________ 85
  • DESCOMPOSICIÒN FACTORIAL______________________________________________________ 87 Métodos para la factorización de polinomios__________________________________________ 87 Binomios ____________________________________________________________________________ 87 Trinomios____________________________________________________________________________ 87 Polinomios___________________________________________________________________________ 87 Factorizar un monomio _________________________________________________________________ 87 Factorizar un polinomio ________________________________________________________________ 87 Factor común. ___________________________________________________________________ 88 Factor común de un polinomio______________________________________________________ 88 Factor común por agrupación de términos ____________________________________________ 89 Trinomio cuadrado perfecto________________________________________________________ 89 Raíz cuadrada de un monomio______________________________________________________ 89 Regla para identificar si un trinomio es cuadrado perfecto _______________________ 90 Regla para Factorizar un Trinomio Cuadrado Perfecto____________________________ 90 Trinomios de la forma x2 + px + q_________________________________________________________ 91 Regla práctica para factorizar el trinomio ________________________________________ 91 Trinomios de la forma mx2 + px + q con (m ≠ 1)______________________________________________ 92 CUADRO SINOPTICO DE M.C.D Y M.C.M ________________________________________ 93 Mínimo Común Múltiplo (m.c.m.) entre polinomios _________________________ 93 Ejercicios______________________________________________________________________ 95 OPERACIONES CON FRACCIONES ______________________________________________ 98 SUMA ALGEBRAICA DE FRACCIONES ___________________________________________ 98 MULTIPLICACIÓN DE FRACCIONES ALGEBRAICAS ________________________________ 102 DIVISIÓN DE FRACCIONES ALGEBRAICAS _______________________________________ 103 ECUACIONES CUADRATICAS _________________________________________________ 104 Factorización:___________________________________________________________________ 105 Raíz cuadrada: _______________________________________________________________________ 105 Completando el cuadrado: ________________________________________________________ 106 Fórmula cuadrática: _____________________________________________________________ 106 Clasificación ____________________________________________________________________ 107 Completa _____________________________________________________________________ 107 Completa General__________________________________________________________________ 108
  • Completa Particular________________________________________________________________ 108 Incompleta____________________________________________________________________ 108 Incompleta Binomial _______________________________________________________________ 108 Incompleta Pura ___________________________________________________________________ 108 Fórmula general para resolver ecuaciones cuadráticas ____________________ 108 PROPIEDADES DE LOS NÚMEROS ENTEROS_____________________________________ 110 Propiedades de la suma de números enteros_______________________________________________ 110 Multiplicación de números enteros ______________________________________________________ 111 Regla de los signos____________________________________________________________________ 111 Propiedades de la multiplicación de números enteros _______________________________________ 111 Propiedades de la división de números enteros_____________________________________________ 112 Potencia de números enteros ____________________________________________ 113 Propiedades: ______________________________________________________________________ 113 Potencias de exponente entero negativo __________________________________________ 113 RESOLUCION POR COMPLEMENTACION DE UN TRINOMIO CUADRADO ______________ 115 Solución de ecuaciones cuadráticas por completación del cuadrado_____________ 118 Resolver ecuaciones cuadráticas en forma estándar ____________________________ 119 APLICACIONES DE LAS FUNCIONES CUADRÁTICAS _______________________________ 120 ANEXOS: NOTAS DE CLASE __________________________________________________ 123 EVALUACIONES ___________________________________________________________ 137 ___________________________________________________ ¡Error! Marcador no definido. Bibliografia ______________________________________________________________ 139
  • EL SISTEMA DE LOS NÚMEROS REALES Introducción El ente básico de la parte de la matemática conocida como análisis lo constituye el llamado sistema de los números reales. Números tales como 1, 3,√ , π , e, y sus correspondientes negativos, son usados en mediciones cuantitativas. Existen dos métodos principales para estudiar el sistema de los números reales. Uno de ellos comienza con un sistema más primitivo –tal como el conjunto de los números naturales o enteros positivos 1, 2, 3, 4, ... −, y a partir de él, por medio de una secuencia lógica de definiciones y teoremas, se construye el sistema de los números reales1. En el segundo método se hace una descripción formal del sistema de los números reales (asumiendo que existe), por medio de un conjunto fundamental de propiedades (axiomas), de las cuales pueden deducirse muchas otras propiedades. En esta primera parte se hará una presentación intuitiva del conjunto R de los números reales. Se parte de un conjunto primitivo como es el conjunto` de los números naturales y se efectúan las sucesivas ampliaciones del mismo, atendiendo más a la necesidad de resolver ciertas ecuaciones en las cuales los conjuntos que se van definiendo resultan insuficientes para la solución, que a un desarrollo axiomático del mismo. Conjunto de los números reales El conjunto de los números reales está constituido por diferentes clases de números. Entre ellas, se pueden mencionar los siguientes subconjuntos: Conjunto de los números naturales El conjunto de los números naturales, que se denota por N o también por Z corrientemente se presenta así:
  • N = {1, 2, 3, 4, 5,...}. La notación de conjunto que incluye los puntos suspensivos es de carácter informal. Este conjunto permite fundamentar las sucesivas ampliaciones que se hacen de los sistemas numéricos y lleva principalmente a la consideración de los números reales. Conjunto de los números enteros El conjunto de los números enteros, que se denota por Z, corrientemente se presenta así: Z = {..., –3, –2, –1, 0, 1, 2, 3,...}. En el conjunto de los números enteros se pueden resolver ecuaciones que no tienen solución en N, como sucede por ejemplo con la ecuación x + 3 = 1, cuya solución es x = –2. Puede notarse que N ⊂ Z. Conjunto de los números racionales El conjunto de los números racionales, que se denota por Q, se define de la siguiente manera { } La introducción de los números racionales responde al problema de resolver la ecuación ax = b, con a, b ∈ Z, a ≠ 0. Ésta sólo tiene solución en Z, en el caso particular en que a sea un divisor de b. Conjunto de los números reales Se define como. ℜ= ∪ En el conjunto de los números reales están definidas dos operaciones: adición (+) y multiplicación (·), las cuales verifican las siguientes propiedades AC (llamadas también axiomas de campo). (Peano, 1889)
  • EL CONJUNTO DE LOS NÚMEROS REALES Al conjunto de los números reales se llega por sucesivas ampliaciones del campo numérico a partir de los números naturales. En cada una de las ampliaciones se avanza y mejora respecto de la anterior. Con los números naturales (N) se puede sumar y multiplicar pero no se puede restar (a- b) si a < b. Se definen así los números negativos o enteros negativos que al unirse con el cero y los naturales constituyen el conjunto de los números enteros (Z). Con los números enteros (Z) se puede sumar, restar, multiplicar pero no dividir si a no es múltiplo de b. Se definen así los números fraccionarios que unidos a los enteros constituyen el conjunto de los números racionales. Todo número racional se puede expresar como un número decimal exacto o como un número decimal periódico, es decir con infinitas cifras decimales que se repiten Con los números racionales se puede sumar, restar, multiplicar y dividir ( si b ¹ 0). Si bien el conjunto de los números racionales tiene una muy buena estructura para realizar las diferentes operaciones quedan algunas situaciones que no se pueden considerar dentro de él ( , , p , entre otros). Surgen los números irracionales para dar respuesta a estas instancias. Los números irracionales se pueden expresar como números decimales de infinitas cifras decimales no periódicas. Los números irracionales (I) unidos a los racionales (Q) definen el conjunto de los números reales (R).
  • Los números reales cumplen propiedades comprendidas en tres categorías: propiedades algebraicas, propiedades de orden y de completitud. Las propiedades algebraicas establecen que los números reales pueden ser sumados, restados, multiplicados y divididos (excepto por cero) obteniéndose otro número real. LOS NÚMEROS REALES Y LA RECTA REAL En la geometría analítica el paso importante fue establecer una correspondencia entre los números reales y los puntos de la recta. Existe una condición que cumplen los números reales llamada axioma de completitud que garantiza una correspondencia biunívoca (uno a uno) entre el conjunto de los números reales y el conjunto de puntos en la recta o eje. A cada número real le corresponde un único punto sobre la recta y a cada punto en la recta o eje se le asocia un único número real. Como se observa en el gráfico, se elige un punto de referencia arbitrario sobre la recta al que se denomina origen. Se selecciona además una unidad de longitud para medir distancias. Se elige también un sentido a lo largo de la recta a la que se llama positivo y se considera como negativo al sentido opuesto. A cada número real entonces se le asocia un punto de la recta teniendo en cuenta lo siguiente:  Se asocia al origen el número 0,  Se asocia a cada número positivo p un punto que está a una distancia de p unidades del origen en la dirección positiva,
  •  Se asocia a cada número negativo - p el punto que está a p unidades de distancia del origen en la dirección negativa. Los puntos en la recta se identifican con los números que representan. El número real que le corresponde a un punto de la recta se denomina coordenada o abscisa del punto y la recta recibe el nombre de recta real, recta coordenada, recta numérica o recta de los números reales. También se la conoce como eje coordenado o eje real. El conjunto de los reales cubre o completa la recta sin dejar "huecos". Ejemplo. Orden Los números reales están ordenados cumpliendo sólo una de las afirmaciones siguientes: dados dos números reales a y b puede ser que a sea menor que b, a sea mayor que b o a sea igual a b. Puede observarse en la recta que a < b si y sólo si el punto que representa al númeroa está a la izquierda del punto que representa al número b. Análogamente, a > b sí y sólo sí el punto que representa al número a se halla a la derecha del que representa a b.
  • Si a = b, los puntos se superponen. La relación de orden queda establecida teniendo en cuenta que el punto a precede al punto b si el número real a es menor que el número real b (a < b).(matemati@fca.unl.edu.ar, s.f.)
  • PROPIEDADES DE LAS OPERACIONES BINARIAS En álgebra las operaciones binarias internas en el conjunto A, o bien las aplicaciones de A x A en A: son las de mayor interés, porque se utilizan tanto en los sistemas numéricos o, más abstractamente, en los sistemas algebraicos. Las operaciones gozan de ciertas propiedades, usadas con frecuencia en la axiomatización de los diversos sistemas matemáticos  Propiedad conmutativa. Dado un conjunto no vacío A, en el que se ha definido una ley de composición interna *: se dice que * tiene la propiedad conmutativa en A si se cumple: Para todo a, b de A, se cumple que el resultado de operar a con b es igual al de operar b con a. Del mismo modo podemos decir que la ley de composición interna *, no es conmutativa en A si: Si existe algún a, b en A, que cumple que el resultado de operar a con b es distinto de operar b con a. La adición en los conjuntos N, Z, Q, R, C (1)de los naturales, enteros, racionales, reales y complejos es conmutativa y se cumple que a+b = b+a, siendo a y b elementos de mismo cualquier conjunto indicado La multiplicación es asociativa en cualquiera de los conjuntos
  • La división en Q*, racionales sin el cero, no es conmutativa; pues a:b≠ b:a, salvo para 1 y -1. El producto de dos matrices cuadradas de orden n no es conmutativo. El producto cartesiano de dos conjuntos no es conmutativo, AxB ≠ BxA. Propiedad Anti conmutativa Para todo a, b de A, se cumple que el resultado de operar a con b es igual al opuesto de operar b con a. Como ejemplo si en 3-E el espacio de vectores de tres componentes, decimos: Se tiene con el producto vectorial : Y En general, para cualquier par de vectores a, b: Para los enteros, se ve que la sustracción Es anti conmutativa, pues si: Sea A un conjunto no vacío y * una operación binaria en A: Se dice que * es asociativa si, solo si:
  • Para todo a, b, c de A se cumple que operando a con b y el resultado con c es igual a operar a con el resultado de operar b con c. También se puede decir que la operación * no es asociativa si se cumple: Existen a, b, c en A que cumplen que operando a con b y el resultado con c es distinto de operar a con el resultado de operar b con c. Ejemplos La adición y la multiplicación con números pares son asociativas. La sustracción en el conjunto Z de los enteros no es asociativa La adición en el conjunto Z[i] es asociativa el producto vectorial de vectores en el espacio R3 no es asociativo; esto es: (uxv)xw ≠ ux(vxw), donde u,v y w son vectores y x indica el producto vectorial. Si en en el conjunto R de los reales definimos a*b = ab +a+b +1, * es asociativo en R. (α) Propiedad distributiva. Dado un conjunto A no vacío en el que se han definidos dos operaciones internas: Que expresaremos se dice que la operación es distributiva por la derecha de si se cumple: Ejemplos el producto vectorial de vectores respecto de la suma de vectores ux (v+ w) =uxv + uxw Otro ejemplo: el producto de matrices respecto a la suma de matrices. M(N+Q)= MN + MQ. Es importante el orden de factor en la definición de R-módulos a izquierda. Del mismo modo se dice que la operación es distributiva por la izquierda de si se cumple:
  • Ejemplo el caso del producto de matrices que no es conmutativo. Se tiene (M+N)P= MP+ NP, la simple yuxtaposición indica el producto de matrices. La composición de funciones reales en un intervalo cerrado respecto de la suma de funciones: (f +g)º=, donde f,g, h son funciones cualesquiera del caso señalado. Una operación es distributiva sobre otra si es distributiva por la derecha y por la izquierda. Los conjuntos numéricos gozan de la distributiva por ambos lados. Al definir un anillo se indican las dos formas distributivas a(b+c) = ab +ac, por la izquierda; y por la derecha, (b+ c)a = ba +ca. Pues, al semi grupo multiplicativo no se exige la conmutatividad. Ver si se cumple a*(b+ c) = a*b + a*c siendo * la operación definida en (α) y , + la suma usual en R. Sea A con la operación * si a*b =a*c implica que b=c, se dice que se ha simplificado a por la izquierda. Y si de b*a =c*a de deduce b=a se dice que se ha simplificado por la derecha. Si se puede simplificar por ambos lados se haba de simplificación o cancelación. En el caso de la suma de números (de cualquier naturaleza) a+ b= a + c , cancelando a, resulta b=c En el caso de los grupos es importante el orden. No todo grupo es conmutativo, para el caso, los grupos simétricos. Divisores del cero . Sea el conjunto A y la operación * , siendo a ≠ 0, b≠ 0 se deduce que a*b = 0 , se dice que a y b son divisores del 0. Hay matrices cuadradas de orden 2 no nulas cuyo producto es la matriz 0. En el conjunto Z[6]= {0,1,2,3,4,5} de los restos módulo 6 con la multiplicación * de restos, resulta 2*3=0.
  • Sean las funciones reales: f / f(x) =0 si x≥0 y f(x)=1 en otro caso, g(x)= 1 si x≥0 y g(x) =0 en otro caso; tanto f y g no son nulas pero sí su producto θ(x) = 0 para todo x real. Sea el conjunto Z[4] = {0,1,2,3} de los restos módulo 4; con la adición tenemos que en este caso 2+2 = 0. De modo que no siempre "dos más dos dan cuatro". Elementos distinguidos Elemento neutro Si se tiene el conjunto A, no vacío, provisto de una operación binaria *, que indicaremos: (A,*), Diremos que el elemento es el elemento neutro por la derecha si: Se demuestra que si hay otro elemento neutro por la izquierda e', tal que e'*a = a, e = e'; hecho que se conoce como unicidad del elemento neutro. Ejemplo: En los sistemas aditivos Z, Q, R de los enteros, racionales y reales el 0 cero es el elemento neutro aditivo. Esto es a+0= 0+ a =a. En los mismos sistemas, pero con la multiplicación, el 1 uno es el elemento neutro multiplicativo. a.1 = 1.a = a. En el conjunto de los racionales con la operación a*b = a+b +ab , el elemento neutro es 0. En el conjunto de las matrices cuadradas con la multiplicación, el elemento neutro es la matriz que tiene unos en la diagonal principal y los demás elementos son cero. En la composición de funciones de variable real, el elemento neutro es la función I(x) = x para todo x. Sea A un conjunto no vacío y * una operación binaria: Diremos que a' es simétrico de a si:
  • Donde es el elemento neutro. El 2 es el simétrico de -2 en Z con la adición; 1/2 es el simétrico de 2 en Q* con la multiplicación. En el casos de los sistemas algebraicos aditivos, el simétrico se llama opuesto o inverso aditivo, en el caso de los multiplicativos se llama: inverso multiplicativo. Elemento involutivo Se llama así al elemento d de A, con la operación binaria *, tal que d*d= d. el 0 y 1 son elementos involutivos respecto de la multiplicación en el conjunto Z de los enteros. Elemento absorbente Se denomina así al elemento s de A, tal que s * a= s, para todo a de A, provisto de la operación *. 0 es elemento absorbente se un sistema numérico multiplicativo. El conjunto vacío Ø es elemento absorbente para la intersección definida en el conjunto de partes de U. Operación inversa Sea A un conjunto con una operación binaria *: Por lo que cabe la ecuación: Pero si se da el caso de que:
  • Donde se trata de conocer el elemento y, se recurre a operación inversa. Si A admite elementos simétricos, se define: (S.R) POTENCIACION Y RADICACION POTENCIACION ROF. José Luis Gallardo La potenciación es una nueva forma de escribir el producto de un número por él mismo. Es muy práctica, elegante, útil y fácil. Fíjate que la base es el número que multiplicas varias veces por sí mismo, el exponente es la cantidad de veces que lo haces y la potencia es el resultado. Así por ejemplo: Significa que a 5 (la base) lo multiplicamos 3 veces (el exponente) por sí mismo y obtenemos 125 (la potencia) ya que: 5 x 5 x 5 = 125. Cuando un número se multiplica por sí mismo una cantidad definida de veces es una potenciación. Por ejemplo, si se multiplica ocho por sí mismo cinco veces se tendrá 8 X 8 X 8 X 8 X 8. Si se escribe en forma exponencial se anota, 85 . En este caso, al número ocho se lo llama base (número que se va a multiplicar por sí mismo) y al cinco se le denomina exponente (número de veces que se va a multiplicar al ocho por sí mismo). De acuerdo con lo anterior, se puede decir que: 85 = 8 X 8 X 8 X 8 X 8 = 32.768 Elevar a una potencia el número 10
  • Un caso interesante es cuando se eleva a un exponente el número 10. Por ejemplo lo elevamos a la cuarta: 104 = 10 X 10 X 10 X 10 = 10.000 Observa que 104 es igual a un uno con cuatro ceros. Así se puede decir que 108 es igual a un uno y 8 ceros, o sea 100 millones (100.000.000)... Propiedades de la potenciación Las propiedades de la potenciación son las siguientes: Potencia de potencia La potencia de una potencia de base a es igual a la potencia de base a y exponente igual a la multiplicación de los primeros exponentes. Multiplicación de potencias de igual base La multiplicación de dos o más potencias de igual base a es igual a la potencia de base a y exponente igual a la suma de los mismos exponentes. División de potencias de igual base La división de dos potencias de igual base a es igual a la potencia de base a y exponente igual a la resta de los exponentes respectivos. Propiedad distributiva La potenciación es distributiva con respecto a la multiplicación y a la división, pero no lo es con respecto a la suma ni a la resta. En particular: (a + b)m = am + bm (a &#8722; b)m = am &#8722; bm Se cumple en los siguientes casos: Si m=1. Si, entre a y b, uno es igual a 0 y el otro igual a 1, siempre que m sea distinto de 0. Si a y b son iguales a 0 y m&#8800;0.
  • Propiedad conmutativa La propiedad conmutativa no se cumple para la potenciación, exceptuando aquellos casos en que base y exponente son el mismo número / la misma cifra o equivalentes. En particular: ab = ba Si y sólo si a=b. Potencia de exponente 0 Toda potencia de exponente 0 y base distinta de 0 es igual a 1. a0 = 1 si se cumple que Potencia de exponente 1 Toda potencia de base a y exponente 1 es igual a a. a1 = a Potencia de base 10 Toda potencia de base 10 es igual a la unidad seguida de tantos ceros como unidades posee el exponente. 101 = 10 Como también pues ser unos conjuntos de números potenciados o elevados a un exponente 106 = 1000000 104 = 10000
  • RADICACIÓN ROF. José Luis Gallardo Vos sabes que la resta es la operación inversa de la suma y la división es la operación inversa de la multiplicación. La potenciación tiene también su operación inversa; y se llama “radicación”. Observa que 82=64 entonces 64 = 8 8 es la raíz cuadrada de 64. De la misma manera calcular la raíz cuadrada de 25 significa buscar un número que elevado al cuadrado dé como resultado 25. Es decir que: Por ahora sólo trabajaremos con raíces cuadradas (las que corresponden al exponente dos), pero estas no son las únicas que existen, como podrás ver en cursos posteriores. Raíz cuadrada 1- Para calcular la raíz cuadrada de un número se comienza separando el número en grupos de dos cifras, empezando por la derecha Por ejemplo: 5560164 lo separaríamos 5'56'01'64 2- A continuación se calcula un numero entero que elevado al cuadrado sea igual (o lo más próximo al número del primer grupo, empezando por la izquierda). En nuestro ejemplo el primer número es 5 y el numero entero que elevado al cuadrado se acerca más a 5 es 2. 2 es la primera cifra de la raíz. 3- después se eleva al cuadrado esta cifra y se resta del número del primer grupo En nuestro ejemplo 22 = 4 y restándolo del número del primer grupo que es 5, sale 5 -4 = 1 4- A continuación ponemos al lado del resto anterior el número del siguiente grupo
  • En nuestro ejemplo nos quedaría 156 5- después multiplicamos por 2 el número que hemos calculado hasta el momento de la raíz. En nuestro ejemplo seria 2 * 2 = 4 6- A continuación tenemos que buscar un número que multiplicado por el número que resulta de multiplicar por 10 el número anterior y sumarle el número que estamos buscando se acerque lo más posible al número que tenemos como resto. Ese número será el siguiente número de la raíz. En nuestro ejemplo el número seria 3 porque 43 * 3 = 129 que es el número que se aproxima más a 156 y la raíz seria 23... 7- Ahora tenemos que volver a calcular el resto restando el número obtenido del que queríamos obtener realmente. En nuestro ejemplo: 156 - 129 = 27 8- A continuación repetimos el paso 4, esto es, ponemos al lado del resto anterior el número del siguiente grupo En nuestro ejemplo: 2701 9- A continuación repetimos el paso 5 En nuestro ejemplo: 23 * 2 = 46 10- después repetimos el paso 6 En nuestro ejemplo el número seria 5 porque 465 *5 = 2325 que es el número que se aproxima más a 2701 y la raíz seria 235... 11- después repetimos el paso 7 En nuestro ejemplo: 2701 - 2325 = 376 12- A continuación repetimos el paso 8 En nuestro ejemplo: 37664 13 A continuación repetimos el paso 5 En nuestro ejemplo seria 235 * 2 = 470 14- A continuación repetimos el paso 6
  • En nuestro ejemplo el número seria 8 porque 4708 * 8 = 37664 que es el número que se aproxima más a 37664 y la raíz seria 2358 15- A continuación repetimos el paso 7 En nuestro ejemplo: 37664 - 37664 = 0 En este caso la raíz es exacta pues el resto es cero. Cálculo de raíces cuadradas por aproximaciones sucesivas Este método se debe a Newton Si conocemos una aproximación de la raíz, podemos calcular una aproximación mejor utilizando la siguiente fórmula: ai = 1/2(ai-1 + A/ai-1) Por ejemplo, para calcular la raíz cuadrada de 5, podemos partir de la aproximación 2, entonces: a1 = 2 a2 = 1/2(2 + 5/2) = 2,250 a3 = 1/2(2,250 + 5/2,250) = 2,236 OPERACIONES DE POLINOMIOS CON SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN. SUMA: Para sumar dos polinomios, hay que sumar entre sí los coeficientes de los términos del mismo grado El resultado de sumar dos términos del mismo grado, es otro término del mismo grado. Si falta algún término de alguno de los grados, se puede completar con 0, como en el ejemplo en el segundo polinomio se completó con 0x2. Y se los suele ordenar de mayor a menor grado, para que en cada columna queden los términos de igual grado. También se los puede sumar de otra forma (sin ponerlos uno sobre otro), y en la EXPLICACIÓN de cada ejercicio lo mostraré resuelto de las dos maneras. EJEMPLO 1: (Suma de polinomios de igual grado)
  • A = - 3x2 + 2x4 - 8 - x3 + 1/2 x B = -5x4 - 10 + 3x + 7x3 2x4 - x3 - 3x2 + 1/2 x - 8 (el polinomio A ordenado y completo) + -5x4 + 7x3 + 0x2 + 3x - 10 (el polinomio B ordenado y completo) ______________________________ -3x4 + 6x3 - 3x2 + 7/2 x - 18 A + B = -3x4 + 6x3 - 3x2 + 7/2 x - 18 En el polinomio de menor grado, se pueden completar los primeros términos con ceros. Así, se rellenan las columnas que faltan adelante de uno de los polinomios, para que quede encolumnado término a término con el otro polinomio. EJEMPLO 2: (Suma de polinomios de distinto grado) A = -3x2 + 5x - 4 (grado 2) B = 4x3 - 5x2 + 2x + 1 (grado 3) 0x3 - 3x2 + 5x - 4 (el polinomio A ordenado y completo) + 4x3 - 5x2 + 2x + 1 (el polinomio B ordenado y completo) ____________________ 4x3 - 8x2 + 7x - 3 A + B = 4x3 - 8x2 + 7x – 3 La suma de los términos de grado 2 dió 0x2. Luego, en el resultado final ya no se ponen los términos con coeficiente cero. EJEMPLO 3: (Uno de los términos del resultado es cero) A = 9 + 5x3 - 4x2 + x B = 4x2 - 3 - 2x 5x3 - 4x2 + x + 9
  • + 0x3 + 4x2 - 2x - 3 ____________________ 5x3 + 0x2 - x + 6 A + B = 5x3 - x + 6 Se llama términos "semejantes" a los que tienen el mismo grado (en los polinomios con un solo tipo de letra). Entre estos dos polinomios no hay términos semejantes. Se puede observar que el resultado es la suma de todos términos de los dos polinomios, sin modificarse ninguno, ya que a cada uno se le sumó cero, por no tener otro término semejante. EJEMPLO 4: (No hay términos semejantes) A = 4x3 + 5 B = -2x + x2 4x3 + 0x2 + 0x + 5 + 0x3 + x2 - 2x + 0 ____________________ 4x3 + x2 - 2x + 5 A + B = 4x3 + x2 - 2x + 5 Cuando los polinomios tienen varias letras, se suman los términos semejantes, que son los que tienen las mismas letras con los mismos exponentes (la misma"parte literal"). Para sumar estos polinomios, no es práctico usar el procedimiento de ordenarlos y sumarlos "en columnas", porque en general hay pocas coincidencias entre sus partes literales. Así que es mejor sumarlos "uno al lado del otro" y "juntar" los términos de igual parte literal. EJEMPLO 5: (Suma de polinomios de varias letras) A = -3xy2 + 4 - 7x2 y2 - 6x2 y - 5xy
  • B = 8xy - 2xy2 + 10 + 4x3 y A + B = (-3xy2 + 4 - 7x2 y2 - 6x2 y - 5xy) + (8xy - 2xy2 + 10 + 4x3 y) = -3xy2 + 4 - 7x2 y2 - 6x2 y - 5xy + 8xy - 2xy2 + 10 + 4x3 y = -3xy2 - 6x2 y + 4 + 10 - 5xy + 8xy - 2xy2 + 4x3 y - 7x2 y2 = -9xy2 + 14 + 3xy - 2xy2 + 4x3 y - 7x2 y2 RESTA: EJEMPLO 1: (Resta de polinomios de igual grado) A = - 3x2 + 9x4 - 8 - 4x3 + 1/2 x B = 5x4 - 10 + 3x + 7x3 9x4 - 4x3 - 3x2 + 1/2 x - 8 (el polinomio A ordenado y completo) - 5x4 + 7x3 + 0x2 + 3x - 10 (el polinomio B ordenado y completo) ______________________________ La resta se puede transformar en suma, cambiando todos los signos del segundo polinomio: 9x4 - 4x3 - 3x2 + 1/2 x - 8 + -5x4 - 7x3 + 0x2 - 3x + 10 (el polinomio B con los signos cambiados) ______________________________ 4x4 - 11x3 - 3x2 - 5/2 x + 2 A - B = 4x4 - 11x3 - 3x2 - 5/2 x + 2
  • Para restar polinomios se suelen cambiar los signos de todos los términos del polinomio que se resta ("el de abajo"), y transformar la resta en suma, ya que restar es lo mismo que sumar el "opuesto". Pero también se puede hacer restando los coeficientes del mismo grado. Y también se los puede restar "en el mismo renglón", tal como mostré que se puede hacer en la suma. EJEMPLO 2: (Resta de polinomios de distinto grado) A = 5x - 4 - 3x2 (grado 2) B = 2x + 4x3 - + 1 + 5x2 (grado 3) 0x3 - 3x2 + 5x - 4 (el polinomio A ordenado y completo) - 4x3 - 5x2 + 2x + 1 (el polinomio B ordenado y completo) ____________________ 0x3 - 3x2 + 5x - 4 + -4x3 + 5x2 - 2x - 1 (el polinomio B con los signos cambiados) ____________________ -4x3 + 2x2 + 3x - 5 A - B = -4x3 + 2x2 + 3x - 5 Igual que en la suma: En el polinomio de menor grado, se pueden completar los primeros términos con ceros. Así, se rellenan las columnas que faltan adelante de uno de los polinomios, para que quede en columnado término a término con el otro polinomio.
  • MULTIPLICACIÓN: ¿Cómo se multiplican los polinomios? Multiplicando todos los términos de uno de ellos por todos los términos del otro. Se aplica la Propiedad distributiva entre en la multiplicación y la suma. Antes de aprender polinomios, muchas veces ya se ha aprendido a multiplicar "expresiones algebraicas", que son polinomios. Incluso en las ecuaciones. Por ejemplo: (x + 5).(x - 3) es una multiplicación de dos polinomios de grado 1 2x.(x + 1) es una multiplicación de dos polinomios de grado 1 Y en general, a hacer esas "distributivas" ya se aprende antes de ver el tema "Polinomios". Lo que había que hacer era "multiplicar todo con todo", es decir, cada término de una expresión con cada término de la otra: (x + 5).(x - 3) = x.x - 3.x + 5.x - 15 = x2 - 3x + 5x - 15 = Y luego "juntar las x con las x, los números con los números, las x2 con las x2...". "Juntar era en realidad: "hacer la cuenta entre los números que tienen delante". En este ejemplo sólo tenemos para juntar las x. Son -3 + 5 = 2. Es decir que quedan 2x. Como otro número no hay, queda -15. Y como otra x2 no hay, queda x2. Eso de juntar se ve también la suma de polinomios: "juntar las x con las x, los números con los números..." es en realidad "sumar los términos semejantes o de igual grado". (ver: suma de polinomios) = x2 + 2x - 15 Y multiplicar a dos polinomios no es otra cosa que aplicar la Propiedad distributiva de la multiplicación con la suma a esos dos polinomios. Es lo mismo que se hacía en las ecuaciones, pero ahora los polinomios pueden ser de grados mayores que 1, y tener muchos términos. Por ejemplo: A = -9x3 + x + 4x5 B = 3x2 + 2x4 - 8 - x3 + 5x (-9x3 - x + 4x5).(3x2 + 2x4 - 8 - x3 + 5x) = Se trata, como antes, de multiplicar cada término de uno por todos los términos del otro.
  • EJEMPLO 1: (Multiplicación por un monomio) A = -3x2 + 2x4 - 8 - x3 + 5x B = -5x4 -3x2 + 2x4 - 8 - x3 + 5x X -5x4 ______________________________ 15x6 - 10x8 + 40x4 + 5 x7 - 25x5 A x B = 15x6 - 10x8 + 40x4 + 5 x7 - 25x5 Se multiplica al monomio por cada término del polinomio: Coeficiente con coeficiente, y la letra con la letra. Al multiplicar las letras iguales se suman los exponentes, ya que es una multiplicación de potencias de igual base. También se pueden multiplicar "en el mismo renglón": poniendo el polinomio entre paréntesis y luego aplicando la propiedad distributiva. En las EXPLICACIONES muestro los ejemplos resueltos de las dos maneras. EXPLICACIÓN DEL EJEMPLO 1 EJEMPLO 2: (Multiplicación de polinomios completos) A = 4x3 - 5x2 + 2x + 1 B = 3x - 6 4x3 - 5x2 + 2x + 1 (el polinomio A ordenado y completo) X 3x - 6 (el polinomio B ordenado y completo) ____________________ -24x3 + 30x2 - 12x - 6 + 12x4 - 15x3 + 6x2 + 3x _________________________ 12x4 - 39x3 + 36x2 - 9x - 6
  • A x B = 12x4 - 39x3 + 36x2 - 9x - 6 A cada término del segundo polinomio hay que multiplicarlo por cada término del primer polinomio. Si ambos polinomios están completos y ordenados, los resultados quedan también completos y ordenados, y es más fácil en columnarlos según su grado, porque van saliendo en orden. Luego hay que sumar los resultados como se suman los polinomios. Es un procedimiento similar al de la multiplicación de números de varias cifras, con la diferencia de que no se "llevan" números a la columna siguiente, sino que se baja el resultado completo. Al empezar la segunda fila, por la derecha hay que saltearse una columna, tal como en la multiplicación de números de varias cifras, y así se logra que los términos de igual grado queden en la misma columna. explicación ejemplo 2 EJEMPLO 3: (Multiplicación de polinomios incompletos y desordenados, completándolos y ordenándolos) A = -9x2 + x + 5x4 B = 3 - 2x2 5x4 + 0x3 - 9x2 + x + 0 (polinomio A completo y ordenado) X -2x2 + 0x + 3 (polinomio B completo y ordenado) ______________________________ 15x4 + 0x3 - 27x2 + 3x + 0 0x5 + 0x4 + 0x3 + 0x2 + 0x -10x6 + 0x5 + 18x4 - 2x3 + 0x2 ________________________________________ -10x6 + 0x5 + 33x4 - 2x3 - 27x2 + 3x + 0 A x B = -10x6 + 33x4 - 2x3 - 27x2 + 3x
  • Aunque no es obligatorio, se pueden completar y ordenar los dos polinomios. Así es más fácil ubicar en la columna correspondiente a cada uno de los resultados, porque todo va saliendo en orden de grado. Incluso si se completa con 0 en el segundo polinomio, se puede multiplicar todo el primer polinomio por cero. Esto puede servir cuando uno recién aprende el tema, pero luego cuando se tiene más práctica se preferirá no completar ni multiplicar por cero. En el EJEMPLO 4 se puede ver hecha esta misma multiplicación sin completar los polinomios. En el resultado final ya no se ponen los términos con 0. EJEMPLO 4: (Multiplicación de polinomios incompletos; sin completarlos, pero sí ordenándolos) A = -9x2 + x + 5x4 B = 3 - 2x2 5x4 - 9x2 + x (polinomio A incompleto pero ordenado) X -2x2 + 3 (polinomio B incompleto pero ordenado) _____________________ 15x4 - 27x2 + 3x -10x6 + 18x4 - 2x3 ____________________________ -10x6 + 33x4 - 2x3 - 27x2 + 3x A x B = -10x6 + 33x4 - 2x3 - 27x2 + 3x
  • En el resultado de multiplicar por el 3 no hay término con grado 3. Y en el resultado de multiplicar por -2x2, no hay término de grado 2. Eso obliga a que, para que queden encolumnados los términos de igual grado, haya que saltearse columnas, borrar para hacer espacios, etc. No es demasiado complicado, pero hay quienes prefieren no tener que ponerse a pensar en dónde ubicar cada término. En ese caso es preferible hacerlo como en el EJEMPLO 3: completar y ordenar a los dos polinomios para que todos los términos vayan saliendo en orden y no haya qué pensar en dónde ponerlos. EJEMPLO 5: (Multiplicación de polinomios de varias letras) A = -3x2 y3 + 4 - 7x2 y2 - 6x3 y3 B = 5x4 y + 8x - 2x3 y - 10 A x B = (-3x2 y3 + 4 - 7x2 y2 - 6x3 y3 ).(5x4 y + 8x - 2x3 y - 10) = -15x6 y4 - 24x3 y3 + 6x5 y4 + 30x2 y3 + 20x4 y + 32x - 8x3 y - 40 - 35x6 y3 - 56x3 y2 + 14x5 y3 + 70x2 y2 - 30x7 y4 - 48x4 y3 + 12x6 y4 + 60x3 y3 = -15x6 y4 + 12x6 y4 - 24x3 y3 + 60x3 y3 + 6x5 y4 + 30x2 y3 + 20x4 y + 32x - 8x3 y - 40 - 35x6 y3 - 56x3 y2 + 14x5 y3 + 70x2 y2 - 30x7 y4 - 48x4 y3 + 12x6 y4 = -3x6 y4 + 36x3 y3 + 6x5 y4 + 30x2 y3 + 20x4 y + 32x - 8x3 y - 40 - 35x6 y3 - 56x3 y2 + 28x5 y3 + 70x2 y2 - 30x7 y4 - 48x4 y3 + 12x6 y4 Cuando los polinomios tienen varias letras, no es práctico usar el procedimiento de ordenarlos, completarlos y ponerlos uno sobre otro. Mejor es multiplicarlos "en el mismo renglón" aplicando la Propiedad distributiva. En la multiplicación de los términos, hay que sumar los exponentes de las letras que son iguales, por la Propiedad de las potencias de igual base. Luego, se "juntan" los términos semejantes (iguales letras con iguales exponentes). En este ejemplo solamente hubo dos términos semejantes: -24x3y3 con 60x3y3. Los demás quedan como están.
  • EJEMPLO 6: (Ordenando y completando el primero; y ordenando pero no completando el segundo) A = -9x2 + x + 5x4 B = 3 - 2x2 5x4 + 0x3 - 9x2 + x + 0 (polinomio A completo y ordenado) X -2x2 + 3 (polinomio B completo y ordenado) ______________________________ 15x4 + 0x3 - 27x2 + 3x + 0 -10x6 + 0x5 + 18x4 - 2x3 + 0x2 ________________________________________ -10x6 + 0x5 + 33x4 - 2x3 - 27x2 + 3x + 0 A x B = -10x6 + 33x4 - 2x3 - 27x2 + 3x Fue necesario saltearse dos columnas en vez de una, para ubicar el 0x2 debajo del - 27x2, y es porque al segundo polinomio le falta el término de grado x. Todo lo demás salió ordenado por grado. EJEMPLO 7: (Sin ordenar ni completar) A = -9x2 + x + 5x4 B = 3 - 2x2
  • 9x2 + x + 5x4 (polinomio A incompleto y desordenado) X 3 - 2x2 (polinomio B incompleto y desordenado) __________________________ - 10x6 + 18x4 - 2x3 + 15x4 - 27x2 + 3x _________________________________________ - 10x6 + 33x4 - 2x3 - 27x2 + 3x A x B = - 10x6 + 33x4 - 2x3 - 27x2 + 3x Los resultados no salen en orden. Pero podemos ubicarlos calculando más o menos el espacio que necesitamos para todos los grados. Por ejemplo, si el primer resultado que obtenemos es -10x6 , sabemos que a su derecha tiene a haber 6 columnas más para los grados anteriores (grado 5 a 0). Entonces lo ponemos bien a la izquierda, dejando a su derecha el lugar necesario para los otros grados que puedan aparecer en los siguientes resultados. Si el segundo resultado es -2x3, dejamos un espacio entre -10x6 y este nuevo término, para los grados intermedios que faltan. Así quedan más o menos acomodados, para que en la próxima fila podamos poner los resultados debajo en la columna correspondiente. DIVISION: División entre fracciones En este tipo de división se cumplen las mismas reglas que con la división de monomios y las reglas de división de fracciones de la aritmética. Se aplica ley de signos
  • Se multiplica el dividendo del primer término por el divisor del segundo para crear el dividendo de la división, y el divisor del primero por el dividendo del segundo para crear el divisor de la división (esto se llama división cruzada) Se divide el coeficiente del dividendo entre el coeficiente del divisor Se aplica ley de los exponentes tomando las letras que no se encuentren como elevadas a cero (nº = 1), y se escriben en orden alfabético. Ejemplos: División de polinomios entre monomios. Para dividir un polinomio entre un monomio se distribuye el polinomio sobre el monomio, esto se realiza convirtiéndolos en fracciones. Pasos: Colocamos el monomio como denominador de él polinomio. Separamos el polinomio en diferentes términos separados por el signo y cada uno dividido por el monomio. Se realizan las respectivas divisiones entre monomios tal como se realizo en el capitulo anterior. Se realizan las sumas y restas necesarias. Ejemplos:
  • División entre polinomios. En este tipo de división se procede de manera similar a la división aritmética los pasos a seguir son los siguientes. Se ordenan los polinomios con respecto a una misma letra y en el mismo sentido (en orden ascendente u orden descendente), si el polinomio no es completo se dejan los espacios de los términos que faltan. El primer término del cociente se obtiene dividiendo el primer término del dividendo entre el primer miembro del divisor. Se multiplica el primer término del cociente por todos los términos del divisor, se coloca este producto debajo de él dividendo y se resta del dividendo. El segundo término del cociente se obtiene dividiendo el primer término del dividendo parcial o resto (resultado del paso anterior), entre el primer término del divisor. Se multiplica el segundo término del cociente por todos los términos del divisor, se coloca este producto debajo de él dividendo parcial y se resta del dividendo parcial. Se continua de esta manera hasta que el resto sea cero o un dividendo parcial cuyo primer término no pueda ser dividido por el primer término del divisor. Cuando esto ocurre el resto será el residuo de la división. La intención con este método de división es que con cada resta se debe eliminar el término que se encuentra más a la izquierda en el dividendo o dividendo parcial.
  • Ejemplos: PRODUCTOS NOTABLES Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones algebraicas que se encuentran frecuentemente y que es preciso saber factoriza las a simple vista; es decir, sin necesidad de hacerlo paso por paso. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.
  • A continuación veremos algunas expresiones algebraicas y del lado derecho de la igualdad se muestra la forma de factoriza las (mostrada como un producto notable). Cuadrado de la suma de dos cantidades o binomio cuadrado a2 + 2ab + b2 = (a + b)2 El cuadrado de la suma de dos cantidades es igual al cuadrado de la primera cantidad, más el doble de la primera cantidad multiplicada por la segunda, más el cuadrado de la segunda cantidad. Demostración: Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma a2 + 2ab + b2 debemos identificarla de inmediato y saber que podemos factoriza la como (a + b)2 Nota: Se recomienda volver al tema factorización para reforzar su comprensión. Cuadrado de la diferencia de dos cantidades a2 – 2ab + b2 = (a – b)2 El cuadrado de la diferencia de dos cantidades es igual al cuadrado de la primera cantidad, menos el doble de la primera cantidad multiplicada por la segunda, más el cuadrado de la segunda cantidad. Demostración:
  • Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma a2 – 2ab + b2 debemos identificarla de inmediato y saber que podemos factoriza la como (a – b)2 Producto de la suma por la diferencia de dos cantidades (o producto de dos binomios conjugados) (a + b) (a – b) = a2 – b2 El producto de la suma por la diferencia de dos cantidades es igual al cuadrado de la primera cantidad, menos el cuadrado de la segunda Demostración: Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma (a + b) (a – b) debemos identificarla de inmediato y saber que podemos factoriza la como a2 – b2 Otros casos de productos notables (o especiales): Producto de dos binomios con un término común, de la forma x2 + (a + b)x + ab = (x + a) (x + b)
  • Demostración: Veamos un ejemplo explicativo: Tenemos la expresión algebraica x2 + 9 x + 14 Obtenida del producto entre (x + 2) (x + 7 ) ¿Cómo llegamos a la expresión? a) El cuadrado del término común es (x)(x) = x2 b) La suma de términos no comunes multiplicada por el término común es (2 + 7)x = 9x c) El producto de los términos no comunes es (2)(7) = 14 Así, tenemos: x2 + 9 x + 14 = (x + 2) (x + 7 ) Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma x2 + (a + b)x + ab debemos identificarla de inmediato y saber que podemos factoriza la como (x + a) (x + b) Producto de dos binomios con un término común, de la forma x2 + (a – b)x – ab = (x + a) (x – b) Demostración:
  • Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma x2 + (a – b)x – ab debemos identificarla de inmediato y saber que podemos factoriza la como (x + a) (x – b). Producto de dos binomios con un término común, de la forma x2 – (a + b)x + ab = (x – a) (x – b) Demostración: Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma x2 – (a + b)x + ab debemos identificarla de inmediato y saber que podemos factorizarla como (x – a) (x – b). Producto de dos binomios con un término común, de la forma mnx2 + ab + (mb + na)x = (mx + a) (nx + b) En este caso, vemos que el término común (x) tiene distinto coeficiente en cada binomio (mx y nx). Demostración:
  • Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma mnx2 + ab + (mb + na)xdebemos identificarla de inmediato y saber que podemos factorizarla como (mx + a) (nx + b). Cubo de una suma a3 + 3a2 b + 3ab2 + b3 = (a + b)3 Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma a3 + 3a2 b + 3ab2 + b3 debemos identificarla de inmediato y saber que podemos factorizarla como (a + b)3 . Cubo de una diferencia a3 – 3a2 b + 3ab2 – b3 = (a – b)3 Entonces, para entender de lo que hablamos, cuando nos encontramos con una expresión de la forma a3 – 3a2 b + 3ab2 – b3 debemos identificarla de inmediato y saber que podemos factorizarla como (a – b)3 . A modo de resumen, se entrega el siguiente cuadro con Productos notables y la expresión algebraica que lo representa: Producto notable Expresión algebraica Nombre (a + b)2 = a2 + 2ab + b2 Binomio al cuadrado (a + b)3 = a3 + 3a2 b + 3ab2 + b3 Binomio al cubo a2 - b2 = (a + b) (a - b) Diferencia de cuadrados a3 - b3 = (a - b) (a2 + b2 + ab) Diferencia de cubos a3 + b3 = (a + b) (a2 + b2 - ab) Suma de cubos a4 - b4 = (a + b) (a - b) (a2 + b2 ) Diferencia cuarta (a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc Trinomio al cuadrado
  • MAXIMO COMUN DIVISOR DE POLINOMIOS El problema de calcular el máximo común divisor (MCD) de dos polinomios es de importancia fundamental en álgebra computacional. Estos cálculos aparecen como subproblemas en operaciones aritméticas sobre funciones racionales o aparecen como cálculo prominente en factorización de polinomios y en integración simbólica, además de otros cálculos en álgebra. En general, podemos calcular el MCD de dos polinomios usando una variación del algoritmo de Euclides. El algoritmo de Euclides es conocido desde mucho tiempo atrás, es fácil de entender y de implementar. Sin embargo, desde el punto de vista del álgebra computacional, este algoritmo tiene varios inconvenientes. Desde finales de los sesentas se han desarrollado algoritmos mejorados usando técnicas un poco más sofisticadas. En esta primera parte vamos a entrar en la teoría básica y en los algoritmos (relativamente) más sencillos, el algoritmo "subresultant PRS'' (aquí lo llamaremos PRS subresultante) y el algoritmo heurístico (conocido como "GCDHEU''). Este último algoritmo es muy eficiente en problemas de pocas variables y se usa también como complemento de otros algoritmos. De hecho, se estima que el 90% de los cálculos de MCD's en MAPLE se hacen con este algoritmo [13]. No se puede decir con certeza que haya un "mejor'' algoritmo para el cálculo del MCD de dos polinomios. Los algoritmos más usados, para calcular MCD en son "EZ-GCD'' (Extended Zassenhaus GCD), GCDHEU y "SPMOD'' (Sparse Modular Algorithm) [16] GCDHEU es más veloz que EZGCD y SPMOD en algunos casos, especialmente para polinomios con cuatro o menos variables. En general, SPMOD es más veloz que EZGCD y GCDHEU en problemas donde los polinomios son "ralos'', es decir con muchos coeficientes nulos y éstos, en la práctica, son la mayoría.
  • En la segunda parte, en el próximo número, nos dedicaremos a EZGCD y SPMOD. Estos algoritmos requieren técnicas más sofisticadas basadas en inversión de homomorfismos vía el teorema chino del resto, iteración lineal p-ádica de Newton y construcción de Hensel. Como CGDHEU es un algoritmo modular, aprovechamos para iniciar con parte de la teoría necesaria para los dos primeros algoritmos. En este trabajo, primero vamos a presentar los preliminares algebraicos, el algoritmo de Euclides, el algoritmo primitivo de Euclides, el algoritmo PRS Subresultante y el algoritmo heurístico, además de el algoritmo extendido de Euclides. Las implementaciones requieren, por simplicidad, construir un par de clases para manejo de polinomios con coeficientes racionales grandes ("BigRational'') y para manejo de polinomios con coeficientes enteros grandes ("BigInteger'').(Escuela de Matemática - Centro de Recursos Virtuales (CRV). Instituto Tecnológico de Costa Rica) EJERCICIOS Ejemplo a) Hallar el m.c.d. de 4a^2+4ab y 2a^4-2a^2b^2 1°) Se factorizan las expresiones dadas: –> 4a^2 + 4ab = 4a(a+b) (Se aplicó Caso I de Factorización) –> 2a^4 -2a^2b^2 = 2a^2(a^2 – b^2) = 2a^2(a+b)(a-b) (Se aplicó Caso I y IV de Factorización) 2°) Se buscan los factores comunes de las expresiones encontradas: Factor común de 4a y 2a^2 son 2a Factor común de (a+b) y (a+b)(a-b) son (a+b) por lo tanto, el m.c.d. de 4a(a+b) y 2a^2(a+b)a-b es = 2a(a+b) , que es la Solución. NOTA : Al factorizar es necesario aplicar las reglas para la Descomposición de Factores o Factorización, según el Caso que le corresponda.
  • ___________________________________________________________ Ejemplo b) Hallar el m.c.d. de x^2 – 4 , x^2 -x -6 , x^2 +4x +4 1°) Se factorizan las expresiones dadas: –> x^2 -4 = (x -2)(x +2) Se aplicó el Caso IV de Factorización –> x^2 -x -6 = (x -3)(x +2) Se aplicó el Caso III de Factorización. –> x^2 +4x +4 = (x +2)^2 = (x +2)(x +2) Se aplicó el Caso III de Factorización. Se buscan los factores comunes de las expresiones encontradas: Factor común de las 3 expresiones es = (x +2) por lo tanto, el m.c.d. de x^2 -4, x^2 -x -6 y x^2 +4x +4 es = x +2 Solución. ___________________________________________________________ Ejercicio 112. 1) Hallar el m.c.d. de 2a^2 +2ab , 4a^2 -4ab Factorizando las expresiones dadas: –> 2a^2 +2ab = 2a(a +b) Se aplicó el Caso I de Factorización. –> 4a^2 -4ab = 2a(2a -2b) Se aplicó el Caso I de Factorización. Buscando los factores comunes de las expresiones encontradas: Factor común de 2a(a +b) y 4a(a -b) es = 2a por lo tanto el m.c.d. de 2a^2 +2ab y 4a^2 -4ab es = 2a <– Solución. _________________________________________________________ 2) Hallar el m.c.d. de 6x^3y -6x^2y , 9x^3y^2 +18x^2y^2 Factorizando las expresiones dadas: –> 6x^3y -6x^2y = 3x^2y(2x -2) –> 9x^3y^2 +18x^2y^2 = 3x^2y^2(3x +6) ( Para ambas expresiones se aplicó el Caso I) Buscando los factores comunes de las expresiones encontradas:
  • Factor común de 3x^2y(2x -2) y 3x^2y^2(3x +6) es = 3x^2y por lo tanto el m.c.d. de 6x^3y -6x^2y y 9x^3y^2 +18x^2y^2 es = 3x^2y <– Solución. _________________________________________________________ 3) Hallar el m.c.d. de 12a^2b^3 y 4a^3b^2 -8a^2b^3 Faxctorizando las expresiones dadas: –> 12a^2b^3 = 4a^2b^2(3b) –> 4a^3b^2 -8a^2b^3 = 4a^2b^2(3b) (Para ambas expresiones se aplicó el Caso I) Factor común de 4a^2b^2(3b) y 4a^2b^2(3b) es = 4a^2b^2 Por lo tanto el m.c.d. de 12a^2b^3 y 4a^3b^2 -8a^2b^3 es = 4a^2b^2 <– Solución. __________________________________________________________ 4) Hallar el m.c.d. de ab +b y a^2 +a Factorizando las expresiones dadas: –> ab +b = b(a +1) –> a^2 +a = a(a +1) (Para ambas expresiones se aplicó el Caso I) Factor común de b(a +1) y a(a +1) es = (a +1) Por lo tanto el m.c.d. de ab +b y a^2 +a es = a +1 <– Solución. ___________________________________________________________ 5) Hallar el m.c.d. de x^2 -x y x^3 -x^2 Factorizando las expresiones dadas: –> x^2 -x = x(x -1) –> x^3 -x^2 = x^2(x -1) (Para ambas expresiones se aplicó el Caso I) Factor común de x(x -1) y x^2(x -1) es = x(x -1) Por lo tanto el m.c.d. de x(x -1) y x^2(x -1) es = x(x -1) <– Solución. ___________________________________________________________
  • 6) Hallar el m.c.d. de 30ax^2 -15x^3 , 10axy^2 -20x^2y^2 Factorizando las expresiones dadas: –> 30ax^2 -15x^3 = 15x^2(2a -x) = (3)(5)(x)(x)(2a -x) –> 10axy^2 -20x^2y^2 = 10xy^2(a -2x) = (2)(5)(x)(y^2)(a -2x) Se aplicó el Caso I Factor común de (3)(5)(x)(x)(2a -x) y (2)(5)(x)(y^2)(a -2x) es = 5x Por lo tanto el m.c.d. de 30ax^2 -15x^3 , 10axy^2 -20x^2y^2 es = 5x <– Solución. ___________________________________________________________ 7) Hallar el m.c.d. de 18a^2x^3y^4 , 6a^2x^2y^4 -18a^2xy^4 Factorizando las expresiones dadas: –> 18a^2x^3y^4 = 6a^2xy^4(3x^2) –> 6a^2x^2y^4 -18a^2xy^4 = 6a^2xy^4(x -3) Se aplicó el Caso I para ambas expresiones. Factor común para 6a^2xy^4(3x^2) y 6a^2xy^4(x -3) es = 6a^2xy^4 Por lo tanto el m.c.d. de 18a^2x^3y^4 , 6a^2x^2y^4 -18a^2xy^4 es = 6a^2xy^4 <– Solución. ___________________________________________________________ 8) Hallar el m.c.d. de 5a^2 -15a , a^3 -3a^2 Factorizando las expresiones dadas: –> 5a^2 -15a = 5a(a -3) –> a^3 -3a^2 = a^2(a -3) Se aplicó el Caso I, para ambas expresiones. Factor común de 5a(a -3) y a^2(a -3) es = a(a-3) Por lo tanto el m.c.d. de 5a^2 -15a , a^3 -3a^2 es = a(a -3) <– Solución. Aplicaciones del m.c.m. 1. Reducir fracciones a común denominador. Ejemplo: Reducir a común denominador las siguientes fracciones:
  • Factor izamos los denominadores: 12 = 22 x 3 9 = 32 18 = 2 x 32 Escogemos los factores primos comunes y no comunes, elevados al mayor exponente. El m.c.m (12, 9, 18) = 22 • 32 = 4 • 9 = 36. Ya tenemos el nuevo denominador. 2. Resolver problemas de la vida práctica. Ejemplo: Estoy en la playa por la noche y veo dos faros en la costa. Observo que el destello de luz de uno de ellos ocurre cada 8 segundos. En cambio, la luz del otro faro aparece cada 12 segundos. ¿Habrá algún momento en el que pueda ver el destello de ambos faros a la vez? Si es así, ¿cada cuántos segundos coincidirán los dos? Solución: Buscamos una cantidad de segundos que sea múltiplo de 8 y de 12 y que a la vez sea el más cercano. Es decir, estamos buscando el m.c.m. (8, 12). Factorizamos 8 y 12: 8 = 23 12 = 22 x 3 Escogemos los factores primos comunes y no comunes, elevados al mayor exponente, y calculamos el mínimo común múltiplo. m.c.m. (8, 12) = 23 • 3 = 8 • 3 = 24. Por lo tanto, comprobamos que las luces de los dos faros se verán al mismo tiempo cada 24 segundos. Aplicaciones del m.c.d. 1. Simplificar una fracción hasta su irreducible. Ejemplo: Simplifica hasta su equivalente irreducible la siguiente fracción: Hallamos el M.C.D. (360, 336). Para ello factorizamos el numerador y el denominador. 360 = 23 x 32 x 5 336 = 24 x 3 x 7 Elegimos los factores primos comunes elevados al menor exponente y tenemos que: M.C.D. (360, 336) = 23 • 3 = 8 • 3 = 24. Dividimos el numerador y el denominador entre 24 360 = 360 : 24 = 15 336 336 : 24 14
  • y obtenemos la fracción equivalente irreducible: 2. Resolver problemas de la vida práctica. Ejemplo: Queremos embaldosar el suelo de una cocina rectangular con baldosas cuadradas. La cocina mide 270 cm de largo por 180 cm de ancho. ¿De qué tamaño tengo que comprar las baldosas de manera que encajen enteras en estas dimensiones y sean lo más grande posible? ¿Cuántas baldosas tengo que comprar? Solución: la longitud del lado de la baldosa ha de ser un divisor común de 270 y 180, y el más grande posible. Por lo tanto, estamos buscando el máximo común divisor de 270 y 180. Factorizamos 270 y 180: 270 = 2 x 33 x 5 180 = 22 x 33 x 5 Elegimos los factores primos comunes elevados al menor exponente y tenemos que: M.C.D. (270,180) = 2 • 32 • 5 = 2 • 9 • 5 = 90. Por lo tanto, comprando baldosas de 90 cm de lado podremos pavimentar la cocina sin tener que romper ninguna. Ahora vamos a calcular cuántas necesitamos: 270 : 90 = 3. Tres baldosas de largo. 180 : 90 = 2. Dos baldosas de ancho. Respuesta: Necesitamos 6 baldosas.
  • RESOLUCIÓN DE ECUACIONES CUADRÁTICAS POR FACTORIZACI ÓN Descripción: La función cuadrática es una función de los reales en los reales cuya regla de correspondencia está dada por f(x) = ax 2 + bx + c (a0) y cuyo dominio incluye todos los números reales. Para resolver ecuaciones cuadráticas utilizamos principalmente el método de factorización. Ejemplos: 1) Resuelva x  32x 1 9 . Solución: Lo primero es lograr que la ecuación se iguale a cero. Para esto, primero multiplicaremos el lado izquierdo y luego restaremos el nueve. Después factorizaremos la ecuación resultante para obtener la solución final. Es conveniente verificar la solución final en la ecuación original. x  32x 1 9 2x 2  x  6x 3  9 2x 2  5x 3 9  0 2x 2  5x 12  0 2x 3x  4 0 2x 3  0 2x  3 x  3/2
  • ó x  4  0 x  4 2) Halle las soluciones de x 3 8x 2 16x  0. Solución: Como la ecuación ya está igualada a cero solamente hay que factorizar e igualar sus factores a cero y resolver en términos de x . xx 2 8x 16 0 xx 4x 4 0 x  0 ó x 4  0 x  4
  • Ecuaciones de primer grado Una ecuación de primer grado es una igualdad de dos expresiones en las que aparece una incógnita cuyo valor está relacionado a través de operaciones aritméticas. Se denominan ecuaciones de primer grado si el exponente de la incógnita es uno. Para resolver una ecuación de primer grado se deben traspasar los términos de un lado a otro de la ecuación, de manera que todos los términos que tengan la incógnita queden a un lado y los demás al otro, teniendo la precaución de mantener la igualdad de la expresión. Por eso, cada vez que trasponemos un término se aplica el opuesto (inverso aditivo), tal como se ilustra en el siguiente ejemplo: Resolver la ecuación: (x + 3)2 – (x - 1)2 = 3x – (x – 4) a) Primero desarrollamos todas las operaciones de la expresión x2 + 6x + 9 – (x2 – 2x + 1) = 3x – x + 4 x2 + 6x + 9 – x2 + 2x – 1 = 3x – x + 4 b) Trasponemos los términos: x2 + 6x – x2 + 2x –3x + x = 4 – 9 + 1; c) Reducimos términos semejantes: 6x = -4 ; d) Dividimos por 6: x = -4/6 e) Simplificamos por 2: x = -2/3 Ecuaciones literales de primer grado Una ecuación de primer grado literal es aquella que contiene expresiones literales además de la incógnita. Por convención, se identifica como incógnitas a las últimas letras del alfabeto y como literales a las primeras letras del alfabeto (estos literales se suponen valores constantes). Para resolver ecuaciones literales se efectúa el mismo procedimiento aplicado en la ecuación del ejemplo anterior. La variante es
  • que cuando tengamos todas las incógnitas a un lado de la ecuación, factorizaremos por ella para poder despejarla. Desarrollemos un ejemplo: ax – b(x – 1) = 3(x + a) Tal como en el caso anterior, efectuamos las operaciones, reducimos términos semejantes y trasponemos términos: a) Resolvemos las operaciones ax – bx + b = 3x + 3a b) Reducimos términos semejantes y trasponemos términos: ax – bx – 3x = 3a – b c) Factorizamos al lado izquierdo por la incógnita: x(a – b – 3) = 3a – b d) Para despejar x y calcular su valor, debemos dividir por (a – b – 3): (¿Por qué se divide? Porque el factor de la incógnita es diferente de 1) Ejemplos de planteo de ecuaciones: Ejemplo 1: Encuentra dos números consecutivos cuya diferencia de cuadrados sea igual a 9. Sean x y x + 1 los números. Entonces, según el enunciado dado: (x + 1)2 – x2 = 9; desarrollando el cuadrado de binomio, tenemos: x2 + 2x + 1 – x2 = 9 2x + 1 = 9 x = 4; Por lo tanto los números son 4 y 5. Ejemplo 2: Sergio tiene un año más que el doble de la edad de Humberto, y sus edades suman 97. ¿Qué edad tiene el menor? Si x es la edad de Humberto, entonces la edad de Sergio es 2x + 1. Planteando que la suma de las edades es 97, obtenemos la ecuación:
  • x + 2x + 1 = 97 3x = 96 x = 32 Reemplazando este valor de x, se concluye que la edad de Humberto es 32 y la de Sergio es 65. Respuesta: la edad del menor es 32. Ejemplo: 1.-Resolución de la ecuación 2x - 3 = 2 1º paso: Se suma a los dos miembros 3. 2x -3 + 3 = 2 + 3 2x = 5 2º pasó. Se divide los dos miembros por 2. 2x /2 = 5/2 2.- Resolución de la ecuación 3x -2 = x + 5 1º paso: Restamos x a los dos miembros. 3x -2 -x = x - x + 5; 2x - 2 = 5 2º pasó. Sumamos 2 a los dos miembros. 2x - 2 + 2 = 5 + 2; 2x = 7 3º pasó. Dividimos por 2, el coeficiente de la x 2x/2 = 7/2 SOLUCIÓN: x = 7 / 2 3.- Resolución de la ecuación 5x - 4 + x = 7 - 3x + 5 1º paso: Se simplifica los dos miembros. 6x - 4 = 12 - 3x 2º paso: Sumamos 3x a los dos miembros.
  • 6x + 3x - 4 = 12 - 3x + 3x; 9x -4 = 12 3º paso. Sumamos 4 a los dos miembros. 9x - 4 + 4 = 12 + 4; 9x = 16 4º paso: Dividimos por 9 SOLUCIÓN: x = 16 / 9 ECUACIONES DE SEGUNDO GRADO (O CUADRÁTICAS) Ecuaciones de segundo grado y una incógnita Sabemos que una ecuación es una relación matemática entre números y letras. Normalmente se trabaja con ecuaciones en las que sólo hay una letra, llamada incógnita, que suele ser la x. Resolver la ecuación consiste en encontrar un valor (o varios) que, al sustituirlo por la incógnita, haga que sea cierta la igualdad. Ese valor es la solución de la ecuación. Ejemplo: Resolver la ecuación x − 1 = 0 El número que hace que esa ecuación sea cierta es el 1, ya que 1 – 1 = 0, por lo tanto, 1 es la solución de la ecuación. Si en la ecuación la incógnita está elevada al cuadrado, decimos que es una ecuación de segundo grado (llamadas también ecuaciones cuadráticas), que se caracterizan porque pueden tener dos soluciones (aunque también una sola, e incluso ninguna). Cualquier ecuación de segundo grado o cuadrática se puede expresar de la siguiente forma: ax2 + bx + c = 0 Donde a, b y c son unos parámetros que habrá que sustituir por los números reales que corresponda en cada caso particular. Solución de ecuaciones cuadráticas Hemos visto que una ecuación cuadrática es una ecuación en su forma ax2 + bx + c = 0, donde a, b, y c son números reales.
  • Pero este tipo de ecuación puede presentarse de diferentes formas: Ejemplos: 9x2 + 6x + 10 = 0 a = 9, b = 6, c = 10 3x2 – 9x + 0 = 0 a = 3, b = –9, c = 0 (el cero, la c, no se escribe, no está) –6x2 + 0x + 10 = 0 a = -6, b = 0, c = 10 (el cero equis, la b, no se escribe) Para resolver la ecuación cuadrática de la forma ax2 + bx + c = 0 (o cualquiera de las formas mostradas), puede usarse cualquiera de los siguientes métodos: Solución por factorización En toda ecuación cuadrática uno de sus miembros es un polinomio de segundo grado y el otro es cero; entonces, cuando el polinomio de segundo grado pueda factorizarse, tenemos que convertirlo en un producto de binomios. Obtenido el producto de binomios, debemos buscar el valor de x de cada uno. Para hacerlo igualamos a cero cada factor y se despeja para la variable. Igualamos a cero ya que sabemos que si un producto es igual a cero, uno de sus multiplicandos, o ambos, es igual a cero. Ejemplos 1) Resolver (x + 3)(2x − 1) = 9 Lo primero es igualar la ecuación a cero. Para hacerlo, multiplicamos los binomios: Ahora, pasamos el 9, con signo contrario, al primer miembro para igualar a cero: Ahora podemos factorizar esta ecuación: (2x − 3)(x + 4) = 0 Ahora podemos igualar a cero cada término del producto para resolver las incógnitas:
  • Si 2x − 3 = 0 2x = 3 Si x + 4 = 0 x = −4 Esta misma ecuación pudo haberse presentado de varias formas: (x + 3)(2x − 1) = 9 2x2 + 5x − 12 = 0 2x2 + 5x = 12 2x2 − 12 = − 5x 2) Halle las soluciones de La ecuación ya está igualada a cero y solo hay que factorizar e igualar sus factores a cero y luego resolver en términos de x: Ahora, si x = 0 o si x− 4 = 0 x = 4 Solución por completación de cuadrados Se llama método de la completación de cuadrados porque se puede completar un cuadrado geométricamente, y porque en la ecuación cuadrática se pueden realizar operaciones algebraicas que la transforman en una ecuación del tipo: (ax + b)2 = n en la cual el primer miembro de la ecuación (ax + b)2 , es el cuadrado de la suma de un binomio. Partiendo de una ecuación del tipo
  • x2 + bx + c = 0 por ejemplo, la ecuación x2 + 8x = 48, que también puede escribirse x2 + 8x − 48 = 0 Al primer miembro de la ecuación (x2 + 8x) le falta un término para completar el cuadrado de la suma de un binomio del tipo (ax + b)2 Que es lo mismo que (ax + b) (ax + b) Que es lo mismo que ax2 + 2axb + b2 En nuestro ejemplo x2 + 8x = 48, el 8 representa al doble del segundo número del binomio, por lo tanto, ese número debe ser obligadamente 8 dividido por 2 (8/2), que es igual a 4, y como en el cuadrado de la suma de un binomio ( a2 + 2ab + b2 ) el tercer término corresponde al cuadrado del segundo término (42 = 16) amplificamos ambos miembros de la ecuación por 16, así tenemos x2 + 8x + 16 = 48 + 16 x2 + 8x + 16 = 64 la cual, factorizando, podemos escribir como sigue: (x + 4) (x + 4) = 64 Que es igual a (x + 4)2 = 64 Extraemos raíz cuadrada de ambos miembros y tenemos Nos queda x + 4 = 8 Entonces x = 8 − 4 x = 4
  • Se dice que "se completó un cuadrado" porque para el primer miembro de la ecuación se logró obtener la expresión (x + 4)2 , que es el cuadrado perfecto de un binomio. Veamos otro ejemplo: Partamos con la ecuación x2 + 6x − 16 = 0 Hacemos x2 + 6x = 16 Luego, a partir de la expresión x2 + 6x (primer miembro de la ecuación) debemos obtener una expresión de la forma (ax + b)2 (cuadrado de la suma de un binomio). Para encontrar el término que falta hacemos (Para encontrar dicho término en cualquier ecuación siempre debemos dividir por 2 el valor real del segundo término y el resultado elevarlo al cuadrado). Ahora, para obtener la expresión completa se suma 9 a ambos miembros de la ecuación: x2 + 6x = 16 x2 + 6x + 9 = 16 + 9 x2 + 6x + 9 = 25 factorizamos, y queda (x +3) (x + 3) = 25 (x + 3)2 = 25 La expresión x2 + 6x se ha completado para formar un cuadrado perfecto, en este caso (x + 3)2 , y así la ecuación se resuelve con facilidad: Extraemos raíz cuadrada y queda x + 3 = 5 y x + 3 = −5 (pues 52 = 5 y también (−5)2 = 5 Entonces
  • x = 5 − 3 x = 2 Y x = − 5 − 3 x = − 8 La ecuación 1 da x = 2 y la ecuación 2 da x = −8. Solución por la fórmula general Existe una fórmula que permite resolver cualquier ecuación de segundo grado, que es la siguiente: La fórmula genera dos respuestas: Una con el signo más (+) y otra con el signo menos (−) antes de la raíz. Solucionar una ecuación de segundo grado se limita, entonces, a identificar las letras a, b y c y sustituir sus valores en la fórmula. La fórmula general para resolver una ecuación de segundo grado sirve para resolver cualquier ecuación de segundo grado, sea completa o incompleta, y obtener buenos resultados tiene que ver con las técnicas de factorización. Resolver la ecuación 2x2 + 3x − 5 = 0 Vemos claramente que a = 2, b = 3 y c = −5, así es que: Ahora, tenemos que obtener las dos soluciones, con el + y con el – Así es que las soluciones son
  • PROPIEDADES Y OPERACIONES CON LOS NÚMEROS REALES Para tener éxito en algebra, debe entender como sumar, restar, multiplicar y dividir números Reales. Dos números, en la recta numérica, que están a la misma distancia del cero pero en direcciones opuestas se denominan: Inversos aditivos, opuestos o simétricos uno del otro. Por ejemplo. 3 es el inverso aditivo de -3, y -3 es el inverso aditivo de 3 El numero 0 (cero) es su propio inverso aditivo. La suma de un número y su inverso aditivo es 0 (cero). Inverso aditivo Para cualquier número real de a, su inverso aditivo es –a. Considere el número -4. Su inverso aditivo es -(-4). Como sabemos que este número debe ser positivo, esto implica que -(-4) = 4. Éste es un ejemplo de la propiedad del doble negativo. Propiedad del doble negativo Para cualquier número real a, -(-a) = a Por la propiedad del doble negativo, -(-6.9) = 6.9 Valor absoluto El valor de cualquier número distinto del cero siempre será un nuero positivo, y el valor absoluto de 0 es 0. Para determinar el valor absoluto de un número real, use la definición siguiente. La definición de valor absoluto indica que el valor absoluto de cualquier número no negativo, es el mismo, y el valor absoluto de cualquier número negativo es el inverso aditivo (opuesto9 del número.
  • El valor absoluto de un número puede determinarse por medio de la definición. Por ejemplo. Operaciones con los números Reales 1. Sumar números reales Para sumar dos números con el mismo signo (ambos positivos o ambos negativos) Sume sus valores absolutos y coloque el mismo signo común antes de la suma. La suma de dos números positivos será un número positivo, y la suma de dos números negativos será un número negativo. Ejemplo. -5 + (-9) Solución: Como ambos números que se suman son negativos, la suma será negativa. Para determinar la suma, sume los valores absolutos de estos números y coloque un signo negativo antes del valor. Para sumar dos números con signos diferentes (uno positivo y el otro negativo) Reste el valor absoluto menor del valor absoluto mayor. La respuesta tiene el signo del número con el valor absoluto más grande. La suma de un número positivo y un número negativo puede ser positiva, negativa o cero, el signo de la respuesta será el mismo signo que el numero con mayor valor absoluto. Ejemplo. 3 + (-8) Como los números que se suman son de signos opuestos, restamos el valor absoluto más pequeño del valor absoluto mayor. Primero tomamos cada valor absoluto.
  • Ahora determinamos la diferencia, 8 – 3 = 5. El número -8 tiene un valor absoluto mayor que el número 3, por lo que la suma es negativa. 3 + (-8) = -5 Restar números reales Todo problema de sustracción puede expresarse como un problema de suma por medio de la regla siguiente. a – b = a + (-b) Para restar b de a, sume el opuesto (o inverso aditivo de b a a Ejemplo. 5 - 8 significa 5 – (+8). Para restar 5 – 8, sume el opuesto de +8, que es -7, a 5. 5 – 8 = 5 + (-8) = -3 Multiplicar números reales Para multiplicar dos números con signos iguales, ambos positivos o ambos negativos, multiplique sus valores absolutos. La respuesta es positiva. Para multiplicar dos números con signos diferentes, uno positivo y el otro negativo, multiplique sus valores absolutos. La respuesta es negativa. Ejemplo Cuando multiplicamos más de dos números, el producto será negativo cuando exista un número impar de números negativos. El producto será positivo cuando exista un número par de números negativos. Propiedad del cero en la multiplicación Para cualquier número a, Dividir números reales Para dividir dos números con signos iguales, ambos positivos o ambos negativos, divida sus valores absolutos. La respuesta es positiva. Para dividir dos números con signos diferentes, uno positivo y el otro negativo, divida sus valores absolutos. La respuesta es negativa. Ejemplos. Cuando el denominador de una fracción es un numero negativo, por lo común reescribimos la fracción con un denominador positivo. Para hacerlo, usamos el hecho siguiente.
  • Propiedades de los números reales. Propiedades de los números reales. APLICACIONES DE ECUACIONES LINEALES Pasos para la solución de problemas: 1. Leer el problema hasta entenderlo para ser capaz de explicarlo con otras palabras. 2. Identificar la información disponible y qué es lo que se pregunta. 3. Representar la incógnita con un símbolo algebraico, como x. 4. Expresar las demás cantidades en términos de x. 5. Traducir el enunciado del problema a expresiones algebraicas que contengan x. 6. Resolver las expresiones algebraicas siguiendo los métodos adecuados. 7. Analizar la respuesta algebraica para ver si es posible. 8. Traducir la respuesta algebraica al lenguaje común. Ejemplos El 20% de los estudiantes de un colegio, que tiene 240 alumnos, practica deporte. ¿Cuántos estudiantes practican deporte?
  • Solución: Como , entonces para calcular el 20% de 240, basta con multiplicar 240 por 0,2, es decir: 240 · 0,2 = 48. Ejemplo Entonces 48 alumnos (de los 240) practican deporte. En un curso con 200 alumnos, el 55% de las mujeres y el 65% de los hombres aprobaron. Si en el curso el 30% son mujeres, ¿qué porcentaje de alumnos aprobaron el examen? Solución: Cantidad de mujeres: 0,3.200 = 60 Cantidad de mujeres que aprobaron: 0,55.60 = 33 Cantidad de varones: 0,7.200 = 140 (se podría haber hecho 200 – 60 = 140) Cantidad de varones que aprobaron: 0,65.140 = 91 Total de alumnos que aprobaron: 33 + 91 = 124 Si x representa al porcentaje de alumnos que aprobaron, entonces Ejemplos La tía Berta al morir dejo 160 millones repartido entre sus tres nietos, a pedro le dejo el doble que a Laurita, pero juanita tiene 5 veces más que Laura ¿a cuánto le toco cada uno? Solución Laurita=x Pedro=2x (dos veces más que Laura)
  • juanita=5x (cinco veces más que Laurita) x+2x+5x=160 8x=160 x=160/8 x=20 con el valor descubierto de x ahora sabemos que Laurita le dejaron 20 millones, a pedro 40 y a juanita 100 millones.. Ejemplos Los miembros de una fundación desean invertir $18,000 en dos tipos de seguros que pagan dividendos anuales del 9 y 6%, respectivamente. ¿Cuánto deberán invertir a cada tasa si el ingreso debe ser equivalente al que produciría al 8% de la inversión total? Solución: Sea P la cantidad a invertir al 9%, por lo tanto ($18,000 − P) será la cantidad a invertir al 6%. Establecemos: (Ingreso devengado al 9%) + (Ingreso devengado al 6%) = Ingreso Total Sustituimos los valores (9%) P + (6%)($18,000 − P) = (8%)*($18,000) Resolvemos para P: .09P + .06 (18,000 − P) = .08*(18,000) .09P + 1,080 − .06P = 1,440 .09P − .06P = 1,440 − 1,080 .15P = 360 P = (360) / (.15) P = 2,400 Los miembros de la fundación deben invertir $2,400 al 9% y $18,000 − $2,400 = $15,600 al 6%.
  • Ecuaciones lineales de primer grado Sabemos que una ecuación lineal o de primer grado es aquella que involucra solamente sumas y restas de variables elevadas a la primera potencia (elevadas a uno, que no se escribe). Son llamadas lineales por que se pueden representar como rectas en el sistema cartesiano. Se pueden presentar tres tipos de ecuaciones lineales: a) ecuaciones lineales propiamente tales En este tipo de ecuación el denominador de todas las expresiones algebraicas es igual a 1 (no se presentan como fracción, aunque el resultado sí puede serlo). Para proceder a la resolución se debe: Eliminar paréntesis. Dejar todos los términos que contengan a "x" en un miembro y los números en el otro. Luego despejar "x" reduciendo términos semejantes. Ejemplo: 4x – 2(6x – 5) = 3x + 12(2x + 16) 4x – 12x + 10 = 3x + 24x + 192 4x – 12x – 3x – 24x = 192 – 10 –35x = 182
  • b) ecuaciones fraccionarias En este tipo de ecuación lineal el denominador de a lo menos una de las expresiones algebraicas es diferente de 1 (es una fracción). Para proceder a la resolución se debe: Llevar a ecuación lineal (eliminar la fracción) multiplicando la ecuación por el mínimo común múltiplo de los denominadores (m.c.m.) Ejemplo: m.c.m. de 2, 4 y 3 = 12 c) ecuaciones literales Pueden ser lineales o fraccionarias. Si son fraccionarias, se llevan al tipo lineal, pero en el paso de reducir términos semejantes se factoriza por "x" para despejarla. Ejemplo:
  • Sistemas de ecuaciones lineales Un sistema de ecuaciones lineales con dos incógnitas tiene la siguiente la forma: Donde cada una de las ecuaciones corresponde a la ecuación de una recta. Determinar la solución del sistema, es hallar un punto que satisfaga ambas ecuaciones, esto es, hallar el punto donde se intersectan ambas rectas. Gráficamente, la situación es la siguiente Sistema compatible indeterminado Sistema lineal de dos ecuaciones con dos incógnitas
  • Se puede ver: Con lo que podemos decir que la primera ecuación multiplicada por tres da la segunda ecuación, por lo tanto no son dos ecuaciones independientes, sino dos formas de expresar la misma ecuación. Tomando una de las ecuaciones, por ejemplo la primera, tenemos: CLASIFICAMOS LOS SIGUIENTES SISTEMAS DE ECUACIONES LINEALES a) 2 x + y = 6 2 x - y = 2 a) Dibujamos las rectas que representan las soluciones de cada ecuación: Dos soluciones de la primera ecuación son:
  • x = 1, y = 4; x = 2, y = 2 Dos soluciones de la segunda ecuación son: x = 1, y= 0; x = 2, y = 2 Las rectas se cortan en un punto que será la solución:x = 2, y = 2. Por tanto, el sistema será compatible determinado. Vemos la representación más abajo .x + y = 3 2 x + 2 y = 6 b) Dibujamos las rectas que representan las soluciones de cada ecuación: Dos soluciones de la primera ecuación son: x = 0, y = 3; x = 3, y = 0 Dos soluciones de la segunda ecuación son: x = 1, y = 2; x = 2, y = 1 Las rectas coinciden, toda la recta es solución del sistema (infinitas soluciones). Por tanto, el sistema será compatible indeterminado. Vemos la representación más abajo b) x + y = 3 x + y = - 1 c) Dibujamos las rectas que representan las soluciones de cada ecuación: Dos soluciones de la primera ecuación son: x = 0,y = 3; x = 3,y = 0 Dos soluciones de la segunda ecuación son: x = 0, y =-1; x = -2, y = 1
  • Las rectas son paralelas, no tienen ningún punto en común, luego el sistema no tiene solución. Por tanto, el sistema será incompatible. Vemos la representación siguiente:
  • Graficas Métodos de resolución de sistemas de ecuaciones lineales Método de reducción Consiste en multiplicar ecuaciones por números y sumarlas para reducir el número de incógnitas hasta llegar a ecuaciones con solo una incógnita.
  • Multiplicar una ecuación por un número consiste en multiplicar ambos miembros de la ecuación por dicho número. Sumar dos ecuaciones consiste en obtener una nueva ecuación cuyo miembro derecho (izquierdo) es la suma de los miembros derechos (izquierdos ) de las ecuaciones que se suman. Ejemplo Multiplicando la primera ecuación por 3 y la segunda por -5, se obtienen las ecuaciones El sumar ambas ecuaciones nos da la ecuación Que es una ecuación con una sola incógnita y cuya solución es La elección de los factores 3 y -5 se ha hecho precisamente para que la desaparezca al sumar ambas ecuaciones. Sustituyendo por uno en la primera ecuación del sistema de ecuaciones de partida, se obtiene Que es otra ecuación con una sola incógnita y cuya solución es . Método de igualación
  • El método de igualación consiste en lo siguiente: Supongamos que tenemos dos ecuaciones: Donde , , y representan simplemente los miembros de estas ecuaciones ( son expresiones algebraicas ). De las dos igualdades anteriores se deduce que Si resulta que una incógnita del sistema de ecuaciones no aparece ni en ni en , entonces la ecuación No contendría dicha incógnita. Este proceso de eliminación de incógnitas se puede repetir varias veces hasta llegar a una ecuación con solo una incógnita, digamos . Una vez que se obtiene la solución de esta ecuación se sustituye por su solución en otras ecuaciones donde aparezca para reducir el número de incógnitas en dichas ecuaciones. Ejemplo El sistema de ecuaciones Es equivalente a este otro
  • El segundo sistema lo he obtenido pasando los términos en del miembro de la izquierda al miembro de la derecha en cada una de las ecuaciones del primer sistema. Del segundo sistema se deduce que Que es una ecuación con una sola incógnita cuya solución es . Sustituyendo por 1 en la primera ecuación del sistema de partida se tiene que Que es una ecuación con una sola incógnita y cuya solución es . Método de sustitución Supongamos que un sistema de ecuaciones se puede poner de la forma Entonces podemos despejar en la segunda ecuación y sustituirla en la primera, para obtener la ecuación: Lo que se busca es que esta ecuación dependa de menos incógnitas que las de partida. Aquí y son expresiones algebraicas de las incógnitas del sistema. Ejemplo Intentemos resolver La primera ecuación se puede reescribir de la forma Por otra parte, de la segunda ecuación del sistema se deduce que
  • Sustituyendo por en Se tiene que Que es una ecuación con solo una incógnita y cuya solución es . Sustituyendo por uno en la primera ecuación del sistema de ecuaciones de partida obtenemos una ecuación de una sola incógnita Cuya solución es . Método de Gauss Gauss es uno de los matemáticos más importantes de todos los tiempos. ¡Fue un GENIO! El método de Gauss consiste en transformar el sistema dado en otro equivalente. Para ello tomamos la matriz ampliada del sistema y mediante las operaciones elementales con sus filas la transformamos en una matriz triangular superior ( o inferior ). De esta forma obtenemos un sistema equivalente al inicial y que es muy fácil de resolver. Es esencialmente el método de reducción. En el método de Gauss se opera con ecuaciones, como se hace en el método de reducción, pero uno se ahorra el escribir las incógnitas porque al ir los coeficientes de una misma incógnita siempre en una misma columna, uno sabe en todo momento cual es la incógnita a la que multiplican. Ejemplo La matriz ampliada del sistema de ecuaciones:
  • Es: Si a la tercera y segunda fila le restamos la primera, obtenemos: Lo que acabamos de hacer es equivalente a restar a la tercera y segunda ecuación la primera. Si ahora intercambiamos la segunda y tercera filas (ecuaciones ), obtenemos la siguiente matriz triangular superior: Que es la matriz ampliada del sistema de ecuaciones: Que es equivalente al inicial. Solucionamos la tercera ocupación para obtener : En la primera y segunda ecuación, sustituimos por la solución de la tercera ecuación ( ), para obtener:
  • La segunda ecuación es ahora una ecuación con una sola incógnita, , que resolvemos para obtener . Sustituimos, en la primera ecuación, por 1 ( ). Esto nos da una ecuación en : Que al resolverla termina de darnos la solución del sistema de ecuaciones inicial: EXPRESIONES ALGEBRAICAS EXPRESIÓN ALGEBRAICA. Es la representación de un símbolo algebraico o de una o más operaciones algebraicas. TÉRMINO. Es una expresión algebraica que consta de un solo símbolo o de varios símbolos no separados entre sí por el signo + o -. Los elementos de un término son cuatro: el signo, el coeficiente, la parte literal y el grado. GRADO ABSOLUTO DE UN TÉRMINO. Es la suma de los exponentes de sus factores literales. GRADO DE UN TÉRMINO CON RELACIÓN A UNA LETRA. Es el exponente de dicha letra. CLASES DE TÉRMINOS. El término entero es el que no tiene denominador literal, el término fraccionario es el que tiene denominador literal. El término racional es el que no tiene radical, e irracional el que tiene radical. TÉRMINOS HOMOGÉNEOS. Son los que tienen el mismo grado absoluto. TÉRMINOS HETEROGÉNEOS. Son los de distinto grado absoluto. TÉRMINOS SEMEJANTES. Dos términos son semejantes cuando tienen la misma parte literal, o sea, cuando tienen iguales letras afectadas de iguales exponentes.
  • 10 Ejemplos de Términos Semejantes: 1. x es semejante con 3x ya que ambos términos tienen la misma literal (x). 2. xy2 es un término semejante a -3y2 x ya que ambos tienen la misma literal (xy2 = y2 x) 3. 5xyrb es un término semejante con –xyrb 4. 4bx2 no es semejante a 4b2 x ya que el literal bx2 no es igual al b2 x. 5. 5hk es semejante a 6hk porque tiene la misma literal (hk) 6. 4(jk)3 es semejante a 9j3 k3 porque (jk)3 = j3 k3 7. 5ty es semejante a 3ty 8. 5kl4 es semejante a -2kl4 9. 68lky5 es semejante a -96lky5 10.378ab3 c2 no es semejante a 378a2 b3 c CLASIFICACION DE LAS EXPRESIONES ALGEBRAICA MONOMIO. Es una expresión algebraica que consta de un solo término. BINOMIO. Es un polinomio que consta de dos términos. TRINOMIO. Es un polinomio que consta de tres términos.
  • POLINOMIO. Es una expresión algebraica que consta de más de un término. GRADO DE UN MONOMIOS Llama grado de un monomio a la suma de los exponentes de su parte literal: El monomio es de grado: 2 + 3 + 1 = 6º grado. El grado lo podemos considerar respecto a una letra. En el ejemplo anterior, el grado respecto a la letra a es 2, respecto a b es 3 y respecto a c es 1. GRADO DE UN POLINOMIO Es el mayor de los grados de los monomios que contiene el polinomio: 9.5 ¿Cuál es el grado de: ? 9.6 ¿Cuál es el grado de: ? ORDENAR UN POLINOMIO Ordenar un polinomio es colocar los monomios de mayor a menor teniendo en cuenta su grado: 9.8 Ordena el polinomio:
  • Respuesta: ORDENAR UN POLINOMIO RESPECTO A UNA LETRA Si hay dos o más letras se deben indicar respecto a que letra se ordena. Ejemplo: 9.9 Ordena respecto a ‘x’, el polinomio: Respuesta: 9.10 Ordena con respecto a ‘z’: Respuesta: 9.11 Escribe un trinomio ordenado de quinto grado (los números y letras los que prefieras) Respuesta: (con respecto a ‘c’) : 9.12 ¿De qué grado son las expresiones:
  • Respuestas: 1) Primer grado 2) Quinto grado GRADO ABSOLUTO DE UN POLINOMIO. Es el grado de su término de mayor grado. GRADO DE UN POLINOMIO CON RELACIÓN A UNA LETRA. Es el mayor exponente de dicha letra en el polinomio. CLASES DE POLINOMIOS. Un polinomio es entero cuando ninguno de sus término tiene denominador literal; fraccionario cuando alguno de sus términos tiene letras en el denominador; racional cuando no contiene radicales; irracional cuando contiene radical; homogéneo cuando todos sus términos son del mismo grado absoluto; heterogéneo cuando sus términos no son del mismo grado. POLINOMIO COMPLETO CON RELACIÓN A UNA LETRA. Es el que contiene todos los exponentes sucesivos de dicha letra, desde el más alto al más bajo que tenga dicha letra en el polinomio. POLINOMIO ORDENADO CON RESPECTO A UNA LETRA. Es un polinomio en el cual los exponentes de una letra escogida, llamada letra ordenatriz, van aumentando o disminuyendo. ORDENAR UN POLINOMIO. Es escribir sus términos de modo que los exponentes de una letra escogida come letra ordenatriz queden en orden descendente o ascendente.
  • NOMENCLATURA ALGEBRAICA 1. Dígase qué clase de términos son los siguientes atendiendo al signo, a si tienen o no denominador y a si tienen o no radical: S o l u c i ó n : 2. Dígase el grado absoluto de los términos seguientes: S o l u c i ó n : 3. Dígase el grado de los términos siguientes respecto de cada uno de sus factores literales:
  • 4. De los términos siguientes escoger cuatro que sean homogéneos y tre hetereogéneos S o l u c i ó n : 5. Escribir tres términos enteros; dos fraccionarios; dos positivos, enteros y racionales; tres negativos, fraccionarios e irracionales S o l u c i ó n : 6. Escribir un término de cada uno de los grados absolutos siguientes: tercer grado, quinto grado, undécimo grado, décimo quinto grado, vigésimo grado S o l u c i ó n : 7. Escribir un término de dos factores literales que sea de cuarto grado con relación a la x; otro de cuatro factores literales que sea de séptimo grado con relación a la y; otro de cinco factores literales que sea de décimo grado con relación a la b S o l u c i ó n :
  • DESCOMPOSICIÒN FACTORIAL - Factores Se llaman factores o divisores de una expresión algebraica a los que el producto entre sí (de estos factores) nos da la expresión primitiva. Así, efectuando el producto entre a y a + b, se obtiene: a y abe, cuyo producto entre sí dan la expresión a2 + ab, estos son los divisores de a2 + ab de tal manera que: (X+3)(X+5) = x2 + 8x + 15 Donde (x+3) (X+5) son los factores de x2 + 8x + 15 Métodos para la factorización de polinomios Todo Polinomio se puede factorizar utilizando números reales, si se consideran los números complejos. Existen métodos de factorización, para algunos casos especiales. Binomios  Diferencia de Cuadrados  Suma o diferencia de Cubos  Suma o diferencia de potencias impares iguales Trinomios  Trinomio cuadrado perfecto  Trinomio de la forma x²+bx+c  Trinomio de la forma ax²+bx+c Polinomios  Factor común Factorizar un monomio Se descompone el término en el producto de factores primos. Ejemplo: Factorizar un polinomio No todo polinomio se puede descomponer en un producto indicado de dos o más factores distintos de 1, ya que de la misma forma que en Aritmética, hay números primos que sólo son divisibles por la unidad y por sí mismos, en Algebra, hay
  • expresiones algebraicas que sólo son divisibles por la unidad y por ellas mismas, en consecuencia, no son el producto de otras expresiones algebraicas. Así a + b no puede descomponerse en dos factores distintos de 1 porque sólo es divisible por a + b y por la unidad. A continuación diferentes casos de descomposición factorial. Caso I: Factor común Factor común. Cuando todos los términos de un polinomio tienen un factor común. Ejemplos: a) Descomponer en factores a2 + 2a a2 y 2a contienen el factor común a. Se escribe este factor común como coeficiente de un paréntesis, dentro de este paréntesis se escriben los cocientes obtenidos de efectuar el cociente entre a2 y a y 2a ya Obteniendo como resultado: a2 + 2a = a(a + 2) b) Factorizar 10b - 40ab2 Los coeficientes numéricos tienen los factores 2,5 y 10. Se toma el 10 porque siempre se escoge el mayor factor común. De las variables, el único factor común es b ya que se haya en los dos términos del binomio y se toma con su menor exponente. El factor común será 10b Obteniendo: 10b - 40ab2 = 10b(1 - 4ab) c) Descomponer en factores: 10a2 - 5a + 15a3 = 5a (2a - 1 + 3a2) Factor común de un polinomio a) Descomponer en factores: x(a+b)+y(a+b) Los dos términos de la expresión tienen como factor común (a+b). Se escribe (a+b) como coeficiente de un paréntesis, dentro del paréntesis se escriben los cocientes de dividir x(a+b) entre (a+b) y y(a+b) entre (a+b). Factorizando se obtiene:
  • x(a+b)+y(a+b) = (a+b)(x+y) x(a+b)+y(a+b) = ax+bx+ay+yb y (a+b)(x+y) = ax+ay+bx+by Obteniendo: x(a+b)+y(a+b) = (a+b)(x+y) y ax+bx+ay+yb = ax+ay+bx+by Factor común por agrupación de términos Se agrupan los términos que tengan factor común, asociándolos entre paréntesis y luego se extrae el factor común de cada uno. Ejemplos a) Factorizar ax + by +ay + by Los dos primeros términos tienen el factor común x, y los dos últimos tienen el factor común y, asociando los dos primeros términos en un paréntesis y los dos últimos también en un paréntesis precedido de un signo + ya que el tercer término es positivo se obtiene: ax+bx+ay+by = (ax+bx)(ay+by) ax+bx+ay+by = x(a+b) + y(a+b) extrayendo los factores comunes ax+bx+ay+by = (a+b)(x+y) factorizando Nota: La asociación de términos puede hacerse de varios modos y siempre se obtendrá el mismo resultado. Trinomio cuadrado perfecto Una cantidad es cuadrado perfecto cuando es el producto de dos factores iguales. Asi, 16a2 es cuadrado perfecto de 4a. En efecto (4a2 ) = 4a x 4a = 16a2 , 4a cantidad que multiplicada por si misma da 16a2 , 4a es la raíz cuadrada de 16a2 . Sin embargo (-4a2 ) = (-4a)((-4a) = 16a2 , luego (-4a) es también raíz de 16a2 , por lo que la raiz cuadrada de una cantidad positiva tiene los signos (+) y (-). Raíz cuadrada de un monomio Para extraer la raíz cuadrada de un monomio, se saca la raíz cuadrada de su coeficiente numérico y se dividen los exponentes de cada cantidad literal entre 2.
  • Ejemplo: La raíz cuadrada de 25a2 b4 es 5ab2 Un trinomio es cuadrado perfecto cuando es el cuadrado de un binomio, es decir, es el producto de dos binomios iguales. Así, a2 + 2ab + b2 es cuadrado perfecto porque es el cuadrado de a + b Por tanto: (a + b)2 = (a + b)(a + b) = a2 + 2ab + b2 Regla para identificar si un trinomio es cuadrado perfecto Un trinomio ordenado con relación a una letra es cuadrado perfecto cuando el primer y tercer término son cuadrados perfectos (o tienen la raíz cuadrada exacta) y positivos, y el segundo término equivale al doble del producto de éstas raíces cuadradas. Ejemplo: a) a2 - 4ab + 4b2 es cuadrado perfecto porque: Raíz cuadrada de a2 = a Raíz cuadrada de 4b2 = 2b Doble producto de estas raíces 2 x a x 2b = 4ab Regla para Factorizar un Trinomio Cuadrado Perfecto Se extrae la raíz cuadrada del primer y tercer término del trinomio y se separan estas raíces por el signo del segundo término. El binomio ya formado, que es la raíz cuadrada del trinomio, se multiplica por sí mismo o se eleva al cuadrado. Ejemplo: a) El trinomio a2 + 8ab + 16b2 es cuadrado perfecto ya que: raíz cuadrada de a2 = a raíz cuadrada de 16b2 = 4b Doble producto de las raíces: 2 x a x 4b = 8ab
  • Trinomios de la forma x2 + px + q En el producto notable (x + a)(x + b) = x2 + (a + b)x + ab observa que se obtiene un trinomio de la forma x2 + px + q, haciendo para ello a + b = p y ab = q Por tanto: Un trinomio de la forma x2 + px + q se puede descomponer en el producto de dos factores: (x + a) y (x + b) si podemos encontrar dos números a y b cuya suma algebraica sea p y cuyo producto sea q Regla práctica para factorizar el trinomio 1) El trinomio se descompone en dos factores binomios, cuyo primer término es x, es decir, la raíz cuadrada del primer término del trinomio. 2) En el primer factor, después de x se escribe el signo del segundo término del trinomio, y en el segundo factor, después de x se escribe el signo que resulta de multiplicar el signo del 2do término del trinomio y el signo del tercer término del trinomio. 3) Si los dos factores binomios tienen en los medios signos iguales se buscan dos números cuya suma sea el valor absoluto del segundo término del trinomio y cuyo producto sea el valor absoluto del tercer término del trinomio. Estos números son los segundos términos de los binomios. 4) Si los dos factores binomios tienen en los medios signos distintos se buscan dos números cuya diferencia sea el valor absoluto del segundo término del trinomio y cuyo producto sea el valor absoluto del tercer término del trinomio. El mayor de estos números es el primer término del primer binomio, y el menor, es el segundo término del segundo binomio. Ejemplos: Descomponer en factores: a) x2 + 9x + 20 = (x + 4)(x + 5), pues 4 + 5 = 9 y 4 x 5 = 20 b) a2 - 8a + 12 = (a - 6)(a - 2), pues (-6) + (-2) = (-8) y (-6)(-2) = 12 c) b2 + 3b - 28 = (b - 4)(b + 7), pues (-4) + 7 = 3 y (-4) x 7 = -28
  • Trinomios de la forma mx2 + px + q con (m ≠ 1) Observemos que el producto: (ax + b)(cx + d) = acx2 + adx + bcx + db = acx2 + (ad + bc)x + db, es de la forma mx2 + px + q (haciendo m = ac, p = ad + bc y q = bd). Luego, siempre que sea posible hallar a, b, c, d, será posible factorizar ¿Cómo determinar estos números? a) Se selecciona una descomposición factorial de m y otra de q: m = ac y q = bd b) Se calculan los productos cruzados ad y bc, y se adicionan estos productos: c) Si bc + ad = p, entonces los factores del trinomio dado son (ax+b) y (cx+d). En caso contrario se ensaya con otra combinación de factores para m y para q Ejemplos: a) 2x2 +11x + 12 m = 2 = 2 x 1 q = 12 = 3 x 4 Luego 2x2 +11x + 12 = (2x + 3)(x + 4) Si no se obtiene el coeficiente p, entonces se ensaya con otras factorizaciones. Por ejemplo: 2 = 1 · 2, 12 = 6 · 2, 12 = 1 · 12, 12 = 4 · 3, 12 = 2 · 6 También puede que ambos factores sean negativos, pues el resultado es positivo: 2 = (-1) · (-2) , 12 = (-6) · (-2)
  • CUADRO SINOPTICO DE M.C.D Y M.C.M Mínimo Común Múltiplo (m.c.m.) entre polinomios Recordemos primero con un ejemplo cómo se calculaba el mínimo común múltiplo entre números enteros: Hallar el mínimo común múltiplo entre 120 y 36. Primero había que "factorizar" o descomponer a los números. Así:
  • Luego, en el m.c.m. había que poner, multiplicando, a cada uno de los distintos "factores" (los números que aparecen en la columna derecha de la factorización), y había que ponerlos con el mayor exponente con el que aparecen, ya sea en un número o en el otro. Habría que aclarar que los factores tienen que ser todos números primos m.c.m. = 23.32.5 Porque:  Los factores que aparecieron en las descomposiciones son: 2, 3 y 5. Y hay que ponerlos todos.  El 2: El exponente más alto con que aparece el 2 es 3. "Porque en el 120, el 2 está tres veces en la columna de la derecha", en cambio en el 36 el 2 está menos veces (dos veces). En el m.c.m, entonces, al 2 hay que ponerlo elevado a la tercera: 23 (Aclaremos, por la dudas, que el exponente que se le pone a un factor es igual a la cantidad de veces que aparece en la descomposición de un número, en la columna de la derecha).  El 3: El exponente más alto con que aparece el 3 es 2. Porque en el 36, el 3 está dos veces", en cambio en el 120 el 3 está una sola vez. Por eso en el m.c.m. al 3 hay que ponerlo elevado a la potencia segunda: 32.  El 5: El 5 aparece solamente en la descomposición del 120. Y aparece una sola vez, lo que significa que su exponente es 1, aunque no se lo pone: 5 = 51. En el m.c.m hay que poner el 5. Y el 5 hay que ponerlo así, sin exponente
  • (o con el 1), porque obviamente es el mayor exponente con que aparece (porque otro 5 no hay). Más sobre el MCM entre números en: CALCULO DEL MÍNIMO COMÚN MÚLTIPLO (MCM) Bueno, para hallar el mínimo común múltiplo entre polinomios, hay que hacer exactamente lo mismo. Con la diferencia de que los que se "factorizan" ya no son números, sino polinomios. Y los factores son también polinomios. Ya no se factoriza dividiendo, con las 2 columnas, sino que para factorizar los polinomios se usan los Casos de Factoreo. Los siguientes son ejemplos donde se busca el m.c.m. Por practicidad, para algunos de esos ejemplos uso polinomios que ya están factorizados. Ejercicios Hallar el M.C.M. de: * Hallar el MCM de los polinomios: P(x) = (x + 4)3 (x – 7)2 (x + 6)8(x + 7)3 F(x) = (x + 6)2 (x – 7)3 (x + 7)4(x – 6)2 S(x) = (x + 2)3 (x + 6)4 (x + 4)8(x + 7)2 a) (x + 7)4 (x + 6)8 (x + 4)8 b) (x + 7)4 (x + 6)8 c) (x + 7)4 (x + 6)8 (x + 4)8 (x – 7)3 (x – 6)2 (x + 2)3 d) (x + 7)4 (x + 6)8 (x + 4)8 (x – 7)3 (x – 6)2 e) (x + 7)4 (x + 4)8 (x – 7)3 (x – 6)2 (x + 2)3 Hallar el MCM de los polinomios: F(x) = (x + 5)4 (x – 6)2 (x + 9)3 (x – 1)4 S(x) = (x + 5)2 (x – 6)4 (x + 7)2 (x – 1)3 a) (x +5)(x – 6)(x – 1) b) (x + 5)2 (x – 6)2 (x – 1)3 c) (x + 5)4 (x – 6)4 (x – 1)4 (x + 9)3 (x + 7)2 d) (x + 1)(x – 2)(x + 9) e) (x – 1)3 (x – 6)4 1
  • 6 12 18 24
  • 30 36 42
  • 48 (Baldor, 2013) OPERACIONES CON FRACCIONES SUMA ALGEBRAICA DE FRACCIONES Para entender mejor este tema, lo que haremos primero es repasar como se resuelven las sumas y las restas cuando tenemos fracciones. En principio podemos distinguir dos situaciones diferentes; cuando las fracciones tienen igual denominador, y cuando tienen distintos denominadores. En el primer caso, el resultado de una suma algebraica de fracciones de igual denominador, es una fracción que tendrá el mismo denominador que las fracciones dadas y su numerador será la suma algebraica de los numeradores de las fracciones dadas. En el segundo caso, cuando se tienen distintos denominadores, se puede optar por dos caminos. Uno de ellos, implica determinar el mínimo común múltiplo de los denominadores, el cual será el denominador de la fracción resultado, en tanto que el numerador será la suma algebraica de números que surgen de dividir el mínimo común múltiplo que hemos determinado, por cada uno de los denominadores de las fracciones dadas, y al resultado de cada una de estas divisiones se lo multiplica por su respectivo numerador, se hace la suma algebraica del numerador y ya está.
  • El otro camino implica determinar el mínimo común múltiplo de los denominadores, y después, expresar cada una de las fracciones como fracciones equivalentes cuyos denominadores serán el mínimo común múltiplo que se ha determinado, con lo cual se consigue transformar una suma algebraica de fracciones de distinto denominador en una suma algebraica de igual denominador, que se resuelve como ya hemos visto.
  • Ahora bien, todo lo que hemos desarrollado se aplica, para las expresiones algebraicas fraccionarias. De modo tal que si se tiene una expresión con igual denominador, se mantiene el denominador y se suman o restan sus denominadores según sea el caso. Por otra parte, cuando se tienen expresiones de distinto denominador, la cuestión se complica un poco. Primero hay que determinar el mínimo común múltiplo (m.c.m.) de los polinomios que están en el denominador, y después debemos optar por el
  • camino de dividir este m.c.m. por cada denominador para después multiplicar por los numeradores, o bien transformar esta suma de distinto denominador en una de igual denominador usando fracciones equivalentes, si quieres liarte con divisiones y multiplicaciones de polinomios. Lo primero que hay que hacer es hallar el m.c.m., para lo cual hay que factorar todos los denominadores. El m.c.m. estará formado por todos los factores que hemos hallado, pero si alguno se repite, este se pone una sola vez, y si algún factor que se repite aparece con distinto exponente, debe ir con el mayor de los exponentes. Veamos un par de ejemplos: * Ejemplo 1: * Ejemplo 2: Una vez que tenemos el m.c.m. de los denominadores, se procede de la siguiente manera: Se determina que factores faltan en cada denominador para obtener el m.cm. ; y una vez que se tienen estos factores, se multiplican por el denominador y numerador de cada fracción. Al hacer esto, se ha transformado, la suma de fracciones de distinto denominador, en una de igual denominador, la que se resuelve del modo que se ha explicado previamente. Para terminar. Veamos un ejemplo numérico:
  • MULTIPLICACIÓN DE FRACCIONES ALGEBRAICAS Multiplicar fracciones es muy sencillo, solo hay que multiplicar los numeradores y los denominadores entre sí. Para las fracciones algebraicas, pasa lo mismo. Es decir hay que multiplicar los polinomios que están en los numeradores, entre sí, y de igual manera se multiplican entre sí los polinomios que están en los denominadores. En la práctica, procederemos de la siguiente manera: 1) Factoramos todos los polinomios. 2) Simplificamos lo que se pueda. 3) Ponemos como resultado, los factores que no se cancelaron. Veamos un ejemplo:
  • DIVISIÓN DE FRACCIONES ALGEBRAICAS La división de fracciones tampoco es muy complicada. Se realiza el producto cruzado entre los numeradores y los denominadores. Caso contrario, se multiplica la primera por la recíproca de la segunda. (Traducción: se invierte la segunda de las fracciones, con lo cual se transforma la división en una multiplicación, y se resuelve el ejercicio como un producto). Desarrollando por el segundo método. Ahora, cuando tenemos fracciones algebraicas, se procede de la misma manera. Es decir hay que invertir la segunda fracción y resolverla como una multiplicación. Formula:
  • En la práctica, procederemos de la siguiente manera: 1) Factoramos todos los polinomios. 2) Invertimos la segunda fracción y simplificamos lo que se pueda. 3) Ponemos como resultado, los factores que no se cancelaron. ECUACIONES CUADRATICAS Definicion Anteriormente trabajamos con ecuaciones lineales. Las ecuaciones lineales son ecuaciones polinómicas de grado uno. Ahora estudiaremos ecuaciones polinómicas de grado dos conocidas como ecuaciones cuadráticas. Definición: Una ecuación cuadrática es una ecuación de la forma ax2 + bx + c = 0 donde a, b, y , c son números reales y a es un número diferente de cero. Ejemplos: x2 - 9 = 0; x2 - x - 12 = 0; 2x2 - 3x - 4 = 0 La condición de que a es un número diferente de cero en la definición asegura que exista el término x2 en la ecuación. Existen varios métodos para resolver las ecuaciones cuadráticas. El método apropiado para resolver una ecuación cuadrática depende del tipo de ecuación cuadrática que se va a resolver. En este curso
  • estudiaremos los siguientes métodos: factorización, raíz cuadrada, completando el cuadrado y la fórmula cuadrática. Factorización: Para utilizar este método la ecuación cuadrática debe estar igualada a cero. Luego expresar el lado de la ecuación que no es cero como un producto de factores. Finalmente se iguala a cero cada factor y se despeja para la variable. Ejemplos 1) x2 - 4x = 0 2) x2 - 4x = 12 3) 12x2 - 17x + 6 = 0 Nota: No podemos resolver todas las ecuaciones cuadráticas por factorización porque este método está limitado a coeficientes enteros. Por eso tenemos que conocer otros métodos. Raíz cuadrada: Este método requiere el uso de la propiedad que se menciona a continuación. Propiedad de la raíz cuadrada: Para cualquier número real k, la ecuación x2 = k es equivalente a : Ejemplos 1) x2 - 9 = 0 2) 2x2 - 1 = 0 3) (x - 3)2 = -8
  • Completando el cuadrado: Completar el cuadrado conlleva hallar el tercer término de un trinomio cuadrado perfecto cuando conocemos los primeros dos. Esto es, trinomios de la forma: x2 + bx + ? Regla para hallar el último término de x2 + bx +?: El último término de un trinomio cuadrado perfecto ( con a = 1) es el cuadrado de la mitad del coeficiente del término del medio. Esto es; el trinomio cuadrado perfecto cuyos dos primeros términos son x2 + bx es : Al completar el cuadrado queremos una ecuación equivalente que tenga un trinomio cuadrado perfecto a un lado. Para obtener la ecuación equivalente el número que completa el cuadrado debe sumarse a ambos lados de la ecuación. Ejemplos 1) x2 + 6x + 7 = 0 2) x2 – 10x + 5 = 0 3) 2x2 - 3x - 4 = 0 Fórmula cuadrática: La solución de una ecuación ax2 + bx + c con a diferente de cero está dada por la fórmula cuadrática: La expresión:
  • Conocida como el discriminante determina el número y el tipo de soluciones. La tabla a continuación muestra la información del número de soluciones y el tipo de solución de acuerdo con el valor del discriminante. Valor de: Tipo de solución positivo dos soluciones reales cero una solución real negativo dos soluciones imaginarias Ejemplos 1) x2 + 8x + 6 = 0 2) 9x2 + 6x + 1 = 0 3) 5x2 - 4x + 1 = 0 Nota: Cualquier ecuación cuadrática puede resolverse utilizando la fórmula cuadrática. 1) x2 - x - 20 = 0 (por factorización) 2) x2 - 8 = 0 (por raíz cuadrada) 3) x2 - 4x + 5 = 0 (completando el cuadrado) 4) 9x2 + 6x = 1 (fórmula cuadrática) Clasificación Completa Una ecuación cuadrática se denomina completa si sus coeficientes son no nulos.
  • Completa General Es C.general porque es más de 1 es decir como ej: aX2=2X2 o 5X2 u otros que sean mayor a 1... ax²+bx+c=0 ej: 3x²+5x+7 Completa Particular Una ecuación de segundo grado es completa particular si el coeficiente a es igual a 1 (a=1) ejemplo: x² + 3x + 1 = 0 Incompleta Una ecuación cuadrática se llama incompleta si carece del término de primer grado, término libre o ambos. Incompleta Binomial Si el término libre es cero (aX"2" es al cuadrado) aX2 +bX +c=0 ------> C=0 ej: 4X2 -5x=0 Incompleta Pura ¿Si el coeficiente de x es cero. por ejemplo ax2(el 2 significa al cuadrado)entonces: ax2+c = 0? bx=0 ej: 5x2-1=0 Fórmula general para resolver ecuaciones cuadráticas Consideremos la ecuación general de segundo grado (ecuación cuadrática) que tiene la forma: .
  • Resolver esta ecuación implica encontrar el valor o los valores de que cumplen con la expresión, si es que existen. Cuando nos enfrentamos por primera vez en la vida a esta clase de problemas, la primera forma en la que se intenta dar una respuesta es probando con varios números hasta "atinarle" (ya sea porque nos sonría la buena fortuna, o por aproximación). Algunos incluso prueban número tras número hasta hallar la solución (Método de la "Fuerza Bruta"). Después, conforme nos vamos enfrentando a más problemas que involucran ecuaciones cuadráticas, descubrimos algunos métodos de solución. De los primeros que aprendemos (por simplicidad) están el "Método Gráfico" (Realizar la gráfica correspondiente a la ecuación cuadrática igualada a cero y observar en que abscisas la gráfica "toca o pasa" por el eje horizontal del plano cartesiano). Otro método que aprendemos es el "Método de Factorización" (Trabajar con la expresión cuadrática igualada a cero hasta dejarla expresada como multiplicación de otras dos expresiones algebraicas, y encontrar "por simple observación" los valores que hacen que estas últimas dos ecuaciones sean iguales a cero). Las desventajas de estos métodos es que implican trabajo excesivo, y no se garantiza que se encuentre la solución de la ecuación (al menos una solución "Real"). El último método que se estudia para resolver ecuaciones de segundo grado es la "Fórmula General".
  • Analizando la raíz cuadrada, se llega a las siguientes conclusiones: Si es menor que los resultados de X serán dos valores con parte real y parte imaginaria. Es decir, el resultado será un número complejo. Si es mayor que obtendremos dos valores distintos de X reales. Y si es igual que obtendremos dos valores de X reales e iguales. Al término se le llama discriminante. Tomando en cuenta el orden de los términos: "a", "b" y "c"=x²-6x+9 PROPIEDADES DE LOS NÚMEROS ENTEROS Propiedades de la suma de números enteros 1. Interna: a + b 3 + (−5) 2. Asociativa: (a + b) + c = a + (b + c) · (2 + 3) + (− 5) = 2 + [3 + (− 5)] 5 − 5 = 2 + (− 2) 0 = 0 3. Conmutativa: a + b = b + a 2 + (− 5) = (− 5) + 2 − 3 = − 3 4. Elemento neutro: a + 0 = a (−5) + 0 = − 5
  • 5. Elemento opuesto a + (-a) = 0 5 + (−5) = 0 − (−5) = 5 Propiedades de la resta de números enteros 1. Interna: a − b 10 − (−5) 2. No es Conmutativa: a - b ≠ b - a 5 − 2 ≠ 2 − 5 Multiplicación de números enteros La multiplicación de varios números enteros es otro número entero, que tiene como valor absoluto el producto de los valores absolutos y, como signo, el que se obtiene de la aplicación de la regla de los signos. Regla de los signos 2 · 5 = 10 (−2) · (−5) = 10 2 · (−5) = − 10 (−2) · 5 = − 10 Propiedades de la multiplicación de números enteros 1. Interna:
  • a · b 2 · (−5) 2. Asociativa: (a · b) · c = a · (b · c) (2 · 3) · (−5) = 2· [(3 · (−5)] 6 · (−5) = 2 · (−15) -30 = -30 3. Conmutativa: a · b = b · a 2 · (−5) = (−5) · 2 -10 = -10 4. Elemento neutro: a ·1 = a (−5)· 1 = (−5) 5. Distributiva: a · (b + c) = a · b + a · c (−2)· (3 + 5) = (−2) · 3 + (−2) · 5 (−2)· 8 =- 6 - 10 -16 = -16 6. Sacar factor común: a · b + a · c = a · (b + c) (−2) · 3 + (−2) · 5 = (−2) · (3 + 5) Propiedades de la división de números enteros 1. No es una operación interna:
  • (−2): 6 2. No es Conmutativo: a: b ≠ b : a 6: (−2) ≠ (−2): 6 Potencia de números enteros La potencia de exponente natural de un número entero es otro número entero, cuyo valor absoluto es el valor absoluto de la potencia y cuyo signo es el que se deduce de la aplicación de las siguientes reglas: 1. Las potencias de exponente par son siempre positivas. 2. Las potencias de exponente impar tienen el mismo signo de la base. Propiedades: a0 = 1 · a1 = a am · a n = am+n (−2)5 ·(−2)2 = (−2)5+2 = (−2)7 = −128 am : a n = am - n (−2)5 : (−2)2 = (−2)5 - 2 = (−2)3 = −8 (am )n = am · n [(−2)3 ]2 = (−2)6 = 64 an · b n = (a · b) n (−2)3 · (3)3 = (−6) 3 = −216 an : b n = (a : b) n (−6)3 : 3 3 = (−2)3 = −8 Potencias de exponente entero negativo
  • Raíz cuadrada de un número entero Las raíces cuadradas de números enteros tienen dos signos: positivo y negativo. El radicando es siempre un número positivo o igual a cero, ya que se trata del cuadrado número. (ditutor) ECUACIONES REDUCIBLES A CUADRÁTICAS 1. Las ecuaciones que, directamente o mediante transformaciones de equivalencia, se pueden expresar de la forma: ax2n +bxn +c=0, con a 0; mediante el cambio de variable z=xn se pueden expresar como una ecuación de segundo grado así: az2 +bz+c=0 Una vez resuelta esta ecuación, las soluciones de la ecuación original se determinan resolviendo x= . Entre estas ecuaciones se hallan las bicuadradas, ecuaciones de cuarto grado en las que no aparecen términos de tercero ni de primer grado. Ejemplos: x4 - 5x2 +4 = 0 ; x4 - 4 = x2 - 1 Para resolver este tipo de ecuaciones se procede inicialmente igual que para las de segundo grado, es decir, operar hasta que no haya denominadores y expresar la ecuación con el segundo miembro igualado a 0. Gráficamente se pueden resolver como en el caso de las de segundo grado, representando la gráfica correspondiente al primer miembro de la ecuación una vez igualado a 0. . (recursostic.educacion) Ejemplo, resuelve x4 - 5x2 + 4 = 0
  • 1. realizamos un cambio de variable, x2 = z, y reescribimos la ecuación: z2 - 5z + 4 = 0 2. resolvemos esta ecuación, z1 = 1 y z2 = 4 3. las soluciones de la ecuación inicial son: B) Ejemplo, resuelve 1. aislamos la raíz, 2. elevamos al cuadrado, 3. desarrollamos y resolvemos, 36x2 +4x-11=0, cuyas soluciones son 4. hacemos la comprobación en la ecuación inicial y sólo la primera de las raíces es solución de la ecuación original, la segunda no. RESOLUCION POR COMPLEMENTACION DE UN TRINOMIO CUADRADO En este tipo de expresión, hace falta un término cuadrático, para transformar a la expresión original en un trinomio cuadrado perfecto. Dicho término cuadrático se suma y se resta, al mismo tiempo, garantizando que en realidad estamos agregando 0, es decir que no estamos alterando la expresión básica en nada. La parte positiva de las dos que se han agregado, se suma a la parte de la expresión básica que necesitaba esa adición para transformar dicha parte básica en un trinomio cuadrado perfecto. La parte negativa queda agregada al final de todo. Se factoriza la parte que ha quedado transformada en un trinomio cuadrado perfecto.
  • Ahora se tendrá una diferencia de cuadrados, en la cual el primer término es el trinomio cuadrado perfecto factorizado, y la otra es la parte negativa de las dos expresiones cuadráticas que se agregaron. Dicha diferencia de cuadrados se vuelve a factorizar, como tal, y deja la expresión original totalmente factorizada, mediante la completación de un trinomio cuadrado perfecto y de llevar todo a una diferencia de cuadrados. Cuando mencionamos el caso cinco es porque un autor decidió enumerar los casos, para nosotros es conocido como completación del trinomio cuadrado perfecto, entonces para hacerlo recordemos que es el trinomio cuadrado perfecto. Recordemos que sabíamos que era un trinomio cuadrado perfecto si tomábamos las raíces y encontrábamos el doble producto. En este caso la factorización es muy simple, pongamos las raíces en un paréntesis y pongamos entre ellas el signo del doble producto y elevemos al cuadrado, esa es la factorización del trinomio cuadrado perfecto. Pero vamos a ver ahora trinomios donde no encontramos ese doble producto pero haciendo un artilugio matemático podemos lograrlo para luego volver esa expresión en una diferencia de cuadrados que es otro caso distinto. Para averiguar si es cuadrado perfecto tomamos las raíces siempre de los que estén solos. El problema de las matemáticas es que si yo sumo algo también se lo debo restar porque al restarlo no afectó la expresión. Luego de eso si se puede factorizar. Aunque hagamos la completación y obtuvimos un trinomio, simplemente tuve una diferencia y para factorizar se deben obtener productos. Entonces se debe hacer una diferencia de cuadrados porque lo bueno del trinomio cuadrado perfecto es que cuando yo lo factorizo siempre se me genera un cuadrado y si la expresión que sume y reste no me queda al cuadrado entonces el caso no aplica, o sea que no podemos usar el caso cinco. Siempre que haya completación tengo que darme cuenta que lo que vaya a sumar o restar tenga raíz. Al tener las dos raíces y el doble producto ya puedo empezar a factorizar, poniendo entre paréntesis las raíces, el signo de la mitad que en este caso si importa. Con esto dejamos por explicado como se resuelven trinomios y binomios utilizando la completación del trinomio cuadrado perfecto. 2 Comentarios en: factorización por completación del trinomio cuadrado perfecto Paola Arteaga dice:
  • 19/02/2013 at 11:34 PM En el minuto 11:30, al momento de desarrollar el trinomio, la solución debería ser (a↑2+2b↑2)↑2, puesto que colocaste como raíz de 4b↑4 = b↑2; así que el resultado sería (a↑2+2b↑2+2ab)(a↑2+2b↑2-2ab). Espero pronto tu rta para saber si estoy en lo correcto o no, gracias Tareasplus dice: 20/02/2013 at 10:21 AM Nos quedó faltando el 2 que acompaña a b^2. Vamos a tener una anotación en el video para corregirlo. Muchas gracias por el comentario. Recuerda que igual tenemos una mejor versión de este tema que puedes ver en: EJERCICIOS 2 X + 6X + 9 es un T.C.P. si es un TCP factorizado: 1°) X y 9 son cuadrados por lo tanto: 2°) doble producto: 2 x Xx 3 = 6X 2 3°) factorando: X + 6X + 9 = (X + 3) Para resolver una ecuación de segundo grado por la competición de cuadrados se siguen los siguientes pasos: 1) se forma la mitad del coeficiente de X: b., luego se eleva al
  • 2 2 cuadrado b 2 2) se adiciona a ambos lados de la igualdad 3) se factoriza 4) se hallan las raices (X1 , X2 ) Solución de ecuaciones cuadráticas por completación del cuadrado Demostremos el método de completación del cuadrado con un ejemplo. Ejemplo 3 Resolver la siguiente ecuación cuadrática . Solución El método de completación de cuadrados es como se muestra a continuación. 1. Reescribir como 2. Para poder tener un trinomio cuadrado perfecto al lado derecho necesitamos añadir la constante . Sumar esta constante a ambos lados de la ecuación. 3. Factorizar el trinomio cuadrado perfecto y simplificar el lado derecho de la ecuación. 4. Sacar la raíz cuadrada en ambos lados. Respuesta y Si el coeficiente del término no es uno, debemos dividir toda la expresión por este número antes de completar el cuadrado. Ejemplo 4 Resolver la siguiente ecuación cuadrática . Solución:
  • 1. Dividir todos los términos por el coeficiente del término . 2. Reescribir como 3. Para poder tener un trinomio cuadrado perfecto en el lado derecho necesitamos añadir la constante . Sumar esta constante a ambos lados de la ecuación. 4. Factorizar el trinomio cuadrado perfecto y simplificar. 5. Sacar la raíz cuadrada en ambos lados. Respuesta y Resolver ecuaciones cuadráticas en forma estándar Una ecuación en forma estándar se escribe como . Para resolver una ecuación en esta forma primero movemos el término constante al lado derecho de la ecuación. Ejemplo 5 Resolver la siguiente ecuación cuadrática . Solución El método de completación de cuadrados se aplica como sigue: 1. Mover la constante al otro lado de la ecuación.
  • 2. Reescribir como 3. Sumar la constante a ambos lados de la ecuación 4. Factorizar el trinomio cuadrado perfecto y simplificar. 5. Sacar la raíz cuadrada a ambos lados de la ecuación. Respuesta y APLICACIONES DE LAS FUNCIONES CUADRÁTICAS Las funciones cuadráticas son más que curiosidades algebraicas — son ampliamente usadas en la ciencia, los negocios, y la ingeniería. La parábola con forma de U puede describir trayectorias de chorros de agua en una fuente y el botar de una pelota, o pueden ser incorporadas en estructuras como reflectores parabólicos que forman la base de los platos satelitales y faros de los carros. Las funciones cuadráticas ayudan a predecir ganancias y pérdidas en los negocios, graficar el curso de objetos en movimiento, y asistir en la determinación de valores mínimos y máximos. Muchos de los objetos que usamos hoy en día, desde los carros hasta los relojes, no existirían si alguien, en alguna parte, no hubiera aplicado funciones cuadráticas para su diseño.
  • Comúnmente usamos ecuaciones cuadráticas en situaciones donde dos cosas se multiplican juntas y ambas dependen de la misma variable. Por ejemplo, cuando trabajamos con un área. Si ambas dimensiones están escritas en términos de la misma variable, usamos una ecuación cuadrática. Porque la cantidad de un producto vendido normalmente depende del precio, a veces usamos una ecuación cuadrática para representar las ganancias como un producto del precio y de la cantidad vendida. Las ecuaciones cuadráticas también son usadas donde se trata con la gravedad, como por ejemplo la trayectoria de una pelota o la forma de los cables en un puente suspendido. Ejemplos: Resolver la siguiente ecuación x 2 + 4 x = 12 Solución: Paso 1: Escribir la ecuación en la forma general. x 2 + 4 x - 12 = 0 Paso 2: Factorizar x 2 + 4 x - 12 = 0 ( x + 6 ) ( x - 2 ) = 0 Paso 3: Igualar cada factor a cero y resolver para x x + 6 = 0 x = - 6 x - 2 = 0 x = 2 Paso 4: Verificar la solución. Verificar x=-6 x 2 + 4 x - 12 = 0 ( - 6 ) 2 + 4 ( - 6 ) -12 = 0 36 - 24 - 12 = 0 0 = 0 Verificar x=2 x 2 + 4 x - 12 = 0 ( 2 ) 2 + 4 ( 2 ) - 12 = 0 4 + 8 - 12 = 0 0 = 0 Ejemplo 2:
  • Resolver la siguiente ecuación 2 x 2 - 3 = 5 x Solución: Paso 1: Escribir la ecuación en la forma general. 2 x 2 - 5 x - 3 = 0 Paso 2: Factorizar 2 x 2 - 5 x - 3 = 0 ( 2 x + 1 ) ( x - 3 ) = 0 Paso 3: Igualar cada factor a cero y resolver para x 2 x + 1 = 0 2 x = - 1 x = - 1 2 x - 3 = 0 x = 3 Paso 4: Verificar la solución. Verificar x=-1/2 2 x 2 - 3 = 5 x 2 ( - 1 2 ) 2 - 3 = 5 ( - 1 2 ) 2( 1 4 ) - 3 = 5 ( - 1 2 ) 1 2 - 3 = - 5 2 - 5 2 =- 5 2 Verificar x=3 2 x 2 - 3 = 5 x 2 ( 3 ) 2 - 3 = 5 (3 ) 2 ( 9 ) - 3 = 15 18 - 3 = 15 15= 15
  • ANEXOS: NOTAS DE CLASE
  • EVALUACIONES Y DEBERES Tabla de amortización Amortizar significa extinguir gradualmente una deuda o un préstamo a través de pagos periódicos. El objetivo de una tabla de amortización es especificar el detalle de cada uno de los pagos hasta la liquidación total del préstamo. Es muy probable que alguna vez hayas visto una tabla de amortización, especialmente si te has acercado a una institución bancaria para solicitar un crédito de auto o un crédito hipotecario. Generalmente el asesor del banco te preguntará el monto y la duración deseada del crédito y de inmediato te mostrará una tabla con el desglose de los pagos a realizar. El asesor no hace los cálculos manualmente en el instante sino que utiliza un sistema computacional desarrollado para ese fin. Nosotros también podemos automatizar este tipo de tareas al crear una tabla de amortización en Excel y de esa manera conocer fácil y rápidamente la cantidad de pagos a realizar y así como los montos exactos destinados al pago de intereses y al pago de capital. Ejemplo de una tabla de Amortización. Linkografía: http://exceltotal.com/tabla-de-amortizacion-en-excel/
  • TABLA DE AMORTIZACIÒN Columna1 Columna2 Columna3 Columna4 Columna5 Columna6 Valor de la cuota $ 60.000 Tasa 8,50% Periodos 24 Cuota $ 5.938,19 Peridos Saldo Inicial Cuotas Intereses Capital Saldo Final 1 $ 60.000 $ 5.938,19 $ 5.100,00 $ 838,19 $ 59.161,81 2 $ 59.161,81 $ 5.938,19 $ 5.028,75 $ 909,43 $ 58.252,38 3 $ 58.252,38 $ 5.938,19 $ 4.951,45 $ 986,73 $ 57.265,65 4 $ 57.265,65 $ 5.938,19 $ 4.867,58 $ 1.070,60 $ 56.195,05 5 $ 56.195,05 $ 5.938,19 $ 4.776,58 $ 1.161,61 $ 55.033,44 6 $ 55.033,44 $ 5.938,19 $ 4.677,84 $ 1.260,34 $ 53.773,10 7 $ 53.773,10 $ 5.938,19 $ 4.570,71 $ 1.367,47 $ 52.405,62 8 $ 52.405,62 $ 5.938,19 $ 4.454,48 $ 1.483,71 $ 50.921,92 9 $ 50.921,92 $ 5.938,19 $ 4.328,36 $ 1.609,82 $ 49.312,10 10 $ 49.312,10 $ 5.938,19 $ 4.191,53 $ 1.746,66 $ 47.565,44 11 $ 47.565,44 $ 5.938,19 $ 4.043,06 $ 1.895,12 $ 45.670,32 12 $ 45.670,32 $ 5.938,19 $ 3.881,98 $ 2.056,21 $ 43.614,11 13 $ 43.614,11 $ 5.938,19 $ 3.707,20 $ 2.230,99 $ 41.383,12 14 $ 41.383,12 $ 5.938,19 $ 3.517,57 $ 2.420,62 $ 38.962,50 15 $ 38.962,50 $ 5.938,19 $ 3.311,81 $ 2.626,37 $ 36.336,13 16 $ 36.336,13 $ 5.938,19 $ 3.088,57 $ 2.849,61 $ 33.486,51 17 $ 33.486,51 $ 5.938,19 $ 2.846,35 $ 3.091,83 $ 30.394,68 18 $ 30.394,68 $ 5.938,19 $ 2.583,55 $ 3.354,64 $ 27.040,04 19 $ 27.040,04 $ 5.938,19 $ 2.298,40 $ 3.639,78 $ 23.400,26 20 $ 23.400,26 $ 5.938,19 $ 1.989,02 $ 3.949,16 $ 19.451,10 21 $ 19.451,10 $ 5.938,19 $ 1.653,34 $ 4.284,84 $ 15.166,26 22 $ 15.166,26 $ 5.938,19 $ 1.289,13 $ 4.649,05 $ 10.517,20 23 $ 10.517,20 $ 5.938,19 $ 893,96 $ 5.044,22 $ 5.472,98 24 $ 5.472,98 $ 5.938,19 $ 465,20 $ 5.472,98 ($ 0,00)
  • 2013
  • Fracciones Algebraicas DEFINICIÓN Y CLASIFICACIÓN Se llama fracción o quebrado al cociente indicado de dos expresiones algebraicas cualesquiera. El dividendo se llama numerador y el divisor se llama denominador y ambos se conocen como términos del quebrado. Así, a/bes una fracción algebraica porque es el cociente indicado de la expresión a (dividendo) entre expresión b(divisor). Fracción algebraica simple Es la que el numerador y denominador son expresiones racionales enteras. Son ejemplos de fracciones simples: . Fracción propia e impropia Una fracción simple se llama propia si el grado del numerador es menor que el grado del denominador; y se llama impropia si el grado del numerador es mayor o igual que el grado del denominador. Fracción compuesta
  • Una fracción compuesta es aquella que contiene una o más fracciones ya sea en su numerador o en su denominador, o en ambos. Son ejemplos de fracciones compuestas: Significados de una fracción Significado 1.- Una fracción indica una división. Por ejemplo, ¾ quiere decir 3 divido por 4 o bien 3¸4. Cuando una fracción significa división, el numerador es el dividendo y el denominador es el divisor. Significado 2.- Una fracción indica una razón. Por ejemplo, ¾ quiere decir 3 a 4 o bien 3:4. Cuando una fracción significa razón de dos cantidades, éstas deben estar expresadas en las mismas unidades. Por ejemplo la razón de 3 días a 2 semanas es 3:14 o bien 3/14. Se ha hecho la equivalencia de 2 semanas a 14 días eliminándose luego la unidad común. Significado 3.- Una fracción indica una parte de todo o una parte de un grupo de cosas. Por ejemplo, ¾ puede expresarse tres cuartos de una moneda o bien 3 monedas de 4 monedas. Numerador o Denominador Nulo Si el denominador de una fracción es cero, el valor de dicha fracción es nulo siempre que el denominador sea distinto de cero. Por ejemplo 0/3 = 0. Asimismo, si x/3=0 se deduce que x=0. La fracción para x = 5 vale cero. Sin embargo 0/0 es indeterminado. Como la división por cero carece de sentido, una fracción cuyo denominador sea cero es imposible. Por ejemplo 3¸0 es imposible. O bien 3/0 carece de sentido. Asimismo, si x = 0 la fracción 5¸x es imposible o bien 5/xcarece de sentido. El objetivo es unir las dos fracciones en una y luego simplificas la fracción resultante, pero para poder unirlas ambas deben tener el mismo denominador, para lo que se realizan los dos primeros pasos. Una vez unidas debemos desarrollar el numerador,
  • convertirlo en un simple polinomio y descomponerlo en factores para poder simplificar la fracción. (Matematicas, 2013) Ejercicio 1 Ejercicio 2 Ejercicio 3
  • Multiplicación fracciones algebraicas. Basta que tengas en cuenta como se multiplican y dividen las fracciones como estudiaste hasta ahora. Con tener en cuenta, respecto a la parte literal, que, para
  • multiplicar potencias de la misma base se suman los exponentes y para dividir se restan, es suficiente. Halla el valor de: Repuesta Solución: Para multiplicar fracciones se halla el producto de numeradores y se divide por el producto de denominadores. Si se puede, se simplifican factores comunes: Calcula el producto: Respuesta Solución: Multiplicamos la parte numérica primero y luego la parte literal sumando los exponentes de las potencias de la misma base: Dividimos la parte numérica primero y luego la parte literal restando los exponentes de las potencias de igual base y su resultado lo colocamos donde el exponente era mayor: (Matematicas, 2013)
  • División de Fracciones Algebraicas El cociente de dos fracciones algebraicas es otra fracción algebraica con numerador el producto del numerador de la primera por el denominador de la segunda, y con denominador el producto del denominador de la primera por el numerador de la segunda. Recuerda que para dividir fracciones puedes multiplicar la primera por el inverso de la segunda, es decir, “darle vuelta” a la segunda fracción, que equivale a poner el numerador como denominador y a éste como numerador. También puedes multiplicar el primer numerador por el segundo denominador y este producto dividir entre el producto del primer denominador por el numerador de la segunda fracción. Divide: Respuesta. Respuesta
  • ECUACIONES LINEALES Ecuación lineal con n incógnita Una ecuación lineal con n incógnitas es cualquier expresión del tipo: a1x1 +a2x2 + a3x3 +... + anxn = b, donde ai, b. Los valores ai se denominan coeficientes, b es el término independiente. Los valores xi son las incógnitas. Solución de una ecuación lineal Cualquier conjunto de n números reales que verifica la ecuación se denomina solución de la ecuación. Dada la ecuación x + y + z + t = 0, son soluciones de ella: (1,-1,1,-1), (-2,-2,0, 4). Ecuaciones lineales equivalentes Son aquellas que tienen la misma solución. x + y + z + t = 0 2x + 2y + 2z + 2t = 0 ECUACIONES LINIALES DE PRIMER GRADO Una ecuación de primer grado o ecuación lineal significa que es un planteamiento de igualdad, involucrando una o más variables a la primera potencia, que no contiene productos entre las variables, es decir, una ecuación que involucra solamente sumas y restas de una variable a la primera potencia.
  • Resolver una ecuación consiste en hallar los valores de la variable que hacen cierta la igualdad. Recuerda: Si un elemento está sumando en un miembro pasa al otro restando. Si está restando pasa sumado. Si un número multiplica a todos los elementos de un miembro pasa al otro dividiendo y si los divise pasa multiplicando. (Matematicas.net, 2013) Ejemplo: Resolución de la ecuación 2x - 3 = 2 1º paso: Se suma a los dos miembros 3. 2x -3 + 3 = 2 + 3 2x = 5 2º paso. Se divide los dos miembros por 2. 2x /2 = 5/2
  • Ejemplo: Resolución de la ecuación 3x -2 = x + 5 1º paso: Restamos x a los dos miembros. 3x -2 -x = x - x + 5; 2x - 2 = 5 2º paso. Sumamos 2 a los dos miembros. 2x - 2 + 2 = 5 + 2; 2x = 7 3º paso. Dividimos por 2, el coeficiente de la x 2x/2 = 7/2 SOLUCIÓN: x = 7 / 2 Resolución de la ecuación 2(x + 3) - 3(2x +1) = 4(1-3x) 1º paso: Se quita los paréntesis. 2x + 2·3 - 3·2x - 3·1 = 4·1 - 4·3x; 2x + 6 -6x-3 = 4 -12x 2º paso. Se simplifica los dos miembros. -4x + 3 = 4 - 12x 3º paso. Quitar la x de la derecha. Sumamos 12x -4x + 3 + 12x = 4 - 12x + 12x; 8x + 3 = 4 4º paso. Quitar el número de la izquierda. Restamos 3 8x +3 - 3 = 4 - 3; 8x = 1
  • 5º pasó. Dividimos por el coeficiente de la x, 8 SOLUCIÓN: x = 1 /8 (Metamaticas recursos. Algebra, 2013)
  • Bibliografía Matematicas.net. (4 de 07 de 2013). http://www.ematematicas.net/ecuacion.php. Obtenido de http://www.ematematicas.net/ecuacion.php Metamaticas recursos. Algebra. (4 de 7 de 2013). http://www.i- matematicas.com/recursos0809/1ciclo/algebra/interactivo/EW1_V.htm. Obtenido de http://www.i-matematicas.com/recursos0809/1ciclo/algebra/interactivo/EW1_V.htm
  • 2013
  • SISTEMAS DE ECUACIONES. Resolver un sistema de ecuaciones consiste en encontrar los valores desconocidos de las variables que satisfacen todas las ecuaciones. Estudiaremos la resolución de los siguientes tipos de sistemas: Sistemas de dos ecuaciones con dos incógnitas. Sistemas de tres ecuaciones con tres incógnitas. Sistemas de ecuaciones no lineales. Sistemas de dos ecuaciones con dos incógnitas Método de sustitución 1 Se despeja una incógnita en una de las ecuaciones. 2 Se sustituye la expresión de esta incógnita en la otra ecuación, obteniendo un ecuación con una sola incógnita. 3 Se resuelve la ecuación. 4 El valor obtenido se sustituye en la ecuación en la que aparecía la incógnita despejada. 5 Los dos valores obtenidos constituyen la solución del sistema. Método de igualación El método de igualación consiste en una pequeña variante del antes visto de sustitución. Para resolver un sistema de ecuaciones por este método hay que despejar una incógnita, la misma, en las dos ecuaciones e igualar el resultado de ambos despejes, con lo que se obtiene una ecuación de primer grado. Las fases del proceso son las siguientes:
  • i. Se despeja la misma incógnita en ambas ecuaciones. ii. Se igualan las expresiones obtenidas y se resuelve la ecuación lineal de una incógnita que resulta. iii. Se calcula el valor de la otra incógnita sustituyendo la ya hallada en una de las ecuaciones despejadas de primer paso. Evidentemente, todas las aclaraciones hechas en la sección anterior sobre la elección de la incógnita que queremos despejar, así como sobre la discusión del sistema en orden a saber si tiene solución o no y cuántas (en caso de tenerlas), son igualmente válidas en este método. Método de reducción Entre Ana y Sergio tienen 600 euros, pero Sergio tiene el doble de euros que Ana. ¿Cuánto dinero tiene cada uno? Llamemos x al número de euros de Ana y al de Sergio. Vamos a expresar las condiciones del problema mediante ecuaciones: Si los dos tienen 600 euros, esto nos proporciona la ecuación x + y = 600. Si Sergio tiene el doble de euros que Ana, tendremos que y = 2x. Ambas ecuaciones juntas forman el siguiente sistema: x + y = 600 y = 2x Vamos a resolver el sistema por el método de igualación y ya que en la 2ª ecuación hay una incógnita, la y, despejada, vamos a despejar la misma incógnita en la otra ecuación, con lo que tendremos:(Matematica Ecuaciones, 2013) y = 2x ⇒ 2x = 600 - x ⇒ 2x + x = 600 ⇒ 3x = 600 ⇒ x = 600/3 = 200 y = 600 - x
  • Ahora sustituimos x = 200 en una de las ecuaciones en las que estaba despejada la y, con lo que tendremos: y = 2x ⇒ y = 400 Por tanto, la solución al problema planteado es que Ana tiene 200 euros y Sergio tiene 400 euros, es decir, el mismo resultado, evidentemente, que habíamos obtenido con el método de sustitución. Sea el sistema Sumaremos miembro a miembro las dos ecuaciones que componen el sistema, la intención es eliminar una variable por lo que si no se puede eliminar ninguna así nomás se multiplicaran las ecuaciones por números que igualen alguno de los términos, para que se elimine uno:(Vitutor Matematicas, 2013) Para este ejemplo eliminamos "y"
  • Ejercicios sistema de ecuaciones.
  • Ecuaciones de Segundo Grado Una ecuación de segundo grado1 2 o ecuación cuadrática es una ecuación que tiene la forma de una suma de términos cuyo grado máximo es dos, es decir, una ecuación cuadrática puede ser representada por un polinomio de segundo grado o polinomio cuadrático. Ecuaciones Cuadráticas – Factorización Una ecuación cuadrática es una ecuación en su forma ax2 + bx + c, donde a, b, y c son números reales. Ejemplo: 9x2 + 6x + 10 a = 9, b = 6, c = 10 3x2 - 9x a = 3, b = -9, c = 0 -6x 2 + 10 a = -6, b = 0, c = 10 Hay tres formas de hallar las raíces (el o los valores de la variable) de las ecuaciones cuadráticas: 1.-Factorización Simple 2.-Completando el Cuadrado 3. Fórmula Cuadrática Factorización Simple: La factorización simple consiste en convertir la ecuación cuadrática en un producto de binomios. Luego, se busca el valor de x de cada binomio. (Ecuaciones, 2013) Ejemplo: Realizar la factorización simple de la ecuación x2 + 2x – 8 = 0 a = 1 b = 2 c = - 8 (x ) (x ) = 0 [x ·x = x2 ]
  • ( x + ) (x - ) = 0 (x + 4 ) (x – 2) = 0 4 y –2 4 + -2 = 2 4 · -2 = -8 x + 4 = 0 x – 2 = 0 x + 4 = 0 x – 2 = 0 x = 0 – 4 x = 0 + 2 x = -4 x = 2 Estas son las dos soluciones. Completando el Cuadrado: En este método, la ecuación tiene que estar en su forma ax2+bx+c; y siempre la constante de a tiene que ser igual a 1. Por ejemplo, para factorizar la ecuación 4x2 + 12x – 8 = 0, hay que despejar de la siguiente forma: 4x2 + 12x – 8 = 0 4 4 4 4
  • s dos soluciones.] x2 + 3x – 2 = 0 Ahora, a= 1. Ejemplo: x2 + 2x – 8 = 0 [Ya está en su forma donde a = 1.] x2 + 2x = 8 [ Pasar a c al lado opuesto.] x 2 + 2x + = 8 + [Colocar los blancos] x2 + 2x + 1 = 8 + 1 x2 + 2x + 1 = 9 ( ) ( ) = 9 Hay que factorizar. Nota: Siempre será un cuadrado perfecto. ( x + 1) (x + 1) = 9 (x + 1)2 = 9 (x + 1) = ± x + 1 = ± 3 x = -1 ± 3 [Separar la x = -1 + 3 x = -1 – 3 x = 2 x = -4
  • Ejemplo: Fórmula Cuadrática: Este método es muy simple: hay que sustituir los valores de a, b y c de la ecuación cuadrática a la siguiente fórmula X2 + 2x – 8 = 0 a = 1, b = 2, c = -8 x = -2 ± 6 2 X = -2 + 6 x = -2 - 6 2 2 x = 4 x = -8 2 2 R: x = 2 x = - 4
  • Las ecuaciones de segundo grado deben tener una x elevada al cuadrado. (Ecuaciones cuadraticas, 2013) Propiedades básicas de las soluciones de la ecuación cuadrática.
  • Demostración Demostración Problemas que conducen a ecuaciones cuadráticas Ejemplo 1 Un Avión realiza un vuelo de 1200 millas. Si aumenta su velocidad en 80 millas por hora el recorrido puede hacerse en media hora menos. Cuál es su velocidad de vuelo? Sea V la velocidad a encontrar Asumiendo una velocidad constante el tiempo para volar las 1200 millas es recuerde que tiempo es igual a espacio/velocidad.
  • Si recorre la misma distancia pero 80 millas por hora más el tiempo será Si restamos los tiempos tenemos que la diferencia es media hora Operemos Lo cual es lógico ya que el Avión avanza hacia su destino (la velocidad no puede ser negativa ni 0) La velocidad del Avión es 400 millas por hora (No se toma en cuenta la respuesta negativa ya que carece de sentido como solución)
  • Ejemplo 2 Un terreno rectangular tiene 12 metros cuadrados de área y su perímetro es de 14 metros. Cuáles son las dimensiones del terreno? Sea "x" el ancho y sea "y" el largo del terreno. Tenemos que el área es el producto del largo por el ancho por tanto se tiene El perímetro es la suma de los lados del rectángulo luego Tenemos un sistema de dos ecuaciones con dos incógnitas Despejamos x de (2) para reemplazarlo en (1)}(Ecuaciones, 2013) Luego Se multiplica por -1 a ambos lados de la ecuación
  • Si reemplazamos en x ambas soluciones tenemos que x puede ser 7 – 4 que es 3 o también 7 – 3 que es 4 por tanto no importa el orden las dimensiones siempre serán 3 y 4 metros (esto sucede porque el ancho y largo son nombres subjetivos y dependen de cómo se vea el rectángulo) (Ecuaciones, 2013) Bibliografí a Ecuaciones. (4 de 7 de 2013). http://www.ditutor.com/ecuaciones_grado2/ecuaciones_segundo.html. Obtenido de http://www.ditutor.com/ecuaciones_grado2/ecuaciones_segundo.html Ecuaciones. (4 de 7 de 2013). http://www.ecuacioncuadratica.com/. Obtenido de http://www.ecuacioncuadratica.com/ Ecuaciones cuadraticas. (4 de 7 de 2013). http://recursostic.educacion.es/secundaria/edad/3esomatematicas/3quincena3/3eso_qui ncena3.pdf. Obtenido de http://recursostic.educacion.es/secundaria/edad/3esomatematicas/3quincena3/3eso_qu i ncena3.pdf
  • EJERCICOS DE ECUCIONES CUADRÁTICAS
  • Bibliografia 2013. PROFESOR EN LINEA. PROFESOR EN LINEA. [En línea] 2013. http://www.profesorenlinea.cl/matematica/AlgebraProductosnotables.htm. matemati@fca.unl.edu.ar. (s.f.). Obtenido de http://www.fca.unl.edu.ar/Limite/1.2%20N%FAmeros%20reales.htm Algebra intermedia, Larson Hosteller Neptune, 2001. Algebra intermedia, Allen R. Ángel, 2008. (corrales, 20o1) http://www.tareasplus.com/curso-algebra-elemental/ http://multibiblioteca.blogspot.com/2012/09/solucion-de-la-ecuacion-cuadratica- por.html http://www.ck12.org/book/%25C3%2581lgebra-I---Edici%25C3%25B3n- Espa%25C3%25B1ola--T/r1/section/10.4/ ditutor. (s.f.). Números enteros. Recuperado el 30 de Julio de 2013, de Números enteros: http://www.ditutor.com/numeros_enteros/numeros_enteros.html recursostic.educacion. (s.f.). ECUACIONES REDUCIBLES A CUADRÁTICAS. Recuperado el 30 de Julio de 2013, de ECUACIONES REDUCIBLES A CUADRÁTICAS: http://recursostic.educacion.es/descartes/web/materiales_didacticos/tema5_ ccss_eda05/item_4.htm